用户名: 密码: 验证码:
xa13基因在水稻—白叶枯病菌互作过程中的功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水稻白叶枯病是由黄单胞杆菌水稻变种(Xanthomonas oryzae pv.oryzae, Xoo)引起,是水稻生产中的重要病害,每年造成巨大经济损失。多年生产实践表明,利用抗病基因资源,培育具有高效广谱抗性的优良品种是防治白叶枯病最经济有效的措施。对白叶枯病抗性基因机制和功能的深入研究,对利用主效抗病基因培育优良品种有着重要的指导意义。
     本研究从病原和寄主两方面展开工作,对病原菌研究发现在所有的白叶枯病原菌中,菲律宾菌系生理小种6(PXO99)对铜离子最敏感。为了研究病原菌PXO99对铜敏感机制,构建了抗铜病原菌PXO61的全基因组文库,并导入到PXO99菌中,筛选抗铜突变体,对突变体测序比对发现该区段含有两个抗铜相关基因copA和copB。氨基酸比对发现,PXO61与PXO99的copB基因编码的氨基酸相同,而与PXO61的copA编码区相比,PXO99的copA基因编码区有六个氨基酸“DGTTQG”的缺失。将PXO99和PXO61的copA基因编码区进行互换,证实PXO99对铜离子的敏感是由于copA基因编码区的六个氨基酸“DGTTQG”缺失造成的。
     为了研究copA和copB基因在病原菌中致病力的作用,将来自PXO61的copA和copB基因连接到pHMI载体上,并电转化PXO99菌株中,得到16株耐铜的突变菌株,接种水稻感病品种IR24发现其致病力增强,而接种抗病品种IRBB13,不能打败xa13介导的抗性。同时利用同源重组的原理,借助自杀性载体pK18mobsacB,将PXO99小种的copA和copB基因同时突变,得到对铜离子更加敏感的copAB的突变体7株,分别接种IR24和IRBB13,与野生型PXO99相比,致病力有所下降,说明copA和copB具有致病因子的功能。而抗铜突变体,不能使抗病品种完全恢复感病,说明铜离子只是部分参与xa13介导的抗病,暗示了xa13还存在未知功能。
     通过对水稻XA13蛋白家族同源性分析发现,OsXa13与来自禾本科作物玉米的同源基因(ZmXa13)同源性最高,其在N-端(预测的跨膜区)的同源性高达90.5%,C-端的同源性为40.6%。通过酵母铜转运互补实验,证实OsXA13(1-220)可以和OsCOPT1和OsCOPT5形成三位一体的复合物,发挥其将铜从细胞外泵入细胞内的功能。同时酵母双杂交实验表明ZmXa13(56-100aa)第94位缬氨酸突变为丙氨酸影响其与OsCOPT5的互作。为进一步探索OsXA13C端的作用,获得PXa13: OsXA131-220、PXa13: ZmXa13、PXa13:NOs-CZM、PXa13: NZM-COs四种转基因植株,接种发现只有PXa13:NOs-CZM转基因植株能够恢复感病,说明OsXa13的C端是感病所必需的并且功能保守。
     为了解析Xa13C端功能和作用机制,利用酵母双杂交的方法,筛选到两个与XA13相互作用的蛋白CacyBP和HMG,通过酵母双杂交和双分子荧光互补实验,分别在体外和体内证实XA13蛋白和CacyBP及HMG蛋白相互作用的真实性。同时,对CacyBP和HMG进行亚细胞定位分析,发现CacyBP定位于细胞膜区域,HMG定位于细胞膜和细胞核内。利用农杆菌介导的遗传转化,获得CacyBP和HMG超量和抑制表达的转基因水稻株系,接种试验表明,过量表达CacyBP或HMG的阳性株系的抗病性减弱而抑制表达CacyBP或HMG的阳性株系抗病性增强,说明CacyBP及HMG基因作为负调控因子参与水稻xa13介导的的抗病反应。
The rice bacterial blight (BB), caused by Xanthmonas oryzae pv. Oryzae,(Xoo),was oneof the most devastating diseases of rice world wide and causes tremendous agricultural yieldloss each year. Utilization of host resistance genes during agricultural production is the mosteffective and economic way. Understanding the function and mechanism on disease resistancegenes may have important significance in science and application for improving rice.
     In the experiments of Xoo for copper stress response, high concentrations of copperwill inhibit the growth and reproduction of the bacterial blights. The strain of the Philippines6(PXO99) is the most sensitive to copper among all the Xoos tested. In order to study thecopper sensitive mechanism,firstly a genomic library constructed from PXO61which isresistant to copper and were transformed into PXO99.Secondly, anti-copper mutants whichgrow well in the medium containing1mM copper were screened. the cosmids of mutant wereextracted and sequenced. We found that the fragments contained two anti-copper gene copAand copB. Further studies showed that, pathogens of PXO99and PXO61have the same thecoding region of the copB. Compared with encoding region of copA genes in the PXO61,thecoding region of copA in the PXO99is lack of six amino acids which is “DGTTQG”.Byreplacing of the coding region of copA from pathogen of PXO99and PXO61,we found thesensitivity to copper of PXO99is caused by missing six amino acids of the coding region"DGTTQG"of copA gene.
     Secondly, in order to study the role of the copA and copB genes in the pathogenicity ofXoo, we obtained the fragmants of copA and copB from PXO61.Then it was ligated into thevector pHM1.Transformation was conducted by electroporation to PXO99. We choosed16mutant strains which were more resistant to copper, and inoculated susceptible varietiesIR24.The result shows that the copper-resistant clones have stronger virulence, but can notrestore the susceptibility to IRBB13. At the same time, copA and copB were knocked by usinga suicide vector pK18mobsacB. We obtained7copA and copB genes deletion mutants, andfound that the mutants were more susensitive to copper. Mutans and wild type wereinoculated IR24and IRBB13.These results showed that the pathogenicity of the mutants weredeclined in IR24and IRBB13comparing with wild typre after14days. The results indicatedthat the copA and copB were as pathogenic factors. In addition, anti-copper mutants can notfully restore susceptible, indicating that copper was only partially involved in xa13-mediatedresitance to bacteaial blight disease, and suggesting xa13has still other unknown functions.
     By homology analysis of rice XA13protein, we found that the gene frommaize(ZmXa13) was the highest homologous to OsXa13,which the homology of the N-terminal was up to90.5%and the homology of the C-terminal XA13was up to40.6%. Usingthe copper ions complementation experiments in S. cerevisiae ctr1Δctr3Δmutant MPY17indicated that combined with OsCOPT1and OsCOPT5, OsXA13(1-220)protein could beformed complex to play the role of transporting copper into cells from the extracellularenvironment. Yeast two-hybrid (Y2H)experiments showed that ZmXa13fragment (56-100aa)which is94valine to alanine impact the interaction with OsCOPT5protein.In order to furtherverify the role of C-terminal of OsXA13played in pathogenicity to rice, four trangenic plantsnamed PXa13: OsXA131-220、PXa13:ZmXa13、PXa13:NOs-CZM、PXa13:NZM-COswere inoculatedwith PXO99.We found that only the PXa13:NOs-CZMtrangenic plants restored susceptibility toPXO99. Thus, the C-terminus of the OsXa13is necessary and its function is conserved.
     In order to resolve the function and mechanism of C-terminal XA13, We found twoproteins CacyBP and HMG could interact with XA13by using the Y2H. The interactionsbetween XA13and CacyBP or HMG were further confirmed by bimolecular fluorescencecomplementation(BiFC) experiment. To determine the subcellular location of CacyBP andHMG in plant cells, a construct containing a GFP fusion was transient expressed intobacco,we found that CacyBP located in the cell membrane area, and HMG located inmembrane and nucleus. To identify to the biological function of CacyBP and HMG, we over-express or suppress CacyBP and HMG in rice varieties Zhonghua11. Transgenic plants atbooting stage were measured the resistance to PXO99. The results showed that, comparedwith the wild-type varieties, CacyBP over-expression lines were more sensitive to PXO99,while CacyBP suppression lines exhibited high resistance to PXO99, and HMG transgeniclines had similar results to CacyBP. These results demonstrated that CacyBP and HMG genesare negative factors involved in regulating xa13-mediated resitantce to bacteaial blight disease.
引文
白辉;李莉云;刘国振.水稻抗白叶枯病基因Xa21的研究进展遗传,2006,28(6):745-753
    曹燕飞,邹丽芳,赵文祥,纪志远,邹华松,陈功友.水稻条斑病菌avrBs3/pthA家族基因敲除体系的建立.浙江大学学报(农业与生命科学版),2011,37(1):40-48
    程曦,田彩娟,李爱宁,邱金龙.植物与病原微生物互作分子基础的研究进展.遗传,2012,34(2):134-144
    储昭辉.水稻白叶枯病隐性抗病基因xa13的分离与鉴定.博士论文.华中农业大学,2005
    丁新华.水稻抗病相关基因的分离克隆和功能鉴定.博士论文,华中农业大学,2008
    韩志勇,沈革志,潘建伟.一种改良的质粒DNA小量提取法.生物技术通报,2000,4:45-46
    何佳,黄学勇,关跃峰,孙铭希,朱骏,杨仲南.拟南芥MtN3/saliva基因家族分析,2010,39(3):290-298
    冯洁.酵母双杂交技术在植物与病原物识别及信号传导研究中的应用.农业生物技术学报,2008,16(3):365-372
    林拥军,陈浩,曹应龙,吴昌银,文静,李亚芳,华红霞.农杆菌介导的牡丹江8号高效转基因体系的建立.作物学报,2002,28:294-300
    楼鸿飞,张志文.酵母双杂交系统研究进展.生物学通报,2001,36(11):32-38.
    牛林海,杨国栋,郑成超.玉米HMG全长cDNA的克隆及其分析.山东农业大学学报(自然科学版),2002,33(2):239-241
    欧阳杰,张明永,夏快飞.水稻非花粉型细胞质雄性不育系及其保持系花药发育过程中Ca2+的分布变化.植物科学学报,2011,29(1):109-117
    萨姆布鲁克,拉塞尔.分子克隆实验指南精编版[J]北京:化学工业出版社,2007
    王芳,刘超,吴江生,张忠明.甘蓝型油菜热激蛋白Bnp23相互作用蛋白的筛选和鉴定.2011,33(4):318-324
    王梦姣,梁超.酵母双杂交技术及其在植物与病原物互作中的应用.江西农业学报,2010,22(3):112-113
    王莎莎,魏晓娇,路博钧,王高歌. Flg22诱导的海带孢子体防御反应初步研究.水产学科,2012
    吴英杰,姜波,张岩,李彦邦,贺琳,王玉成.农杆菌介导的烟草瞬时表达试验条件优化.东北林业大学学报,2010,38(9);110-112
    杨志强.微量元素与动物疾病.中国农业科技出版社,2000
    张爱香,季静.枸杞叶片cDNA文库的构建.吉林农业大学学报,2005,27(2):155-157
    章琦.水稻白叶枯病抗性的遗传及改良.科学出版社.2006
    赵开军,李岩强,王春连,高英.植物天然免疫性研究进展及其对作物抗病育种的可能影响.作物学报,2011,37(6):935-942
    周立雄,张兆山.大肠杆菌α-溶血素分泌系统基因表达调控研究进展.生物技术通讯,2004,15(4):374-378
    周雁.影响水稻抗白叶枯病的主效基因Xa3/Xa26抗性发挥的遗传背景因素分析.博士论文,华中农业大学,2009
    朱金鑫,李小方.酵母双杂交技术及其在植物研究中的应用.植物生理学通讯,2004,40(2):235-240
    Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell,2006,124(4):783-801
    Aleel K. G.. Plant Response to Bacterial Pathogens: Overlap between Innate and Gene-for-Gene Defense Response. Plant Physiol,2006,142:809-811
    Allen R. L., Bittner-Eddy P. D., Grenville-Briggs L. J., Meitz J. C., Rehmany A. P., Rose L.E. and Beynon, J. L.. Host-parasite coevolutionary conflict between Arabidopsis anddowny mildew. Science,2004,306:1957-1960
    Andres-Colas N., Sancenon V., Mayo S, Thiele D J.,Puig E S and Penarrubia L.. TheArabidopsis heavy metal P-type ATPase HMA5interacts with metallochaperones andfunctions in copper detoxification of roots. The Plant Journal,2006,45,225-236
    Antony G., Zhou J. H.., Sheng H., Li., T., Liu., B., Frank W. and Yang B.. xa13recessiveresistance to bacterial blight is defeated by the induction of disease susceptibility geneOs11N3. Plant Cell,2010,45-48
    Artero RD.,Terol-Alcajder J., Paricio N.,Ring J.,Bargues M.,Torres A.and Perez-Alonso M.Saliva, a new Drosophila gene expressed in the embryonic salivary glands withhomologues in plants and vertebrates. Mechanisms of Development,1998,75(1-2):159-162
    Axtell M. J. and Staskawicz B. J.. Initiation of RPS2-specified disease resistance inArabidopsis is coupled to the AvrRpt2directed elimination of RIN4. Cell,2003,112(3):369-377
    Azevedo C., Sadanandom A., Kitagawa K., Freialdenhoven A., Shirasu K. and Schulze L.P.. The RAR1interactor SGT1, an essential component of R gene-triggered diseaseresistance. Science,2002,295:2073-2076
    Beaudoin J., Laliberte J and Labbe S.. Functional dissection of Ctr4and Ctr5amino-terminalregions reveals motifs with redundant roles in copper transport. Microbiology,2006,152:209-222
    Belkhadir Y., Jaillais Y., Epple P., Balsem oPires E., Dangl J L and Chory J. Brassinosteroids modulate the efficiency of plant immune response s to microbe-associatedmolecular patterns. Proc. Natl. Acad. Sci.,2012,109:297-302
    Bittel P. and Robatzek S.. Microbe-associated molecular patterns (MAMPs) probe plantimmunity. Curr Opin Plant Biol,2007,10:335-341
    Boch J., Scholze H., Schornack S., Angelika L., Simone H., Sabine K., Thomas L., Anja N.and Bonas U. Breaking the Code of DNA Binding Specificity of TAL-Type III Effec-tors.Science,2009,326:1509-1512
    Bogdanove A. J., Schornack S. and Lahaye T.. TAL effector:Finding plant genes for diseaseand defence.Curr Opin plant Biol,2010,13(4):394-401
    Boller T. and He S. Y.. Innate immunity in plants: an arms racebetween pattern recognitionreceptors in plants and effectors in microbial pathogens. Science,2009,324(5928):742–744
    Braun D. M..SWEET! The Pathway Is Complete.Science,2012,335,173-174
    Brueggeman R.,Rostoks N.,Kudma D.,Kilian A.,Han F.,Chen J.,Druka A.,Steffenson B. andKleinhof S. A.. The barley stem rust-resistance gene Rpgl is a novel disease-resistancegene with. homology to receptor kinases. Proc.Natl.Acad.Sci.USA,2002,99:9328-9333
    Burkhead J L., Reynolds K A., Abdel-Ghany S E., Cohu C M and Pilon M. Copperhomeostasis. New Phytol,2009,182:799-816
    Cai D.,Kleine M.,Harloff H. J.,Sandal N.N.,Mareker K.A.,Klein-Lanhors M.. Disease-resis-tance gene with homology to receptor kinases. Proc. Natl. Acad. Sci.,2002,99:9328-9333
    Cao Y., Ding X., Cai M., Zhao J., Lin Y., Li X., Xu C. and Wang S.. The expression patternof a rice disease resistance gene Xa3/Xa26is differentially regulated by the geneticbackgrounds and developmental stages that influence its function. Genetics.2007,177:523-533
    Caplan J., Padmanabhan M. and Dinesh-Kumar S. P.. Plant NB-LRR immune receptors:fromrecognition to transcriptional reprogramming. Cell Host Microbe,2008,3(3):126-135
    Catanzariti A. M., Dodds P. N., Ve T., Kobe B., Ellis J. G. and Staskawicz B. J.. The AvrMeffector from flax rust has a structured C-terminal domain and interacts directly withthe M resistance protein. Mol Plant-Microbe Interact,2010,23(1):49-57
    Chen G.,Ward M.F,Sama A E..Extra cellular HMGB1as a proin flammatory cytokine.Interferon Cytokine Res,2004,24(6):329-333
    Chen L. Q., Hou B. H. and Lalonde S.. Sugar transporters for intercellular exchange andnutrition of pathogens. Nature.2010,468,527-532.
    Chen X.W.andPamela R..Innate immunity in rice.Cell press Trends in Plant.Science.2011,16(8),451-459
    Chen Z, Agnew JL, Cohen JD, He P, Shan L, Sheen J, Kunkel BN.Pseudomonas syringaetype III effector AvrRpt2alters Arabidopsis thaliana auxin physiology. Proc NatlAcad Sci,2007,104:20131-20136.
    Chen., X. W., Chern.M., Patrick E. C., Rua D., Jiang C.Y. and Ronald. P. C.. An ATPasepromotes autophosphorylation of the pattern recognition receptor XA21and inhibitsXA21-mediated immunity. Proc. Natl. Acad. Sci. USA.2010,107,8029-8034
    Chester S.. The problem of acquired physiological immunity in plants. Quar Rev Biol,1933,8:129-154
    Chettri M K.,Cook C M.,Vardaka E.,Sawides T and Lanaras T. The effect of Cu, Znand Pb on the chlorophyll content of the lichens: Cladonia convolut and Cladoniavangifomis. Environ ExP Bot,1998,39:1-10
    Chinchilla D., Bauer Z., Regenass M., Boller T. and Felix G.. The Arabidopsis receptorkinase FLS2binds flg22and determines the specificity of flagellin perception. PlantCell,2006,18(2):465-476
    Chinchilla D., Zipfel C., Robatzek S., Kemmerling B. and Nurnberger T.. A flagellin-induced complex of the receptor FLS2and BAK1initiates plant defence. Nature,2007,448:497-500
    Chu Z., Fu B., Yang H., Xu C., Li Z., Sanchez A., Park Y. J., Bennetzen J. L., Zhang Q. andWang S.. Targeting xa13, a recessive gene for bacterial blight resistance in rice.Theor Appl Genet.2006,112:455-461
    Chu Z., Yuan M., Ge X., Yuan B., Xu C., Li X., Fu B., Li Z., Bennetzen J. L., Zhang Q. andWang S.. Promoter mutations of an essential gene for pollen development results indisease resistance in rice. Genes Dev,2006,20:1250-1255
    Chu Z., Yuan Q., Zhang J., Yang H. and Wang S.. Genome-wide analysis of defense-responsive genes in bacterial blight resistance of rice mediated by the recessive R genexa13. Mol. Gen. Genomics,2004,271:111-120
    Collier S. M. and Moffett P.. NB-LRRs work a “bait and switch” on pathogens. Science,2009,14,521-529Dai L. Y., Liu X. G., Xiao Y. H. and Wang G. L.. Recent advances in cloning andcharacterization of disease resistance genes in rice. Plant Biol.2007,49,112–119
    Dang J. L. and Jones J. D.. Plant pathogens and integrated defence respnses toinfection.Nature,2001,411,826-833
    Dell B. Male sterility and anther wall structure in copper-deficient plants. Ann Bot,1981,48:599-608
    Deslandes L., Olivier J., Peeters N., Feng D. X, Khounlotham M., Boucher C., Somssich I.,Genin S. and Marco Y.. Physical interaction between RRS1-R, a protein conferringresistance to bacterial wilt, and PopP2, a type III effector targeted to the plant nucleus.Proc.Natl.Acad.Sci.USA,2003,100:8024-8029
    Devendra K., Choudhary A. B. and Johri N.. Induced systemic resistance (ISR) in plants:mechanism of action. Indian J. Microbiol,2007,47:289-297
    Dodds P. N. and Rathjen J. P.. Plant immunity:Towards an integrated view of plant-pathogen interactions.Nat Rev Genet,2010,11(8)539-548
    Dodds P. N., Lawrence G. J., Catanzariti A. M., Teh T., Wang C. I. A., Ayliffe M. A., KobeB. and Ellis J.G.. Direct protein interaction underlies gene-for-gene specificity andcoevolution of the flax resistance genes and flax rust avirulence genes.Proc.Natl.Acad.Sci.USA,2006,103(23):8888-8893
    Dunning F. M., Sun W. X., Jansen K. L., Helft L. and Bent A. F.. Identification andmutational analysis of Arabidopsis FLS2leucine-rich repeat domain residues thatcontribute to flagellin perception. Plant Cell,2007,19(10):3297-3313
    Elmore J. M., Lin Z. J. D. and Coaker G.. Plant NB-LRR signaling: upstreams anddownstreams. Curr Opin Plant Biol,2011,14(4):365-371
    Erlandsson H.H.,Andersson U. Mini-review: the nuclear protein HMGB1as a proinflammatory mediator.Eur J Immunol,2004,34(6):1503-1512
    Ezuka, A., Kaku H..A historical review of bacterial blight of rice. Bulletin of the NationalInstitute of Agrobiological Resources in Japan,2000,15,53-54
    Felix G., Duran J. D., Volko S. and Boller T.. Plants recognise bacteria through the mostconserved domain of flagellin. Plant J,1999,18:265-276
    Field S. and Song O. K.. A novel genetic system to detect protein-protein interactions.Nature,1989,340(6230):245-246
    Flelds S. and Sternglanz R.. The two-hybrid system: an assay for protein-proteininteractions.Trends Genet,1994,10(8):286-292
    Flor H.H.. Current status of the gene-for-gene concept. Annu Revphytopatholgy,1971,9:275-296
    Fu D.L., Uauy C., Distelfeld A., Blechl A., Epstein L., Chen X.M., Sela H., Tzion F.,Dubcovsky J.. A Kinase-START gene confers temperature-dependent resistance towheat stripe rust.Science,2009,323:1357-1360
    Gamas P., Niebel F.C., Lescure N and Cullimor J. V.. Use of a subtractive hybridizationapproach to identify new Medicago truncatula genes induced during root noduledevelopment. Mol Plant-Microbe Interact,1996,9(4):233-242
    Gao M. H., Liu J. M., Bi D. L., Zhang Z. B., Cheng F., Chen S. F. and Zhang Y. L..MEKK1, MKK1/MKK2and MPK4function together in a mitogen-activated proteinkinase cascade to regulate innate immunity in plants. Cell Res,2008,18(12):1190-1198
    Gary E. V. and Robert M. G.. Systemic Acquired Resistance and Induced SystemicResistance in Conventional Agriculture. Crop Science Society of America,2004,44:1920-1934
    Ge X., Chu Z., Lin Y. and Wang S. P.. A tissue culture system for different germplasms ofindica rice. Plant Cell Rep,2006,25:392-402
    Gohre V., Spallek T., H weker H., Mersmann S., Mentzel T., Boller T. and Torres M..Protocol for large-scale yeast two-hybrid analyses. Genome Biol,2001,2(12):52-60
    Gómez-Gómez L.and Boller T. FLS2: an LRR receptor-like kinase involved in theperception of the bacterial elicitor flagellin in Arabidopsis, Molecular cell,2000,5(6):1003-1011
    Gómez-Gómez L.and Boller T.Flagellin perception: a paradigm for innate immunity. Trancein plant science,2002,7(6):251-256
    Groll M., Schellenberg B., Bachmann A. S., Archer C. R., Huber R., Powell T. K., LindowS., Kaiser M. and Dudler R.. A plant pathogen virulence factor inhibits the eukaryoticproteasome by a novel mechanism. Nature,2008,452:755-758
    Gu K., Tian D., Qiu C. and Yin Z.. Transcription activator-like type III effector AvrXa27depends on Os TFIIAγ5for the activation of Xa27transcription in rice that triggersdisease resistance to Xanthomonas oryzae pv.oryzae. Mol Plant Pathol,2009,10:829-835
    Gu K., Tian D., Yang F., Wu L., Sreekala C., Wang D., Wang G. L. and Yin Z.. High-resolution genetic mapping of Xa27, a new bacterial blight resistance gene in rice,Oryza sativa L. Theor Appl Genet,2004,108:800-807
    Gu K., Yang B., Tian D., Wu L., Wang D., Sreekala C., Yang F., Chu Z., Wang G. L. andWhite F. F.. R gene expression induced by a type-III effector triggers diseaseresistance in rice. Nature,2005,435:1122-1125
    Hann D. R. and Rathjen J. P.. Early events in the pathogenicity of Pseudomonas syringae onNicotiana benthamiana. Plant J,2007,49(4):607-618
    He P., Shan L. B., Lin N. C., Martin G. B., Kemmerling B., Nürnberger T. and Sheen J..Specific bacterial suppressors of MAMP signaling upstream of MAPKKK inArabidopsis innate immunity. Cell,2006,125(3):563-575
    He S. Y..Elicitation of plant hypersensitive response by bacteria. Plant Physiol,1996,112:865-869
    He S. Y., Nomura K. and Whittam T. S.. Type III protein secretion mechansm inmammalian and plant pathogens. Biochem Biophys Acta,2004,1694,181-206
    Heese A., Hann D. R., Gimenez-Ibanez S., Jones A. M., He K., Li J., Schroeder J. I., Peck S.C. and Rathjen J. P.. The receptor-like kinase SERK3/BAK1is a central regulator ofinnate immunity in plants. Proc Natl Acad Sci USA.2007,104:12217-12222
    Ichimura K., Casais C., Peck S. C., Shinozaki K. and Shirasu K.. MEKK1is required forMPK4activation and regulates tissue-specific and temperature-dependent cell deathin Arabidopsis. J Biol Chem,2006,281(48):36969-36976
    
    Iyer A. S. and McCouch S. R.. The rice bacterial blight resistance gene xa5encodes a novelform of disease resistance. Mol Plant-Microbe Interact,2004,17(12):1348-1354
    Iyer-Pascuzzi A. S., H. Jiang, L. Huang and S. R. McCouch.. Genetic and FunctionalCharacterization of the Rice Bacterial Blight Disease Resistance Gene xa5.Phytopathology,2008,98(3),289-295
    Jia Y. L. and Martin G. B.. Rapid transcript accumulation of pathogenesis-related genesduring an incompatible interaction in bacterial speck disease-resistant tomato plants.Plant Molecular Biology,1999,40:455-465
    Jia Y., McAdams S. A., Bryan G. T., Hershey H. P. and Valent B.. Direct interaction ofresistance gene and avirulence gene products confers rice blast resistance. EMBOJ,2000,19:4004-4014
    Jiang G. H., Xia Z. H., Zhou Y. L., Wan J., Li D.Y., Chen R. S., Zhai W. X. and ZhuL.H..Testifying the rice bacterial blight resistance gene xa5by genetic complementationand further analyzing xa5(Xa5) in comparison with its homologTFIIAγ1. MolecularGenetics and Genomics,2006,275,354-366
    Johal G. S. and Briggs S. P.. Reduetase activity encoded by the Hm1disease resistance genein maize. Science,1992,258:985-987
    Jones D. G. and Dangl J. L.. The plant immune system. Nature,2006,444(7117)323-329
    Kalinina N.,Agrotis A.,Antropova Y..Increased expression of the DNA-binding cytokineHMGB1in human atherosclerotic lesion: role of activated macrophages and cytokines.Arterioscler Throb Vasc Biol,2004,24(12):2310-2325
    Kay S., Hahn S., Marois E., Haus G.and Bonas U.. A bacterial effector acts as a planttranscription factor and induces a cell size regulator. Science,2007,318:648-651
    Kazemi P. N., Condemine G.Hugouvie N.The secretome of the plant pathogenic bacteriumErwinia chrysanthemi.Proteomics,2004,4:3177-3186
    Kiefer I. W. and Slusarenko A. J.. The Pattern of Systemic Acquired ResistanceInductionwithin the Arabidopsis Rosette in Relation to the Pattern of Translocation. PlantPhysiology,2003,132,840-847
    Kloppholz S., Kuhn H. and Requena N.. A secreted fungal effector of Glomus intraradicespromotes symbiotic biotrophy. Curr.Biol,2011,21:1204-1209
    Koch K A., Pena M O and Thiele D J.. Copper-binding motifs in catalysis, transport, detoxification and signaling. Chem Biol,1997,4:549-560
    Koronakis V., Sharff A., Koronakis E.. Crystal Structureof theBacterialMembrane ProteinTolC Central to Multidrug Efflux and Protein Export. Science,2000,405(6789):914
    Krasileva K. V., Dahlbeck D. and Staskawicz B. J.. Activation of an Arabidopsis resistanceprotein is specified by the in planta association of its leucine-rich repeat domain withthe cognate oomycete effector. Plant Cell,2010,22(7):2444-2458
    Kunze G., Zipfel C., Robatzek S., Niehaus K., Boller T. and Felix G.. The N terminus ofbacterial elongation factor Tu elicits innate immunity in Arabidopsis plants. PlantCell,2004,16(12):3496-3507
    Laatu M. and Condemine G. Rhamnoga lacturonate lyase RhiE is secreted by the out systemin Erwinia chrysanthemi. Bacteriology,2003,185:1642-1649
    Lee J K., Sinani D., Adle D J and Kim H J. Mechanisms of action and regulation of Ctr1copper transporter in yeast S. cerevisiae. Bio physical J,2007,357-362
    Lee S. W., Han S. W., Sririyanum M., Park C. J., Seo Y. S. and Ronald P. C.. A type I-secreted, sulfated peptide triggers XA21-mediated innate immunity. Science,2009,326(5954):850-853
    Li X. Y., Lin H. Q., Zhang W. G., Zou Y., Zhang J., Tang X. Y. and Zhou J. M.. Flagellininduces innate immunity in nonhost interactions that is suppressed by Pseudomonassyringae effectors. Proc Natl Acad Sci USA,2005,102(36):12990-12995
    Lin X.H.,Zhang D.P.,Xie Y.F.,Gao H. P.and Zhang Q.F..Identification and mapping of anew gne for bacterial blight resistance in rice markers.Phytopathology,1996,86:1156-1159
    Lin Y. J. and Zhang Q. Optimising the tissue culture conditions for high efficiencytransformation of indica rice. Plant Cell Rep,2005,23:540-547
    Liu J., Liu X., Dai L. and Wang G.. Rencent progress in elucidating the structure functionand evolution of disease resistanc gene in plants.Genet genomics,2007,34(9):765-776
    Liu Q., Yuan M., Zhou Y., Li X. H., Xiao J. H. and Wang S. P..A paralog of theMtN3/saliva family recessively confers race-specific resistance to Xanthomonasoryzae in rice. Plant, Cell&Environment,2011,34,1958-1969
    Livak K.J. and Schmittgen T.D.. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the2-△△CTMethod. Methods,2001,25,402-408
    Lory S. Secretion of proteins and assembly of bacterial surface orgallelles: Shared pathwaysof extra cellular protein targeting. Current Opinion in Microbiology,1998,1:27-35
    Lu D P., Lin W W., Gao X Q., Wu S J,Cheng C., Avila J., Heese A.,Devarenne P., He P andShan L B.. Direct ubiquitination of pattern recognition receptor FLS2attenuates plantinnate immunity.Science,2011,322,1439-1442
    Lu D., Wu S., Gao X., Zhang Y., Shan L. and He P.. A receptor-like cytoplasmic kinase,BIK1, associates with a flagellin receptor complex to initiate plant innate immunity.Proc.Natl.Acad.Sci.US,2010,107:496-501
    Mackey D., Holt B. F., Wiig A. and Dang J. L.. RIN4interacts with Pseudomonas syringaetype III effector molecules and is required for RPM1-mediated resistance inArabidopsis.Cell,2002,108(6):743-754
    Mansfield J. W. and Robatzek S.. Plant pattern-recognition receptor FLS2is directed fordegradation by the bacterial ubiquitin ligase AvrPtoB. Curr Biol,2008,18(23):1824-1832
    Mansfield J.,Gene S.,Magori S., Malinee S., Pamele R.,Dow Max, Valerice V., Steven B.V.,Marcos A., Salmond G.and Foster G.Top10plant pathogenic bacteria in molecularplant pathology.Molecular Plant Pathology,2012,13
    Melege A., Scaglioni P. P. and Wang J. R.. Cloning and characterization of a novelhepatitis B virus X binding protein that inhibits viral replication. Virolog,1998,72(3):1737-1743
    Melotto M., Underwood W., Koczan J., Nomura K. and He S. Y.. Plant stomata function ininnate immunity against bacterial invasion.Cell,2006,126:969-980
    Mew T. W.. Current status and future prospects of research on bacterial blight of rice.Annual Review of Phytopathology,1989,25,359-382
    Mukherjee S., Keitany G.,Wang Y., Li Y.. Ball H.L.Goldsimth E.J.and Orth K.YersiniaYopJ acetylates and inhibits kinase activation by blocking phosphorylation. Science,2006,312:1211-1214
    Mumberg D., Muller R. and Funk M.. Yeast vectors for the controlled expression ofheterologous proteins in different genetic backgrounds.Gene,1995,156:119-122
    Naito K., Taquchi F., Suzuki T., Inagaki Y., Toyoda K., Shiraishi T. and Ichinose Y..Amino acid sequence of bacterial microbe-associated molecular pattern flg22is requiredfor virulence. Mol Plant-Microbe Interact,2008,21(9):1165-1174
    Nakashima A., Chen L., Thao N. P. Fujiwara M., Wong H. L., Kuwano M., Umemura K.,Shirasu K., Kawasaki T. and Shimamoto K.. RACK1Functions in Rice InnateImmunity by Interacting with the Rac1Immune Complex.Plant Cell,2008,20:2265-2279
    Nga-Sze M. A., Bradley P., Cernadas R.,Bogdanove A J and Stoddard B L. The CrystalStructure of TAL Effector PthXo1Bound to Its DNA Target. Scence,2012,335,716-719
    Nicaise V., German S. and Sanjuan R.. The eukaryotic translation initiation factor4Econtrols lettuce susceptibility to the potyvirus Lettuce mosaic virus.Plant physical,2003,132:1272-1282
    Nie H., Zhao C., W u G., Wu Y., Chen Y and Tang D. SR1,a calmodulin-bindingtranscription factor, modulates plant defense and ethylene-induced senescence bydirectly regulating NDR1and EIN3. Plant Physiol,2012,158:1847-1859
    Nino-Liu D. O., Ronald P. C. and Bogdanove A. Xanthomonas oryzae pathovars: modelpathogens of a model crop. Mol Plant Pathol,2006,7:303-324
    Nomura K., Debroy S., Lee Y. H., Pumplin N., Jones J. and He S. Y.. A bacterial virulenceprotein suppresses host innate immunity to cause plant disease. Science.2006;313:220-223
    Nürnberger T. and Brunner F.. Innate immunity in plants and animals: emerging parallelsbetween the recognition of general elicitors and pathogen-associated molecularpatterns. Cur Opin in Plant Bio,2002,5:318-324
    Park C J.,Ronald P.C.,Cleavage and nuclear localization of the rice XA21immunereceptor.Nature Communications,2012,3(6):920-923
    Parka C.J.,Lee S.,Cherna M.,Sharmaa R., CanlasaP.E., Song M.Y.,Jong-Seong Jeon J.andRonald P.C..Ectopic expression of rice Xa21overcomes developmentally controlledresistance to Xanthomonas oryzae pv. Oryzae. Plant Science,2010,179(5):466-471
    Patrick R., Sabine R., Tina S., Elsaesser J, Sebastian S, Jens B, Wang S. P. and ThomasL.,Promoter elements of rice susceptibility genes are boundand activated by specificTAL effectors from the bacterial blight pathogen, Xanthomonas oryzae pv. Oryzae.New Phytologist,2010,187(4):1048-1057
    Pen A., M. M. O., Koch, K. A. and Thiele D. J.. Dynamic regulation of copper uptake anddetoxification genes in Saccharomyces cerevisiae.Mol. Cell. Biol,1998,18:2514-2523
    Pilon M., Cohu C M., Ravet K., Abdel-Ghany S E and Gaymard F.. Essential transitionmetal homeostasis in plants. Curr Opin Plant Biol,2009,12:347-357
    Pitzschke A., Schikora A. and Hirt H.. MAPK cascade signaling networks in plant defence.Curr Opin Plant Biol,2009,12(4):421-426
    Portmann R.,Poulsen K.R.and Wimmer R..CopY-like copper inducible repressors areputative winged helix proteins.BioMetls,2006,19(1):61-70
    Prohaska J.R.. Long-term functional consequences of malnutrition during brain development:copper. Nutrition,2000,16:502-504
    Qiu J. L., Zhou L., Yun B. W., Nielsen H. B., Fiil B. K., Petersen K., MacKinlay J., LoakeG. J., Mundy J. and Morris P. C.. Arabidopsis mitogen-activated protein kinase kinasesMKK1and MKK2have overlapping functions in defense signaling mediated byMEKK1, MPK4, and MKS1. Plant Physiol,2008,148(1):212-222
    Ram T., Laha G. S., Gautam S. K., Deen R., Madha M. S., Brar D. S. and Viraktamath B.C..Identification of a new gene from Oryza brachyantha with broad-spectrumresistance to bacterial blight of rice in India. Rice Genetics Newsletter,2010,25,57-61
    Rensing C., and Grass G.. Escherichia colimecha-nisms of copper homeostasis in achanging environment.FEMS Microbiol Rev,2003,27:197-213
    Robatzek S, Chinchilla D, Boller T. Ligand-induced endocytosis of the pattern recognitionreceptor FLS2in Arabidopsis. Genes Dev,2006,20:537-554
    Robatzek S., Bittel P., Chinchilla D., K chner P., Felix G., Shiu S. H. and Boller T..Molecular identification and characterization of the tomato flagellin receptor LeFLS2,an orthologue of Arabidopsis FLS2exhibiting characteristically different perceptionspecificities. Plant Mol Biol,2007,64(5):539-547
    R mer P., Recht S., Straub T., Elsasser J., Schornack S., Boch J., Wang S.P. and Lahaye T.Promoter elements of rice susceptibility genes are bound and activated by specific TALeffectors from the bacterial blight pathogen, Xanthomonas oryzae pv.oryzae. The NewPhytologist,2010,187,1048-1057
    Ross A.F.. Systemic acquired resistance induced by localized virus infections in plants.Science,2001,291:118-120.
    Ryals J. A., Neuenschwander U. H., Willits M. G., Molina A., Steiner H. and Hunt M. D..Systemic acquired resistance. Plant Cell,1996,8:1809-1819
    Sancenon V., Puig S., Mateu-Andres I., Dorcey E., Thiele D J and Penarrubia L.. TheArabidopsis copper transporter COPT1functions in root elongation and pollendevelopment. J Biol Chem,2004,279:15438-15355
    Sancenon V., Puig S., Mira H., Thiele D J and Penarrubia L.. Identification of a coppertransporter family in Arabidopsis thaliana. Plant Mol Biol,2003,51:577-587
    Schornack S., Meyer A., Romer P., Jordan T. and Lahaye T.. Gene for gene mediatedrecognition of nuclear-targeted AvrBs3-like bacterial effector proteins. Plant Physiol,2006;163(3):256-272
    Shan L. B., He P., Li J. M., Heese A., Peck S. C., Nürnberger T., Martin G. B. and Sheen J..Bacterial effectors target the common signaling partner BAK1to disrupt multipleMAMP receptor-signaling complexes and impede plant immunity. Cell Host Microbe,2008,4(1):17-27
    Shi H., Shen Q J., Qi Y P.,Yan H J., Nie H Z., Chen Y F., Zhao T., Katagiri Fand Tang DZ..BR-signaling kinase1physically associates with flagellin sensing and regulates plantinnate immunity in Arabidopsis.Plant cell,2013,7-15
    Solioz M., Abicht H.K., Mermod M., and Mancini S. Response of gram-positive bacteria tocopper stress.J Biol Inorg Chem,2010,15:3-14
    Song W. Y., Wang G. L., Chen L. L., Kim H. S., Pi L. Y., Holsen T., Gardner J., Wang B.,Zhai W. X., Zhu L. H., Fauquet C. and Ronald P.. A receptor kinase-like proteinencoded by rice disease resistance gene Xa21. Science,1995,270:1772-1804
    Sun Q., Wu W., Qian W., Hu J., Fang R. and He C.. High-quality mutant libraries ofXanthomonas oryzae pv.oryzae and X. campestris pv. campestris generated by anefficient transposon mutagenesis system. FEMS Microbiology Letters,2003,226,145-150
    Sun W.,Cao Y., Jansen L K.,Bittel P.,Boller T.,and Bent A.F.. Probing the Arabido-psisflagellin receptor: FLS2-FLS2association and the contributions of specific domains tosignaling function. Plant Cell,2012,24:1096-1113
    Sun X., Cao Y., Yang Z., Xu C., Li X., Wang S. and Zhang Q.. Xa26, a gene conferringresistance to Xanthomonas oryzae pv. oryzae in rice, encodes an LRR receptorkinase-like protein. Plant,2004,37:517-527
    Takahashi A., Casais C., Ichimura K. and Shirasu K.. HSP90interacts with RAR1andSGT1and is essential for RPS2-mediated disease resistance in Arabidopsis.Proc.Natl.Acad.Sci.USA,2003,100(20):11777-11782
    Takai R., Isogai A., Takayama S. and Che F. S.. Analysis of flagellin perception mediatedby flg22receptor OsFLS2in rice. Mol Plant Microbe Interact,2008,21(12):1635-1642
    Tanaka N., Che F S., Watanabe N., Fujiwara S., Takayama S and Isogai A. Flagellin from anincompatible strain of Acidovorax avenae mediates H2O2generation accompanyinghypersensitive cell death and expression of PAL, Cht-1and PBZ1, but not of Lox inrice. Molecular Plant Microbe Interacts,2003,16(5):422-428
    Tang D., Ade J., Frye C A and Innes R W. Regulation of plant defense responses inArabidopsis by EDR2, a PH and START domain-containing protein. Plant J,2005,44:245-257
    Tang X. Y., Frederick R. D., Zhou J. M., Halterman D. A., Jia Y. L. and Martin G. B..Initiation of plant disease resistance by physical interaction of AvrPto and Pto kinase.Science,1996,274:2060-2063
    Truman W., Zabala M.T.and Grant M. Type III effectors orchestrate a complex interplaybetween transcriptional networks to modify basal defence responses during pathogenesis and resistance.Plant J,2006,46:14-33
    Veerdonk F. L., Kullberg B. J., Meer W. M., Gow N. A. R. and Netea1M. G.. Host–microbe interactions: innate pattern recognition of fungal pathogens. Curr OpinMicrobiol,2008,11(4):305-312
    Vorwerk S., Schiff C., Santamaria M., Koh S., Nishimura M., Vogel J., Som erville C andSomerville S. EDR2negatively regulates salicylic acid based defenses and cell deathduring powdery mildew infections of Arabidopsis thal iana. BMC Plant Biol,2007,7:35-43
    Wang C. T., Wen G. S., Lin X. H., Liu X. Q.&Zhang D. P..Identification and finemapping of the new bacterial blight resistance gene, Xa31(t), in rice. EuropeanJournal of Plant Pathology,2009,123,235-240
    Wang Y. S., Pi L. Y., Chen X H., Pranjib K., Jiang J. D., Alfred L. Z., Benny U., JamesO., Ronald P. C. and Song W. Y.. Rice XA21binding protein is a ubiquitin ligaserequired for full Xa21-Mediated disease resistance.The Plant Cell,2006,18(12):3635-3646
    White F. F. and Yang B..Host and Pathogen Factors Controlling the Rice-Xanthomonasoryzae Interaction. Plant Physiology.2009,150,1677-1686.
    Wilton M., Subramaniam R., Elmore J., Felsensteiner C., Coaker G. and Desveaux D.. Thetype III effector HopF2Pto targets Arabidopsis RIN4protein to promote Pseudomonas syringae virulence. Proc Natl Acad Sci USA,2010,107:2349-2354
    Wu S., Lu D. P., Kabbage M., Wei H. L., Swingle B., Records A. R., Dickman Martin, He P.and Shan L. B.. Bacterial effector HopF2suppresses Arabidopsis innate immunity atthe plasma membrane. Mol Plant Microbe Interact,2011,24(5):585-593
    Xiang T. T., Zong N., Zou Y., Wu Y., Zhang J., Xing W. M., Li Y.,Tang X. Y., Zhu L. H.,Chai J. J. and Zhou J. M.. Pseudomonas syringae effector AvrPto blocks innateimmunity by targeting receptor kinases. Curr Biol,2008,18(1):74-80
    Xiao S. Y.,Ellwood S.,Calis O.,Patriek E.,Li T. X.,Coleman M.,Turner J. G.,Yang M., WuZ. and Filelds S.. Protein-peptide interactions analyzed with the yeast two-hybridsystem.Nucleic Acids Res,1995,23(7):1152-1156
    Xing W M.,Zou Y., Liu Q., Liu J.N.Luo X., HuangQ.Q., Chen S., Zhu L.H The structuralbasis for activation of plant immunity by bacterial effector protein AvrPto.Nature,2007,449,243-247
    Yasuhiro K., Beatrice A. and Lionel D.. Structural and functional analysis of SGT1–HSP90core complex required for innate immunity in plants.EMBO Rep,2008,9(12):1209-1215
    Yoshimura S., Yamanouchi U., Katayose Y., Toki S., Wang Z. X., Kono I., Kurata N.,Yano M., Iwata N. and Sasaki T.. Expression of Xa1, a bacterial blight resistancegene in rice, is induced by bacterial inoculation. Proc. Natl. Acad. Sci.,1998,95:1663-1668
    Yuan M., Chu Z.H, Li X., Xu C. and Wang S.P.. Pathogen-induced expressional loss offunction is key factor of race-specific bacterial resistance conferred by a recessive Rgene xa13in rice. Plant Cell Physiol,2009,50:947-955.
    Yuan M., Li X H., Xia J H and Wang S P. Molecular and functional analyses of COPT/Ctr-type copper transporter-like gene family in rice. BMC Plant Biology,2011,11:69-81
    Zhang J., Shao F., Li Y., Cui H., Chen L., Li H., Zou Y., Long C., Lan L., Chai J., Chen S.,Tang X. and Zhou J. M.. A Pseudomonas syringae effector inactivates MAPKs tosuppress PAMP-induced immunity in plants. Cell Host&Microbe,2007,1:175-185
    Zhao B., Lin X., Poland J., Trick H., Leach J. and Hulbert S.. A maize resistance genefunctions against bacterial streak disease in rice. Proc Natl Acad Sci USA,2005,102:15383-15388
    Zhao H.T. and Wang S.P..Rice verus Xanhomonas oryzae pv.oryzae:a unique pathosystem.Plant Biology,2013,16:11-18
    Zheng L Q., Yamaji N., Yokosho K and Ma J F.. YSL16is a Phloem-Localized tran-sporterof the Copper-Nicotianamine complex that is responsible for Copper distribution inRice.The Plan t Cell,2012,24:3767-3782
    Zhou J. M., Loh Y. T., Brassan R. A. and Martin G. B.. The tomato gene Pti1encodes aserine/threonine kinase that is phosphorylated by Pto and is involved in thehypersensitive response. Cell,1995,83:925-935
    Zhou J. M., Tang X. Y. and Martin G. B.. The Pto kinase conferring resistance to tomatobacterial speck disease interacts with proteins that bind a cis-element of pathogenesis-related genes. The EMBO Journal,1997,16:3207-3218
    Zhou Y., Fowke L. and Wang H.. Plant CDK inhibitors: studies of interactions with cellcycle regulators in the yeast two-hybrid system and functional comparisons intransgenic Arabidopsis plants. Plant Cell Rep,2002,20:967-975
    Zipfel C., Kunze G., Chinchilla D., Caniard A., Jones J. D., Boller T. and Felix G..Perception of the bacterial PAMP EF-Tu by the Arabidopsis receptor kinase EFRrestricts Agrobacterium-mediated transformation. Cell,2006,125:749-760
    Zipfel C., Robatzek S., Navarro L., Oakeley E. J., Jones J. D., Felix G. and Boller T..Bacterial disease resistance in Arabidopsis through flagellin perception.Nature,2004,428:764-767

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700