用户名: 密码: 验证码:
长期施肥农田的土壤酸化特征与机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为探索农田土壤酸化的时空演变规律,揭示农田土壤酸化的成因,提出农田土壤酸化防治的有效措施,收集了我国6种典型农田土壤(祁阳和进贤红壤、进贤和望城水稻土、重庆紫色土、郑州和昌平潮土、公主岭和哈尔滨黑土、黑河暗棕壤)上10个长期(18~30年)施肥试验的历史观测资料,分析了长期不同施肥措施下耕层土壤pH的演变特征和酸化速率,与其受区域气候和初始土壤理化性质等自然因素的影响;分析了长期不同施肥措施下剖面土壤pH的垂直变异特点;分别从生态系统的表观氮平衡和质子负荷组成、土壤酸中和能力(ANC)和土壤水溶性组分的变化4方面阐述了农田土壤酸化的机制。结果表明:
     (1)以6年为一阶段,祁阳红壤、进贤红壤、重庆紫色土、公主岭黑土和哈尔滨黑土试验各施肥处理的土壤pH差异明显。长期施肥下农田土壤酸化速率的大小顺序为:N> NPK> NPKM≈CK≈M(成对T检验,P <0.05或0.01)。N和NPK处理的土壤酸化速率分别为0.066和0.046pH/yr,是对照平均值的4.9和3.4倍。化学磷钾肥单施的耕层pH较对照显著下降,土壤酸化速率显著升高。尽管存在区域差异性,长期施肥农田的耕层pH演变存在对施肥措施的共性响应特征。
     (2)年均气温主导的因子与初始1-6年pH下降量显著负相关。降雨量主导的因子与土壤酸化速率存在显著相关:蒸降比每升高1个单位,土壤酸化速率平均降低0.02~0.04pH/yr。相对土壤酸化速率与海拔因子显著正相关:海拔每增加100m,磷钾处理的相对土壤酸化速率平均增加0.024pH/yr。初始土壤有效磷含量与1-6年pH下降量呈显著正相关。土壤酸化速率受初始土壤pH值和粘粒含量的显著影响:初始pH值越大,土壤年酸化速率越小;土壤粘粒含量越大,土壤酸化速率越大。区域气候和初始土壤理化性质等自然因素对农田土壤酸化存在显著影响。
     (3)长期施肥下,土壤有效磷的增加效应最为明显(168-599%),其次为有效钾(16-189%),再次为有效氮(9-33%)。在氮或磷钾养分相对不足的生态系统中施入相应养分可有效减缓土壤酸化;而在氮或磷钾养分相对盈余的生态系统中施入相应养分则可明显加速土壤酸化。
     (4)在农业土壤上,超过作物生物量和土壤积累的过量氮施肥引起了生态系统氮盈余。表观氮平衡的增加加速了土壤酸化。此效应在不同长期试验上依次降低:祁阳红壤>公主岭黑土>哈尔滨高量施肥>黑河暗棕壤>重庆紫色土>哈尔滨常量施肥>望城水稻土。在祁阳红壤试验,每增加10kg/ha/yr氮盈余,土壤酸化速率增加0.01pH/yr。
     (5)祁阳红壤、进贤红壤、哈尔滨黑土和黑河暗棕壤试验各施肥处理的生态系统质子负荷分别为-3.58~19.84、-2.52~9.96、0.75~13.95和-0.86~10.74kmol/ha/yr。土壤净酸添加率(NAAR)与土壤pH下降速率呈显著线性正相关。这种线性相关在重庆紫色土(-3.17~22.43kmol/ha/yr)和公主岭黑土(-2.24~10.10kmol/ha/yr)试验未达到显著性。长期施肥下农田土壤酸化速率受过量盐基阳离子施肥、生物量移除、生态系统表观氮平衡和有机碳矿化分解4个主要因素的影响。
     (6)实验室条件下的土壤质子化过程可视作由质子扩散控制的假二级反应动力学过程。在各长期试验,土壤ANC与pH具有高度线性相关性,土壤ANC在指示土壤的酸碱程度上较pH更为灵敏。土壤ANC对土壤有机质(SOM)的变化不敏感。长期施肥措施对土壤ANC的影响因试验点而异,总体上,施用无机氮肥<不施氮组≈有机无机氮配施组。
     (7)在哈尔滨黑土试验,伴随着土壤pH的显著降低,土壤水溶性组分中碳相关阴离子的比例呈下降趋势,而硝酸根的比例呈上升趋势。在高量施氮处理,硝酸根和钙镁离子在土壤表层(0~5cm)和深层(>20cm)发生明显积累。耕层土壤的可溶性组分中,碳相关阴离子和硝酸根占总阴离子的比例,可溶性有机氮和无机氮占总氮比例均也可指示生态系统碳和氮循环质子负荷占比。
     (8)在农业生态系统中,土壤中的碱性物质通过淋溶和生物量收获被输出生态系统,形成净质子负荷;作为盐基阳离子的阴离子载体,碳酸氢根、有机酸根和硝酸根输出是生态系统质子负荷的主要形式,分别构成了驱动土壤酸化的碳循环和氮循环效应。为防止农田土壤酸化,除总质子负荷低于3%的土壤ANC上限约束外,10~50%的氮循环质子负荷占比也是重要的约束条件。
     (9)防治农田土壤酸化应遵从的总体原则是:通过合理的施肥、田间管理和收获模式,促进养分的生物循环,减缓养分的地球化学循环。具体分解为5个方面:合理施用化学氮肥,维持生态系统表观氮平衡;合理施用化学磷钾肥,弥补生物量收获养分输出;合理施用有机肥,保持或逐步提高土壤的基础肥力;合理水分管理,减少土壤养分淋溶和流失;合理田间管理,提高农作物产量。
The aims of this study were to characterize the spatial and temporal evolution of soil pHunder long-term fertilizations, and further to understand the mechanisms and effectivemethods against soil acidification in croplands. We collected historical data on ten18–30years long-term fertilization experiments in six typical Chinese cropland soils (red soil atQiyang and Jinxian, paddy soil at Jinxian and Wangcheng, purple soil at Chongqing, alluvialsoil at Zhengzhou and Changping, black soil at Gongzhuling and Harbin and dark brown soilat Heihe). We compared the differences in topsoil pH among experimental stages of six yearsand fertilization treatments, i.e., no-fertilizer control (CK), sole chemical nitrogen fertilizer(N), chemical nitrogen, phosphorus and potassium fertilizers (NPK), manure amendmentswith NPK fertilizers (NPKM) and sole manure (M), calculated soil acidification rates (SAR)and analyzed how the characteristics of soil acidification were affected by natural factorsincluding regional climate and the initial soil properties. On the other hand, we expoundedthe mechanisms for soil acidification in croplands from apparent nitrogen balance, protonbudgets in ecosystem, the changes in soil acid-neutralizing capacity (ANC) andwater-extractable components, respectively.
     1) There were significant differences in topsoil pH among treatments at the experimentalsites of red, purple and black soils but not at the experimental site of purple, alluvial and darkbrown soil. The SARs in the six long-term fertilization experiments were significantlydifferent among treatments (p<0.05or0.01by Paired T-test), and decreased in the order of N> NPK>NPKM≈CK≈M. The SARs under the N and NPK treatments were0.066and0.046pH/yr, and were4.9and3.4times higher than that under the CK treatment, respectively.Moreover, sole chemical P and K fertilizers also significantly decreased topsoil pH andincreased SAR compared with control. Therefore, the evolution of pH in the topsoil wascharacterized as a common response to fertilization with regional differences.
     2) The factors dominated by average annual temperature were significantly and negativelycorrelated with the decrease in topsoil pH at the first stage of six years. The factors dominatedby precipitation were significantly correlated with SAR. The SARs averagely decreased 0.02~0.04pH/yr over one unit increase in the ratio of evaporation to precipitation (E/P). Therelative SAR under sole PK fertilization averagely increased0.024pH/yr over one unitincrease in altitude of100meters. The factor on the initial available phosphorous content inthe topsoil was significantly and positively correlated with the decrease of topsoil pH at thefirst stage of six years, especially under the N and NPK treatments. The factors on the initialsoil pH and clay content significantly affected SAR. The SARs increased with the decrease ofinitial pH (5.5~8.5) and with the increase of clay content (5~40%). Therefore, the effects ofregional climate and the initial soil properties at each site on the characteristics of soilacidification were significant.
     3) The increasing responses on fertilization with chemical N, P and K nutrients decreasedin the order of available phosphorous (168~599%)> available potassium (16~189%)>available nitrogen (9~33%) in the topsoil. Soil acidification under long-tem application withchemical N, P or K fertilizers in croplands was effectively alleviated while the correspondingnutrient was deficient in ecosystem, but largely accelerated while the corresponding nutrientwas surplus in ecosystem.
     4) In the cropland soils, the excess of N fertilization over the N in biomass harvested plusthe N in soil accumulated resulted in the N surplus in ecosystem. The increase of apparent Nbalance may accelerate soil acidification in croplands. The linear correlation between SARand apparent N balance were different among experimental sites, and the slope of linearfitting equation decreased in the order of red soil at Qiyang, black soil at Gongzhuling, highfertilization rate in black soil at Harbin, dark brown soil at Heihe, purple soil at Chongqing,conventional fertilization rate in black soil at Harbin and paddy soil at Wangcheng. In red soilat Qiyang, the SAR increased0.01pH/yr over one unit increase in apparent N balance of10kg/ha/yr.
     5) By the methods for quantifing soil acidification, total proton budgets under differentfertilization treatments were-3.58~19.84、-2.52~9.96、0.75~13.95和-0.86~10.74kmol/ha/yrin red soil at Qiyang and Jinxian, black soil at Harbin and dark brown soil at Heihe,respectively. The net acid addition rate (NAAR) was significantly correlated with the rate ofsoil pH decline relative to the initial value. However, this correlation was not significant inthe purple soil at Chongqing and black soil at Gongzhuling. Therefore, the SAR underlong-term fertilization was affected by four major factors, i.e., fertilization with excess basecations over acid anions, biomass removal, apparent N balance in ecosystem and thedecomposition of organic carbon.
     6) Under laboratory conditions, the process of soil protonation was considered as thepseudo-order reaction kinetics controlled by the proton diffusion in soil particles. At each long-term experiment, there were significant correlation between ANC and pH in the topsoil.Soil ANC was more sensitive to soil acid-base status rather than pH, but not to soil organicmatter (SOM). Significant differences in soil ANC among long-term fertilizations at theexperimental sites were in the order of inorganic nitrogen      7) In black soil at Harbin, the decrease in C-related anions percentage and the increase innitrate percentage were along with the decrease in topsoil pH under the control, conventionaland high rate of mineral N treatments. The accumulations of nitrate and bivalent base cationspresented both at the top (<5cm) and sub (>20cm) soil depths under high rate of mineral Nfertilization. In the water-extractable components, the percentages of C-related anions andnitrate may indicate the percentages of proton budgets from carbon and nitrogen cycles inecosystem, respectively, and so as the components of dissolved organic N and inorganic N.
     8) The excess output of base cations over acid anions via soil leaching and biomass harvestproduced the net proton budgets in agricultural ecosystem. As the companied anions withbase cations, the output fluxes of bicarbonate, organic acid anions and nitrate were the mainperformances of proton budgets in ecosystem, and constituted the effects of carbon andnitrogen cycles for driving soil acidification, respectively. To prevent soil acidification incroplands in the long-term scales, the limitations of proton budgets included total amountbeing less than3%of soil ANC and the percentage of nitrogen cycle effects ranging10~50%.
     9) The general principle against soil acidification in croplands was summarized that thebiological cycle of nutrients in ecosystem should be accelerated but the geochemical cycle ofnutrients in ecosystem should be alleviated under the suitable mode of fertilization, fieldmanagements and biomass harvest. The effective methods against soil acidification incroplands were summed up from five aspects: suitable amount of chemical N fertilizer tokeep apparent N balance in ecosystem; suitable amount of chemical P and K fertilizers tooffset the output via biomass harvest; suitable amount of organic manure to keep or enhancesoil basic fertility gradually; suitable water managements to reduce the leaching losses of soilnutrients; suitable field managements to improve crop production.
引文
Aitken RL, Moody PW.1994. The effect of valence and ionic strength on the measurement of pHbuffer capacity. Australian Journal of Soil Research32:975-984.
    Alewell C, Manderscheid B, Meesenburg H, Bittersohl J.2000. Is acidification still an ecologicalthreat? nature407(19):856-857.
    Ano AO, Ubochi CI.2007. Neutralization of soil acidity by animal manures: mechanism of reaction.African Journal of Biotechnology6(4):364-368.
    Antolin MC, Pascual I, Garcia C, Polo A, Sanchez-Diaz M.2005. Growth, yield and solute content ofbarley in soils treated with sewage sludge under semiarid Mediterranean conditions. Field Crops Research94(2-3):224-237.
    Aronsson KA, Ekelund NGA.2006. Effects on growth, photosynthesis and pigments of the freshwatermoss Fontinalis antipyretica Hedw. after exposure to wood ash solution. Science of The Total Environment372(1):236-246.
    Asano Y, Ohte N, Uchida T, Katsuyama M.2000. Evaluation of the effects of forest vegetation onacid buffering processes in terms of the proton budget. Journal of the Japanese Forestry Society82(1):20-27.
    Avila-Segura M.2004. Soil acidification processes in agroecosystems. Wisconsin, University ofWisconsin-Madison. Doctor of Philosophy Soil Science:165.
    B th E, Frosteg rd, Pennanen T, Fritze H.1995. Microbial community structure and pH responsein relation to soil organic matter quality in wood-ash fertilized, clear-cut or burned coniferous forest soils.Soil Biology and Biochemistry27(2):229-240.
    Barak P, Jobe BO, Krueger AR, Peterson LA, Laird DA.1997. Effects of long-term soil acidificationdue to nitrogen fertilizer inputs in Wisconsin. Plant and Soil197(1):61-69.
    Belay A, Claassens A, Wehner F.2002. Effect of direct nitrogen and potassium and residualphosphorus fertilizers on soil chemical properties, microbial components and maize yield under long-termcrop rotation Biology and Fertility of Soils35(6):420-427.
    Bergkvist B, Folkeson L.1992. Soil acidification and element fluxes of a Fagus sylvatica forest asinfluenced by simulated nitrogen deposition. Water, Air, and Soil Pollution(65):111-133.
    Blake L, Johnston AE, Goulding KWT.1994. Mobilization of aluminium in soil by acid depositionand its uptake by grass cut for hay, a chemical time bomb. Soil Use Manage10(51–55.
    Bloesch P, Moody P.2009. Land: Agricultural soil acidification. fromhttp://www.derm.qld.gov.au/environmental_management/state_of_the_environment/state_of_the_environment_queensland_2007/state_of_the_environment_queensland_2007_contents/land_agricultural_soil_acidification.html.
    Bolan NS, Adriano DC, Curtin D.2003. Soil acidification and liming interactions with nutrient andheavy metal transformationand bioavailability. Advances in Agronomy, Academic Press. Volume78:215-272.
    Bolan NS, Hedley MJ, White RE.1991. Processes of soil acidification during nitrogen cycling withemphasis on legume based pastures. Plant and Soil134:53-63.
    Braekke DF, Henriksen A, Norton SA.1987. The relative importance of acidity sources for humiclakes in Norway. Nature329:432-434.
    Bruce RC, Warell LA, Bell LC, Edwards. DG.1989. Chemical attributes of some Queensland acidsoils. I. Solid and solution phase compositions. Aust. J. Soil Res27:333-351.
    Chien SH, Gearhart MM, Collamer DJ.2008. The effect of different ammonia nitrogen sources onsoil acidification Soil Science173(8):544-551
    Conyers MK, Heenan DP, Poile GJ, Cullis BR, Helyar KR.1996. Influence of dryland agriculturalmanagement practices on the acidification of a soil profile. Soil and Tillage Research37(2-3):127-141.
    Covaleda S, Pajares S, Gallardo JF, Padilla J, Baez A, Etchevers JD.2009. Effect of differentagricultural management systems on chemical fertility in cultivated tepetates of the Mexican transvolcanicbelt. Agriculture, Ecosystems&Environment129(4):422-427.
    Curtis CJ, Emmett BA, Reynolds B, Shilland J.2006. How important is N2O production in removingatmospherically deposited nitrogen from UK moorland catchments? Soil Biology and Biochemistry38(8):2081-2091.
    Dahlgren RA.1994. Soil acidification and nitrogen saturation from weathering of ammonium-bearingrock. nature368(28):838-841.
    Darilek JL, Huang B, Wang Z, Qi Y, Zhao Y, Sun W, et al.2009. Changes in soil fertility parametersand the environmental effects in a rapidly developing region of China. Agriculture, Ecosystems&Environment129(1-3):286-292.
    De Vries W, Breeuwsma A.1987. The relation between soil acidification and element cycling. Water,Air,&Soil Pollution35(3-4):293-310.
    Driscoll CT.1980. Chemical characterization of some dilute acidified lakes and streams in theAdirondack region of New York State. Environmental Engineering. New York, Cornell University. Ph.D..
    Duan Y, Xu M, Wang B, Yang X, Huan S, Gao S.2011. Long-term evaluation of manure applicationon maize yield and nitrogen use efficiency in China. Soil Science Society of America Journal75(4):1561-1572.
    Egiarte G, Camps Arbestain M, Ruie-Romera E, Pinto M.2006. Study of the chemistry of an acid soilcolumn and of the corresponding leachates after the addition of an anaerobic municipal sludge.Chemosphere65(11):2456-2467.
    Fenton G, Helyar K.2002. The role of the nitrogen and carbon cycle in soil acidification. The IIIsymposium soybean/corn rotations in no-till system. Piracicaba:1-12.
    Fox RL, Hue NV, Jones RC, Yost RS.1991. Plant-soil interactions associated with acid, weatheredsoils. Plant and Soil134:65-72.
    Fox T.2004. Nitrogen mineralization following fertilization of Douglas-fir forests with urea inwestern Washington. Soil Sci Am J68:1720-1728.
    Fujii K, Funakawa S, Hayakawa C, Kosaki T.2008. Contribution of different proton sources topedogenetic soil acidification in forested ecosystems in Japan. Geoderma144(3-4):478-490.
    Fujii K, Funakawa S, Hayakawa C, Sukartiningsih, Kosaki T.2009. Quantification of proton budgetsin soils of cropland and adjacent forest in Thailand and Indonesia. Plant and Soil316(1-2):241-255.
    Fujii K, Hartono A, Funakawa S, Uemura M, Sukartiningsih, Kosaki T.2011. Acidification of tropicalforest soils derived from serpentine and sedimentary rocks in East Kalimantan, Indonesia. Geoderma160(3-4):311-323.
    Fujii K, Uemura M, Hayakawa C, Funakawa S, Sukartiningsih, Kosaki T, et al.2009. Fluxes ofdissolved organic carbon in two tropical forest ecosystems of East Kalimantan, Indonesia. Geoderma152(1-2):127-136.
    Fuller RD, Driscoll CT, Lawrence GB, Nodvin SC.1987. Processes regulating sulphate flux afterwhole-tree harvesting. Nature325(19):707-710.
    Gandois L, Perrin A-S, Probst A.2011. Impact of nitrogenous fertiliser-induced proton release oncultivated soils with contrasting carbonate contents: A column experiment. Geochimica et CosmochimicaActa75(5):1185-1198.
    Ge G, Li Z, Fan F, Chu G, Hou Z, Liang Y.2010. Soil biological activity and their seasonal variationsin response to long-term application of organic and inorganic fertilizers Plant and Soil326(1-2):31-44.
    Goulding KWT, Blake L.1998. Land use, liming and the mobilization of potentially toxic metals.Agriculture, Ecosystems&Environment67(2-3):135-144.
    Guggenberger G.1994. Acidification effects on dissolved organic matter mobility in spruce forestecosystems. Environment International20(1):31-41.
    Gundersen P, Rasmussen L.1990. Nitrification in forest soils:Effects from nitrogen deposition on soilacidification and aluminium release. Rev Environ Contam Toxicol113:1-45.
    Guo JH, Liu XJ, Zhang Y, Shen JL, Han WX, Zhang WF, et al.2010. Significant acidification inmajor Chinese croplands. Science327(19):1008-1010.
    Helyar KR, Porter WM.1989. Soil acidification, its measurement and the processes involved. SoilAcidity and Plant Growth. A. D. Robson. London, UK, Academic Press:61-101.
    Hindar A, Wright RF, Nilsen P, Larssen T, Huberget R.2003. Effects on stream water chemistry andforest vitality after whole-catchment application of dolomite to a forest ecosystem in southern Norway.Forest Ecology and Management180(1-3):509-525.
    Hruska J, Moldan F, Kram P.2002. Recovery from acidification in central Europe--observed andpredicted changes of soil and streamwater chemistry in the Lysina catchment, Czech Republic. EnvironPollut120(2):261-74.
    Hu Z-Y, Xu C-K, Zhou L-N, Sun B-H, He Y-Q, Zhou J, et al.2007. Contribution of atmosphericnitrogen compounds to N deposition in a broadleaf forest of Southern China. Pedosphere17(3):360-365.
    Huang P, Zhang J-b, Zhu A-n, Zhang C-z.2009. Acid and Alkali Buffer Capacity of TypicalFluvor-Aquic Soil in Huang-Huai-Hai Plain. Agricultural Sciences in China8(11):1378-1383.
    Huang S, Zhang W, Yu X, Huang Q.2010. Effects of long-term fertilization on corn productivity andits sustainability in an Ultisol of southern China. Agriculture, Ecosystems&Environment138(1-2):44-50.
    Hue NV.2011. Alleviating soil acidity with crop residues. Soil Science176(10):1-7.
    Khalil MI, Hossain MB, Schmidhalter U.2005. Carbon and nitrogen mineralization in differentupland soils of the subtropics treated with organic materials. Soil Biology and Biochemistry37(8):1507-1518.
    Kirikae M, Hatano R, Shibata H, Tanaka Y.2001. Analysis of Proton Generation and Consumption ofForest Surface Soils in Hokkaido, Northern Japan. Water, Air,&Soil Pollution130(1-4):697-702.
    Kreutzer K, Beier C, Bredemeier M, Blanck K, Cummins T, Farrell EP, et al.1998. Atmosphericdeposition and soil acidification in five coniferous forest ecosystems: a comparison of the control plots ofthe EXMAN sites. Forest Ecology and Management101(1-3):125-142.
    Krug EC.1991. Review of acid-deposition-catchment interaction and comments on future researchneeds. Journal of Hydrology128(1-4):1-27.
    Krug EC, Frink CR.1983. Acid rain on soil: A new perspective. Science221(4610):520-525.
    Krusche AV, Camargo PBD, Cerri CE, Ballester MV, Lara LBLS, Victoria RL, et al.2003. Acid rainand nitrogen deposition in a sub-tropical watershed Piracicaba): ecosystem consequences. EnvironmentalPollution121:389–399.
    Kuzyahov Y, Domenski G.2000. Carbon input by plants into the soil. J.Plant Nutr.Soil Sc.163:421–431.
    Lal R.1997. Long-term tillage and maize monoculture effects on a tropical Alfisol in western Nigeria.II. Soil chemical properties. Soil and Tillage Research42(3):161-174.
    Larssen T, Carmichael GR.2000. Acid rain and acidification in China: the importance of base cationdeposition. Environmental Pollution110(1):89-102.
    Larssen T, Schnoor JL, Seip HM, Dawei Z.2000. Evaluation of different approaches for modelingeffects of acid rain on soils in China. The Science of The Total Environment246(2-3):175-193.
    Lesturgez G, Poss R, Noble A, Grǔnberger O, Chintachao W, Tessier D.2006. Soil acidificationwithout pH drop under intensive cropping systems in Northeast Thailand. Agriculture, Ecosystems&Environment114(2-4):239-248.
    Li BY, Zhou DM, Cang L, Zhang HL, Fan XH, Qin SW.2007. Soil micronutrient availability to cropsas affected by long-term inorganic and organic fertilizer applications. Soil and Tillage Research96(1-2):166-173.
    Limousin G, Tessier D.2007. Effects of no-tillage on chemical gradients and topsoil acidification. Soiland Tillage Research92(1-2):167-174.
    Liu E, Yan C, Mei X, He W, Bing SH, Ding L, et al.2010. Long-term effect of chemical fertilizer,straw, and manure on soil chemical and biological properties in northwest China. Geoderma158(3-4):173-180.
    Liu K-H, Fang Y-T, Yu F-M, Liu Q, Li F-R, Peng S-L.2011. Soil Acidification in Response to AcidDeposition in Three Subtropical Forests of Subtropical China. Pedosphere20(3):399-408.
    Logan TJ, Lal R, Dick WA.1991. Tillage systems and soil properties in North America. Soil andTillage Research20(2-4):241-270.
    Luewille A, Alewell C, Sven Erik J, Brian F.2008. Acidification. Encyclopedia of Ecology. Oxford,Academic Press:23-31.
    Malek S, Martinson L, Sverdrup H.2005. Modelling future soil chemistry at a highly polluted forestsite at Istebna in Southern Poland using the SAFE model. Environmental Pollution137(3):568-573.
    Malhi SS, Nyborg M, Goddard T, Puurveen D.2011. Long-term tillage, straw and N rate effects onsome chemical properties in two contrasting soil types in Western Canada Nutrient Cycling inAgroecosystems90(1):133-146.
    Malhi SS, Nyborg M, Harapiak JT.1998. Effects of long-term N fertilizer-induced acidification andliming on micronutrients in soil and in bromegrass hay. Soil and Tillage Research48(1-2):91-101.
    Maljanen M, Nyka¨nen H, Moilanen M, Martikainen PJ.2006. Greenhouse gas fluxes of coniferousforest floors as affected by wood ash addition. Forest Ecology and Management237(1):143-149.
    Martikainen PJ.1985. Nitrification in forest soil of different pH as affected by urea, ammoniumsulphate and potassium sulphate. Soil Biology and Biochemistry17(3):363-367.
    Mayer R.1998. Soil acidification and cycling of metal elements: cause-effect relationships withregard to forestry practices and climatic changes. Agriculture, Ecosystems&Environment67(2-3):145-152.
    McAndrew DW, Malhi SS.1992. Long-term N fertilization of a solonetzic soil: Effects on chemicaland biological properties. Soil Biology and Biochemistry24(7):619-623.
    Miao Y, Stewart BA, Zhang F.2010. Long-term experiments for sustainable nutrient management inChina. A review Agronomy for Sustainable Development31(2):397-414.
    Minick KJ, Fisk MC, Groffman PM.2011. Calcium and phosphorus interact to reduce mid-growingseason net nitrogen mineralization potential in organic horizons in a northern hardwood forest. SoilBiology and Biochemistry43(2):271-279.
    Mol G, Vriend SP, van Gaans PFM.2003. Feldspar weathering as the key to understanding soilacidification monitoring data; a study of acid sandy soils in the Netherlands. Chemical Geology202(3-4):417-441.
    Mulder J, Breemen Nv, H.C.Eijck.1989. Depletion of soil aluminum by acid deposition andimplications for acid neutralization. Nature337(19):247-249.
    Muler K, Stinner W.2009. Effects of different manuring systems with and without biogas digestion onsoil mineral nitrogen content and on gaseous nitrogen losses ammonia, nitrous oxides. European Journal ofAgronomy30(1):1-16.
    Muukkonen P, Hartikainen H, Alakukku L.2009. Boardmill sludge reduces phosphorus losses fromconservation-tilled clay soil. Soil and Tillage Research104(2):285-291.
    Muukkonen P, Hartikainen H, Lahti K, Sarkela A, Puustinen M, Alakukku L.2007. Influence ofno-tillage on the distribution and lability of phosphorus in Finnish clay soils. Agriculture, Ecosystems&Environment120(2-4):299-306.
    Nakagawa Y, Changhua L, Iwatsubo G.2001. Element budgets in a forested watershed in southernChina: Estimation of a proton budget. Water,Air and Soil Pollution130:715-720.
    Nelson PN, Su N.2010. Soil pH buffering capacity: a descriptive function and its application to someacidic tropical soils. Australian Journal of Soil Research48(3):201-207.
    Niwa R, Kumei T, Nomura Y, Yoshida S, Osaki M, Ezawa T.2007. Increase in soil pH due to Ca-richorganic matter application causes suppression of the clubroot disease of crucifers. Soil Biology andBiochemistry39(3):778-785.
    Noble AD, Suzuki S, Soda W, Ruaysoongnern S, Berthelsen S.2007. Soil acidification and carbonstorage in fertilized pastures of Northeast Thailand. Geoderma144(1-2):248-255.
    Ohno T, Susan Erich M.1990. Effect of wood ash application on soil pH and soil test nutrient levels.Agriculture, Ecosystems&Environment32(3-4):223-239.
    Olson RA.1983. The impacts of acid deposition on N and S cycling. Environmental andExperimental Botany23(3):211-223.
    Oulehle F, Hofmeister J, Cudlin P, Hruska J.2006. The effect of reduced atmospheric deposition onsoil and soil solution chemistry at a site subjected to long-term acidification, Nacetin, Czech Republic. SciTotal Environ370(2-3):532-44.
    Oulehle F, Hofmeister J, Hruska J.2007. Modeling of the long-term effect of tree species Norwayspruce and European beech) on soil acidification in the Ore Mountains. Ecological Modelling204(3-4):359-371.
    Paces T.1985. Sources of acidification in central Europe estimated from elemental budgets in smallbasins. Nature315(2):31-36.
    Perl KJ, Webster GR, Cairns RR.1982. Acidification of a Solonetzic soil by nitrogenous fertilizers. JEnviron Sci Health B17(5):581-605.
    Posch M, Reinds GJ.2009. A very simple dynamic soil acidification model for scenario analyses andtarget load calculations. Environmental Modeling&Software24:329–340.
    Poss R, Smith CJ, Dunin FX, Angus JF.1995. Rate of soil acidification under wheat in a semi-aridenvironment Plant and Soil177(1):85-100.
    Randall PJ, Abaidoo RC, Hocking PJ, Sanginga N.2006. Mineral nutrient uptake and removal bycowpea, soybean and maize cultivars in West Africa, and implications for carbon cycle effects on soilacidification. Expl Agric.42(1):475-494.
    Rengel Z.2003. Handbook of Soil Acidity. Western Australia, Marcel Dekker, INC.
    Reuss JO, Cosby BJ, Wright RF.1987. Chemical processes governing soil and water acidification.Nature329(3):27-32.
    Reynolds B.1997. Predicting soil acidification trends at Plynlimon using the SAFE model. Hydrologyand Earth System Sciences1(3):717-728.
    Ridley A, Helyar K, Slatt W.1990. Soil acidification under subterranean clover Trifoliumsubterraneum L.) pastures in north-eastern Victoria. Australian Journal of Experimental Agriculture30(2):195-201.
    Robertson GP, Vitousek PM.2009. Nitrogen in agriculture: Balancing the cost of an essential resource.Annual Review of Environment and Resources34:97-125.
    Santonoceto C, Hocking PJ, Braschkat J, Randall PJ.2002. Mineral nutrient uptake and removal bycanola, Indian mustard, and Linola in two contrasting environments, and implications for carbon cycleeffects on soil acidification. Aust. J. Agric. Res.53(1):459–470.
    Schroder JL, Zhang H, Girma K, Raun WR, Penn CJ, Payton ME.2011. Soil acidification fromlong-term use of nitrogen fertilizers on winter wheat. Soil Science Society of America Journal75(3):957-964.
    Seip HM.1986. Surface water acidification. Nature322(10):118.
    Shen M-X, Yang L-Z, Yao Y-M, Wu D-D, Wang J, Guo R, et al.2007. Long-term effects of fertilizermanagements on crop yields and organic carbon storage of a typical rice–wheat agroecosystem of ChinaBiology and Fertility of Soils44(1):187-200.
    Shibata H, Satoh F, Sasa K, Ozawa M, Usui N, Nagata O, et al.2001. Importance of internal protonproduction for the proton budget in Japanese forested ecosystems. Water,Air,and Soil Pollution130:685-690.
    imek M, Hopkins DW.1999. Regulation of potential denitrification by soil pH in long-term fertilizedarable soils. Biology and Fertility of Soils30:41-47.
    Slatteiy WJ, Ridley AM, Windsor SM.1991. Ash alkalinity of animal and plant products. AustralianJournal of Experimental Agriculture31:321-4.
    Smith E, Gordon R, Bourque C, Campbell A, Geermont S, Rochette P, et al.2009. Simulatedmanagement effects on ammonia emissions from field applied manure. Journal of EnvironmentalManagement90(8):2531-2536.
    Sogn TA, Abrahamsen G.1998. Effects of N and S deposition on leaching from an acid forest soil andgrowth of Scots pine Pinus sylvestris L.) after5years of treatment. Forest Ecology and Management103(2-3):177-190.
    Sommer SG, Olesen JE.2000. Modelling ammonia volatilization from animal slurry applied with trailhoses to cereals. Atmospheric Environment34(15):2361-2372.
    Stein A, van Breemen N.1993. Time series analysis of changes in the soil solution: Evidence forapproach to nitrogen saturation in Dutch forest soils. Agriculture, Ecosystems&Environment47(2):147-158.
    Stevens CJ, Dise NB, Gowing DJ.2009. Regional trends in soil acidification and exchangeable metalconcentrations in relation to acid deposition rates. Environ Pollut157(1):313-9.
    Struwe S, Kjiler A.1994. Potential for N2O production from beech Fagus silvaticus) forest soils withvarying pH. Soil Biology and Biochemistry26(8):1003-1009.
    Sverdrup H, Warfvinge P.1994. Assessment of soil acidification effects on forest growth in SwendenWater, Air and Soil Pollution78:1-36.
    Sverdrup H, Warfvinge P, Blake L, Goulding K.1995. Modeling recent and historic soil data from theRothamsted Experimental Station, UK using SAFE Agriculture, Ecosystems and Environment53:161-177.
    Tang C, Yu Q.1999. Impact of chemical composition of legume residues and initial soil pH on pHchange of a soil after residue incorporation. Plant and Soil215:29-38.
    Tao S, Liu WX, Chen YJ, Cao J, Li BG, Xu FL, et al.2005. Fractionation and bioavailability ofcopper, cadmium and lead in rhizosphere soil. Biogeochemistry of Trace Elements in the Rhizosphere.Amsterdam, Elsevier:313-336.
    Tarkalson DD, Payero JO, Hergert GW, Cassman KG.2006. Acidification of soil in a dry land winterwheat-sorghum/corn-fallow rotation in the semiarid U.S. Great Plains Plant and Soil283(1-2):367-379.
    Thurman EM.1985. Humic substances in groundwater. Humic Substances in Soil, Sediment, andWater. G. R. Aiken, D. M. McKnight, R. L. Wershaw and P. MacCarthy. New York, Wiley:87-103.
    Ulich B.1986. Natural and anthropogenic component of soil acidification. Z. Pflanzenernzhr Bodenk149:702-717.
    Van Breemen N.1985. Acidification and decline of Central European forests. Nature315(2):16.
    Van Breemen N, Burrough PA, Velthorst EJ.1982. Soil acidification from atmospheric ammoniumsulphate in forest canopy throughfall. Nature299(7):548-550.
    Van Breemen N, Driscoll CT, Mulder J.1984. Acidic deposition and internal proton sources inacidification of soils and waters. Nature307(16):599-604.
    Van Breemen N, Mulder J, Driscoll CT.1983. Acidification and alkalinization of soils. Plant and Soil75:283-308
    Verstraten JM, Dopheide JCR, Duysings JJHM, Tietema A, Bouten W.1990. The proton cycle of adeciduous forest ecosystem in the Netherlands and its implications for soil acidification Plant and Soil127:61-69.
    Vieira FCB, Bayer C, Mielniczuk J, Zanatta J, Bissani CA.2008. Long-term acidification of aBrazilian Acrisol as affected by no till cropping systems and nitrogen fertiliser. Australian Journal of SoilResearch46(1):17–26.
    Wakamatsu T, Sato K, Takahashi A, Shibata H.2001. Proton budget for a Japanese cedar forestecosystem. Water, Air,and Soil Pollution130:721-726.
    Wang H, Xu R-K, Wang N, Li X-H.2010. Soil Acidification of Alfisols as Influenced by TeaCultivation in Eastern China. Pedosphere20(6):799-806.
    Watmough SA, Eimers MC, Dillon PJ.2007. Manganese cycling in central Ontario forests: Responseto soil acidification. Applied Geochemistry22(6):1241-1247.
    Wei X, Hao M, Shao M, Gale WJ.2006. Changes in soil properties and the availability of soilmicronutrients after18years of cropping and fertilization. Soil and Tillage Research91(1-2):120-130.
    West TO, McBride AC.2005. The contribution of agricultural lime to carbon dioxide emissions in theUnited States: dissolution, transport, and net emissions. Agriculture, Ecosystems&Environment108(2):145-154.
    Wood YA, Fenn M, Meixner T, Shouse PJ, Breiner J, Allen E, et al.2007. Smog nitrogen and therapid acidification of forest soil, San Bernardino Mountains, southern California. ScientificWorldJournal7Suppl1:175-80.
    Xu JM, Tang C, Chen ZL.2006. The role of plant residues in pH change of acid soils differing ininitial pH. Soil Biology and Biochemistry38(4):709-719.
    Xu R-k, Zhao A-z, Yuan J-h, Jiang J.2012. pH buffering capacity of acid soils from tropical andsubtropical regions of China as influenced by incorporation of crop straw biochars. J Soils Sediments2012(12):494–502.
    Xu YJ, Blanck K, Bredemeier M, Lamersdorf NP.1998. Hydrochemical input-output budgets for aclean rain and drought experiment at Solling. Forest Ecology and Management101(1-3):295-306.
    Xue JM, Sands R, Clinton PW, Payn TW, Skinner MF.2003. Carbon and net nitrogen mineralisationin two forest soils amended with different concentrations of biuret. Soil Biology and Biochemistry35(6):855-866.
    Zanatta JA, Bayer C, Dieckow J, Vieira FCB, Mielniczuk J.2007. Soil organic carbon accumulationand carbon costs related to tillage, cropping systems and nitrogen fertilization in a subtropical Acrisol. Soil&Tillage Research94(1):510–519.
    Zech W, Guggenberger G, Schulten H-R.1994. Budgets and chemistry of dissolved organic carbon inforest soils: effects of anthropogenic soil acidification. The Science of The Total Environment152(1):49-62.
    Zhang D, Zhou Z, Zhang B, Du S, Liu G.2012. The effects of agricultural management on selectedsoil properties of the arable soils in Tibet, China. Catena93:1-8.
    Zhang H-M, Wang B-R, Xu M-G, Fan T-L.2009. Crop yield and soil responses to long-termfertilization on a red soil in Southern China. Pedosphere19:199-207.
    Zhang WJ, Wang XJ, Xu MG, Huang SM, Liu H, Peng C.2010. Soil organic carbon dynamics underlong-term fertilizations in arable land of northern China. Biogeosciences7:409-425.
    Zhao W, Cai Z-c, Xu Z-h.2007. Does ammonium-based N addition influence nitrification andacidification in humid subtropical soils of China? Plant and Soil297:213-221.
    Zhao X, Xing G-x.2009. Variation in the relationship between nitrification and acidification ofsubtropical soils as affected by the addition of urea or ammonium sulfate. Soil Biology and Biochemistry41(12):2584-2587.
    蔡泽江.2010.长期施肥对红壤酸化特征的影响及其因素分析.土壤学.北京,中国农业科学院农业资源与农业区划研究所.硕士:88.
    蔡泽江,孙楠,王伯仁,徐明岗,黄晶,张会民.2011.长期施肥对红壤pH、作物产量及氮、磷、钾养分吸收的影响.植物营养与肥料学报17(1):71-78.
    陈竹君,高佳佳,赵文艳,王春阳,周建斌.2011.磷钾肥施用对日光温室土壤溶液离子组成的影响.农业工程学报27(2):261-266.
    陈竹君,王益权,许安民,张立波,周建斌.2008.施用不同种类氮肥对日光温室土壤溶液离子组成的影响.植物营养与肥料学报14(5):907-913.
    成杰民,胡光鲁,潘根兴.2004.用酸碱滴定曲线拟合参数表征土壤对酸缓冲能力的新方法.农业环境科学学报23(3):569-573.
    程先富,陈梦春,郝李霞,史学正.2008.红壤丘陵区农田土壤酸化的时空变化研究.中国生态农业学报16(6):1348-1351.
    戴茨华,王劲松,代平.2009.红壤旱地长期试验肥力演变及玉米效应研究.植物营养与肥料学报15(5):1051-1056.
    丁国安,徐晓斌,房秀梅,金淑萍,徐霞,汤洁,等.1997.中国酸雨现状及发展趋势.科学通报42(2):169-173.
    丁国安,徐晓斌,王淑凤,于晓岚,程红兵.2004.中国气象局酸雨网基本资料数据集及初步分析.应用气象学报15增刊):85-94.
    丁洪,王跃思,项虹艳,李卫华.2003.福建省几种主要红壤性水稻土的硝化与反硝化活性.农业环境科学学报22(6):715-719.
    段争虎,周玉麟.1990.土壤特性和环境因子对氨挥发的影响.土壤通报2:94-97.
    范庆锋,张玉龙,陈重.2009.保护地土壤盐分积累及其离子组成对土壤pH值的影响.干旱地区农业研究27(1):16-20.
    何园球,孙波.2008.红壤质量演变与调控.北京,科学出版社.
    贺发云,尹斌,金雪霞,曹兵.2005.南京两种菜地土壤氨挥发的研究.土壤学报42(2):253-259.
    胡建利,王德建,孙瑞娟,王灿,刘勤.2008.长江下游典型地区农田土壤肥力变化——以常熟市为例.土壤学报45(6):1087-1094.
    黄海洪,董蕙青,陈鸿,高安宁.2004.南宁市酸雨特征及来源分析.南京气象学院学报27(6):784-790.
    黄进宝,范晓晖,张绍林.2006.太湖地区铁渗水耕人为土稻季上氮肥的氨挥发.土壤学报43(5):786-792.
    姜军,徐仁扣,赵安珍.2006.用酸碱滴定法测定酸性红壤的pH缓冲容量.土壤通报37(6):1247-1248.
    贾伟,周怀平,解文艳,关春林,郜春花,石彦琴.2008.长期秸秆还田秋施肥对褐土微生物碳、氮量和酶活性的影响.华北农学报;23(2):138-142.
    李朝丽,周立祥.2008.黄棕壤不同粒级组分对镉的吸附动力学与热力学研究.环境科学29(5):1406-1411.
    李霁,刘征涛,舒俭民.2005.中国中南部典型酸雨区森林土壤酸化现状分析.中国环境科学25(suppl):77-80.
    李士杏,王定勇.2005.重庆地区20年间紫色土酸化研究.重庆师范大学学报(自然科学版)22(1):70-73.
    李晓红,周志明,林勇.2007.模拟酸雨对三峡库区灰棕紫泥酸化的影响.重庆建筑大学学报29(2):1-4.
    李英臣,宋长春,刘德燕,王丽.2009.不同氮输入梯度下草甸沼泽土反硝化损失和N2O排放.环境科学研究22(9):1103-1107.
    李志安,邹碧,丁永祯,谭万能,夏汉平,沈承德,等.2005.植物残茬对土壤酸度的影响及其作用机理.生态学报25(9):2382-2388.
    廖柏寒,戴昭华.1991.土壤对酸沉降的缓冲能力与土壤矿物的风化特征.环境科学学报11(4):425-431.
    廖柏寒,蒋青.2001.我国酸雨中盐基离子的重要性.农业环境保护20(4):254-256.
    刘菊秀,周国逸.2005.土壤累积酸化对鼎湖山马尾松林物质元素迁移规律的影响.浙江大学学报(农业与生命科学版)31(4):381-391.
    刘俐,周友亚,宋存义.2008.模拟酸雨淋溶下红壤中盐基离子释放及缓冲机制研究.环境科学研究21(2):49-55.
    刘爽,张兴义.2010.保护性耕作下黑土水热动态研究.干旱地区农业研究28(6):15-22.
    刘爽,张兴义.2011.保护性耕作对黑土农田土壤水热及作物产量的影响.大豆科学30(1):56-61.
    刘伟,尚庆昌.2001.长春地区不同类型土壤的缓冲性及其影响因素.吉林农业大学学报23(3):78-82.
    吕超群,田汉勤,黄耀.2007.陆地生态系统氮沉降增加的生态效应.植物生态学报31(2):205-218.
    吕焕哲,王凯荣,谢小立,王开锋.2006.施用水稻秸秆对酸性红壤铝形态的动态影响.水土保持学报20(4):110-112,119.
    孟红旗,吕家珑,徐明岗,蔡泽江,王伯仁.2012.有机肥的碱度及其减缓土壤酸化的机制.植物营养与肥料学报18(5):1153-1160.
    闵九康.2010.农业生态生物化学和环境健康展望.北京,中国出版集团现代教育出版社.
    彭世良.2002.湖南土壤酸化与土壤生态系统酸相对敏感性研究.自然地理学.长沙,湖南师范大学.硕士.
    全国农业技术推广服务中心.1999.中国有机肥料养分志.北京,中国农业出版社.
    全国土壤普查办公室.1995.中国土壤.225-229.
    孙本华,胡正义,吕家珑.2006.模拟氮沉降下南方针叶林红壤的养分淋溶和酸化.应用生态学报17(10):1820-1826.
    孙本华,胡正义,吕家珑.2007.模拟氮沉降对红壤阳离子淋溶的影响研究.水土保持学报21(1):18-21.
    唐鸿寿.2001.土壤酸化对油松生长的影响.应用与环境生物学报7(1):20-23.
    童贯和,程滨,胡云虎.2005.模拟酸雨及其酸化土壤对小麦幼苗生物量和某些生理活动的影响.作物学报31(9):1207-1214.
    王伯仁,蔡泽江,李冬初.2010.长期不同施肥对红壤旱地肥力的影响.水土保持学报24(3):85-88.
    王代长,蒋新,卞永荣,徐仁扣.2002.酸沉降下加速土壤酸化的影响因素.土壤与环境11(2):152-157.
    王代长,蒋新,贺纪正.2004.酸性条件下H+-Ca2+在红壤表面反应的能量特征.土壤学报41(4):536-543.
    王辉,董元华,安琼.2005.高度集约化利用下蔬菜地土壤酸化及次生盐渍化研究——以南京市南郊为例.土壤37(5):530-533.
    王敬华,张效年,于天仁.1994.华南红壤对酸雨敏感性的研究.土壤学报31(4):348-354.
    王宁,李九玉,徐仁扣.2009.三种植物物料对两种茶园土壤酸度的改良效果.土壤41(5):764-771.
    王绪奎,徐茂,汪吉东,王建明,张永春.2009.太湖地区典型水稻土大时间尺度下的肥力质量演变.中国生态农业学报17(2):220-224.
    吴甫成,彭世良,王晓燕,陈咏淑.2005.酸沉降影响下近20年来衡山土壤酸化研究.土壤学报42(2):219-224.
    吴政.2009.仪征市农田土壤pH时空变异及原因分析.植物营养学.扬州,扬州大学.硕士:65.
    徐明岗,梁国庆,张夫道.2006.中国土壤肥力演变.北京,中国农业科学技术出版社.
    徐仁扣, Coventry DR.2002.某些农业措施对土壤酸化的影响.农业环境保护21(5):385-388.
    徐仁扣,杨玛丽,赵安珍.2005.低分子量有机酸对可变电荷土壤吸附NO3-的影响的初步研究.土壤学报42(1):156-158.
    许中坚,刘广深,俞佳栋.2002.氮循环的人为干扰与土壤酸化.地质地球化学30(2):74-78.
    薛南冬,廖柏寒,刘鹏.2005.酸沉降影响下湖南两个典型小流域土壤酸化研究.湖南农业大学学报(自然科学版)31(1):82-86.
    于群英,李孝良.2005.皖北地区设施栽培土壤酸化特征研究.安徽农业科学33(12):2279-2280.
    于天任.1987.土壤化学原理.北京,科学出版社.
    俞元春,丁爱芳,胡笳.2001.模拟酸雨对土壤酸化和盐基迁移的影响.南京林业大学学报25(2):39-42.
    袁巧霞.2008.温室栽培土壤硝酸盐累积的水、热、氮耦合效应及其神经网络预测.资源与环境学院.武汉,华中农业大学.博士.
    曾路生,高岩,李俊良,崔德杰,隋方功,史衍玺.2011.寿光大棚土壤团聚体中交换性盐基离子组成与土壤团聚性关系.水土保持学报25(5):224-228,233.
    曾希柏.2000.红壤酸化及其防治.土壤通报31(3):111-113.
    张会民.2007.长期施肥下我国典型农田土壤钾素演变特征及机理.土壤学.西安,西北农林科技大学.博士:120.
    张俊平,张新明,王长委.2007.模拟酸雨对果园土壤交换性阳离子迁移及其对土壤酸化的影响.水土保持学报21(1):14-17.
    张喜林,周宝库,孙磊,高中超.2008.长期施用化肥和有机肥料对黑土酸度的影响.土壤通报39(5):1221-1223.
    张新明,张俊平,刘素萍.2006.模拟酸雨对荔枝园土壤氮素迁移和土壤酸化的影响.水土保持学报20(6):18-21.
    张永春,汪吉东,沈明星,沈其荣,许仙菊,宁运旺.2010.长期不同施肥对太湖地区典型土壤酸化的影响.土壤学报47(3):465-472.
    赵全桂,卢树昌,吴德敏,周海燕,陈清.2008.施肥投入对招远农田土壤酸化及养分变化的影响.中国农业通报24(1):301-306.
    郑利霞.2006.华北平原雨水有机氮的定量研究.植物营养.北京,中国农业大学.硕士:37.
    中国科学院南京土壤研究所.1978.土壤理化分析.上海,上海科学技术出版社.
    中国农业科学院土壤肥料研究所.1994.中国肥料.上海,上海科学技术出版社.
    中国土壤学会农业化学专业委员会.1983.土壤农业化学常规分析方法.北京,科学出版社.
    钟宁,曾清如,张利田,廖柏寒.2006.土壤酸碱性质对尿素转化特征的影响.土壤通报37(6):1123-1128.
    周国逸,小仓纪雄1996.酸雨对重庆几种土壤中元素释放的影响.生态学报16(3):251-257.
    朱茂旭,蒋新,季国亮.2001.可变电荷土壤和恒电荷土壤与氢离子的反应动力学.环境科学22(3):49-53.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700