用户名: 密码: 验证码:
苜蓿中华根瘤菌CCNWSX0020抗铜相关基因研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
根瘤菌是能与豆科植物共生固氮的重要农业微生物,若长期生长于重金属污染的土壤中,根瘤菌细胞会对重金属离子产生相应的抗性。本实验室从陕西凤县金属尾矿生长的天蓝苜蓿中分离到的S. meliloti CCNWSX0020在TY培养基中能够抵抗1.4mM的Cu~(2+)。通过在含有0.5mM的Cu~(2+)和不含Cu~(2+)的TY液体培养中培养菌体,利用cDNA-AFLP技术分析了两种培养条件下的差异基因表达,最终获得了3条DNA差异片段(转录衍生片段TDF)。通过比对发现TDF1所在基因编码的蛋白与S. meliloti1021的铜离子外排P-typeATPase相似性达到97%;TDF2所在基因编码的蛋白与CandidatusAccumulibacter phosphatis clade IIA str. UW-1的RNase H同源性达到42%;TDF3是omp基因的一部分,omp基因含1446个碱基,编码含481个氨基酸的假定蛋白质,它和Rhizobium leguminosarum bv. viciae3841的外膜蛋白有75%的相似性。
     根据omp基因序列设计引物并从S. meliloti CCNWSX0020基因组中扩增出omp基因全长,以插入失活的方式构建omp基因敲除载体,通过同源重组得到突变体。0.8mM的Cu~(2+)能明显抑制该突变体的生长,同时突变对Cu~(2+)、Zn~(2+)、Pb~(2+)等的抗性下降,证实了omp基因与S. meliloti CCNWSX0020的铜抗性有关。PCR扩增得到含启动子的omp基因全长,将其克隆到广宿主质粒pBBR1MCS-5上,以三亲杂交将其导入到突变株中,结果发现omp基因能使突变体的抗铜能力恢复到野生型的80%左右,进一步证明omp基因与铜抗性相关。在omp基因上游有两个基因SM0020_18782和SM0020_18787编码未知功能的假定蛋白,在omp基因的下游有另外三个基因SM0020_18797、M0020_18802和SM0020_18807分别编码多铜氧化酶、假定的铜离子结合蛋白和一个假定的铜伴侣分子,这6个基因构成了操纵子,它们对细胞的铜抗性起到了重要作用。
     以添加0.5mM铜离子和不含铜的TY培养基培养CCNWSX0020野生型和omp突变体菌株,利用GC-MS测定从细胞中提取出的代谢产物。通过PCA、PLS、TICL等对数据进行分析,结果显示,在两种培养条件下,细胞内产生的代谢物有明显的差异。在铜离子的诱导下,突变体中丙氨酸、甘氨酸、亮氨酸和缬氨酸等浓度增加,这样加速蛋白质的合成并有利于修复突变体中由于铜离子积累所引发的蛋白损伤。在野生型细胞中苹果酸、果糖、甘油-3-磷酸等含量增加,它们通过调整TCA循环来积累抗氧化物:还原性辅酶Ⅱ(NADPH)。同时,两种菌体在含铜离子培养基中都可以产生有助于细胞抵抗铜离子毒性的吲哚-3-乙酸(IAA)、超氧化物歧化酶(SOD)及过氧化氢酶(CAT)。但是同野生型相比,突变体中SOD及CAT在较低的铜离子浓度下活性达到最大,说明突变体对铜离子较敏感,因此铜离子引发的自由基可能造成某些酶活性改变,因而突变体所产生的IAA要低于野生型细胞。
     通过全基因测序发现S. meliloti CCNWSX0020基因组中共包含7,001,588个碱基,序列中G+C的含量为59.9%,通过拼接,将碱基数大于500bp的序列予以保留,共得到了233个contig。基因组中一共包含有7086个基因,其中有6个基因编码rRNA,47个基因编码tRNA,7033个基因编码蛋白质。对有功能注释的基因进行分析发现,在S.meliloti CCNWSX0020中包含有与细胞重金属抗性有关的基因51个;在基因组中包含有多个基因与抗氧化物SOD、CAT、谷胱甘肽(GSH)的代谢有关;另外还有一些基因编码的蛋白与ACC脱氨酶、海藻糖、IAA等的合成有关,CCNWSX0020通过产生这类物质促进植物生长并增加其生物量以吸收更多铜离子,从而使土壤中铜离子浓度降低,增强菌体对铜离子的抗性。MerR-like突变体中,通过荧光定量对6个编码P-typeATPase的基因表达进行检测,结果表明SM0020_05727和SM0020_05862两个基因受MerR-like转录因子的调控。通过序列比对发现这两个基因编码的P-type ATPase N末端没有金属结合结构域,第6跨膜区没有保守的CPC蛋白模体,但它含有TCP序列,这与已经报道的P-typeATPase明显不同,因此它有可能是一种比较特殊的P-typeATPase。
Rhizobia are important agricultural microorganisms which can fix nitrogen by symbiosewith legumes. If long-term growth in the heavy metal polluted soil, Rhizobium cells may beform some mechanism resistant to heavy metal ions. Sinorhizobium. meliloti CCNWSX0020,isolated from root nodules of Medicago lupulina growing in Fengxian gold mine tailings inthe northwest of China, was resistant up to1.4mM Cu~(2+)in tryptone-yeast (TY) extractmedium. By culturing the bacteria in the containing0.5mM Cu~(2+)and Cu~(2+)-free TY medium,the difference gene expression were analyzed by using cDNA-AFLP technique and obtained3differential transcript Derived Fragments. The differential fragments were sequenced andanalyzed with BLAST, the result showed that the TDF1corresponding gene encodes a proteinwith97%similarity to copper ion efflux P-type ATPase of S. meliloti1021; The TDF2corresponding gene encodes a protein with42%identity to RNase H of CandidatusAccumulibacter phosphatis clade IIA str. UW-1; The TDF3is a part of omp gene, omp contains1446nucleotides which encodes a putative protein with75%similarity to outer membraneprotein of Rhizobium leguminosarum bv. viciae3841.
     omp gene was amplified from S. meliloti CCNWSX0020and built omp gene knockoutvector.0.8mM Cu~(2+) could significantly inhibit the growth of the homologous recombinationmutant. The omp gene was cloned into pBBR1MCS-5and transferred into mutant. The resultshowed that omp gene can restore about80%copper resistance. Two genes SM0020_18782and SM0020_18787encode two unknown functions putative proteins in the upstream of Ompgene, there are three other genes SM0020_18797, SM0020_18802and SM0020_18807encodecopper ion multicopper oxidase, the putative binding protein and a putative copper chaperonein the downstream of the omp gene, these6genes constitute an operon which plays animportant role in copper resistance.
     The metabolites of CCNWSX0020and omp mutant growing in TY medium with andwithout0.5mM copper ions were determined by GC-MS. The data were analyzed using PCA,PLS and TICL, the results showed that intracellular metabolites of cells cultured in mediumwith and without copper have obvious difference. The metabolites of wild type and mutanthave certain difference induced by copper, the concentration of alanine, glycine, leucine andvaline increased in mutant which can accelerate protein synthesis and repair damage proteincaused by copper. Malic acid, fructose, glycerol-3-phosphate content increased in wild-typecells which can accumulate antioxidant NADPH by adjusting the TCA. At the same time, two kinds of bacteria can produce IAA, SOD and CAT in the medium with copper. But comparedwith wild-type, the CAT, SOD activity of mutant reaches the maximum under lowconcentration copper, it showed mutant was more sensitive to copper, so copper lead freeradicals may cause inactivation of some enzyme and decreased the IAA yield in mutant.
     The draft genome sequence of Sinorhizobium meliloti CCNWSX0020comprises7,001,588bases. The genome of S. meliloti CCNWSX0020has a G+C content of59.9%.There are a total of7,086genes, including6rRNA genes,47tRNA genes, and7,033putativeprotein-coding sequences. Additionally, Sinorhizobium meliloti CCNWSX0020carried51predicted protein-coding genes involved in heavy metal resistance. Multiple genes relate toantioxidant SOD, CAT, GSH metabolism have been found in CCNWSX0020genome; Thereare some other genes encode proteins relate to synthesis of ACC deaminase, trehalose, IAA,this kind of metabolites produced by CCNWSX0020can promote plant growth and increasethe biomass to absorb more copper ions, thus reduce the copper concentration in the soil andenhance tolerance of bacteria to copper. The expression of six genes encoding P-type ATPasewere detected by RT-PCR in the MerR-like mutant, the results show that the SM0020_05727and SM0020_05862genes were regulated by MerR-like transcription factor. However, theP-type ATPases encode by these genes are not contain N-terminal CXXC motif. In addition,the gene product of SM0020_05862probably is a special P-type ATPase since it contains nota CPC motif but TCP which is highly unusual.
引文
陈星,潘迎捷,孙晓红,赵勇.2009.四种副溶血弧菌总RNA提取方法的比较.基因组学与应用生物学6:1177-1182.
    冯毓琴,曹致中.2009.天蓝苜蓿野生种质的品质分析研究.草业科学,26:80-84.
    龙健,黄昌勇,滕应,姚槐应.2003.矿区重金属污染对土壤环境质量微生物学指标的影响.农业环境科学学报22:60-63.
    王文霞,褚栋,高士刚,闫红飞,缑丽倩,杨文香,刘大群王褚高闫.2010.小麦抗叶锈近等基因系TcLr38的cDNA-AFLP分析.中国农业科学2:293-303.
    闫兴凤,李高平,王建党,贾玲侠.2007.土壤重金属污染及其治理技术.微量元素与健康研究24:52-54.
    张志权,束文圣,廖文波,蓝崇钰.2002.豆科植物与矿业废弃地植被恢复.生态学杂志21:47-52.
    Abou-Shanab RA AJ, van BerkumP.2007. Chromate-tolerant bacteria for enhancedmetal uptake byEichhornia crassipes Mart. International Journal of Phytoremediation.9:91-105.
    Adams D. O., Yang S. F.1979. Ethylene biosynthesis: Identification of1-aminocyclopropane-1-carboxylicacid as an intermediate in the conversion of methionine to ethylene. Proceedings of the NationalAcademy of Sciences.76(1):170–174.
    Albers RW.1967. Biochemical aspects of active transport. Annual Review of Biochemistry.36:727-756.
    Arguello JM.2003. Identification of ion-selectivity determinants in heavy-metal transport P1B-typeATPases. Journal of Membrane Biology.195:93-108.
    Arnesano F, Banci L, Bertini I, Bonvin AM.2004. A docking approach to the study of copper traffickingproteins; interaction between metallochaperones and soluble domains of copper ATPases. Structure.12:669-676.
    Arnesano F, Banci L, Bertini I, Ciofi-Baffoni S, Molteni E, et al.2002. Metallochaperones andmetal-transporting ATPases: a comparative analysis of sequences and structures. Genome Research.12:255-271.
    Avonce N., Mendoza-Vargas A., Morett E., Iturriaga G.2006. Insights on the evolution of trehalosebiosynthesis. BMC Evolutionary Biology.6:109-124.
    Axelsen KB, Palmgren MG.1998. Evolution of substrate specificities in the P-type ATPase superfamily.Journal of Molecular Evolution.46:84-101.
    Bagai I, Liu W, Rensing C, Blackburn NJ, McEvoy MM.2007. Substrate-linked conformational change inthe periplasmic component of a Cu(I)/Ag(I) efflux system. Journal of Biological Chemistry.282:35695-35702.
    Bagai I, Rensing C, Blackburn NJ, McEvoy MM.2008. Direct Metal Transfer between PeriplasmicProteins Identifies a Bacterial Copper Chaperone. Biochemistry.47:11408-11414.
    Banci L, Bertini I, Ciofi-Baffoni S, Gonnelli L, Su XC.2003. Structural basis for the function of theN-terminal domain of the ATPase CopA from Bacillus subtilis. Journal of Biological Chemistry.278:50506-50513.
    Barrutia O, Garbisu C, Hernandez-Allica J, Garcia-Plazaola JI, Becerril JM.2010. Differences inEDTA-assisted metal phytoextraction between metallicolous and non-metallicolous accessions ofRumex acetosa L. Environmental Pollution.158:1710-1715.
    Bartel, B.1997. Auxin biosynthesis. Annu. Rev. Plant Physiology. Plant Molecular Biology.48:51-66.
    Bashandy T., Guilleminot J., Vernoux T., Caparros-Ruiz D., Ljung K., Meyer Y., Reichheld J P.2010.Interplay between the NADP-linked thioredoxin and glutathione systems in Arabidopsis auxinsignaling. Plant Cell.22:376–391.
    Beauchamp C, Fridovich I.1971. Superoxide dismutase: improved assays and an assay applicable toacrylamide gels. Analytical Biochemistry.44(1):276-87.
    Beolchini F, Dell'Anno A, De Propris L, Ubaldini S, Cerrone F, et al.2009. Auto-and heterotrophicacidophilic bacteria enhance the bioremediation efficiency of sediments contaminated by heavy metals.Chemosphere.74:1321-1326.
    Bissig KD, Wunderli-Ye H, Duda PW, Solioz M.2001. Structure-function analysis of purifiedEnterococcus hirae CopB copper ATPase: effect of Menkes/Wilson disease mutation homologues.Biochemical Journal.357:217-223.
    Borremans B, Hobman JL, Provoost A, Brown NL, van Der Lelie D.2001. Cloning and functional analysisof the pbr lead resistance determinant of Ralstonia metallidurans CH34. Journal of Bacteriology.183:5651-5658.
    Braud A, Jezequel K, Bazot S, Lebeau T.2009. Enhanced phytoextraction of an agricultural Cr and Pbcontaminated soil by bioaugmentation with siderophore-producing bacteria. Chemosphere.74:280-286.
    Bremner I.1998. Manifestations of copper excess. American Journal of Clinical Nutrition.67:1069S-1073S.
    Brocklehurst KR, Hobman JL, Lawley B, Blank L, Marshall SJ, et al.1999. ZntR is a Zn(II)-responsiveMerR-like transcriptional regulator of zntA in Escherichia coli. Molecular Microbiology.31:893-902.
    Brown NL, Barrett SR, Camakaris J, Lee BT, Rouch DA.1995. Molecular genetics and transport analysisof the copper-resistance determinant (pco) from Escherichia coli plasmid pRJ1004. MolecularMicrobiology.17:1153-1166.
    Bull PC, Cox DW.1994. Wilson disease and Menkes disease: new handles on heavy-metal transport.Trends in Genetics.10:246-252.
    Bull PC, Thomas GR, Rommens JM, Forbes JR, Cox DW.1993. The Wilson disease gene is a putativecopper transporting P-type ATPase similar to the Menkes gene. Nature Genetics.5:327-337.
    Capela D, Barloy-Hubler F, Gouzy J, Bothe G, Ampe F, et al.2001. Analysis of the chromosome sequenceof the legume symbiont Sinorhizobium meliloti strain1021. Proceedings of the National Academy ofSciences.98:9877-9882.
    Cha JS, Cooksey DA.1993. Copper Hypersensitivity and Uptake in Pseudomonas syringae ContainingCloned Components of the Copper Resistance Operon. Applied and Environmental Microbiology.59:1671-1674.
    Chatterjee S SG, Mukherjee SK.2009. Plant growth promotion by a hexavalent chromium reducingbacterial strain, Cellulosimicrobium cellulans KUCr3.World Journal of Microbiology and Biotechnology.25:1829-1836.
    Chen SY, Lin JG.2001. Effect of substrate concentration on bioleaching of metal contaminated sediment.Journal of Hazardous Materterial.82:77-89.
    Chenier D., Beriault R., Mailloux R., Baquie M., Abramia G., Lemire J., Appanna V.2008. Involvement offumarase C and NADH oxidase in metabolic adaptation of Pseudomonas fluorescens cells evoked byaluminum and gallium toxicity. Applied and Environmental Microbiology.74(13):3977-3984
    Chillappagari S, Seubert A, Trip H, Kuipers OP, Marahiel MA, et al.2010. Copper stress affects ironhomeostasis by destabilizing iron-sulfur cluster formation in Bacillus subtilis. Journal ofBacteriology.192:2512-2524.
    Choudhary SP, Oral HV, Bhardwaj R, Yu JQ, Tran LS.2012. Interaction of brassinosteroids andpolyamines enhances copper stress tolerance in raphanus sativus. Journal of Experimental Botany.63:5659-5675.
    Cooksey DA.1994. Molecular mechanisms of copper resistance and accumulation in bacteria. FEMSMicrobiology Reviews.14:381-386.
    Dary M, Chamber-Perez MA, Palomares AJ, Pajuelo E.2010."In situ" phytostabilisation of heavy metalpolluted soils using Lupinus luteus inoculated with metal resistant plant-growth promotingrhizobacteria. Journal of Hazardous Materterial.177:323-330.
    De Hoff P, Hirsch AM.2003. Nitrogen comes down to earth: report from the5th European NitrogenFixation Conference. Molecular Plant-Microbe Interactions.16:371-375.
    Degtyarenko K.2000. Bioinorganic motifs: towards functional classification of metallo proteins.Bioinformatics.16:851-864.
    Di Gregorio S, Lampis S, Vallini G.2005. Selenite precipitation by a rhizospheric strain ofStenotrophomonas sp. isolated from the root system of Astragalus bisulcatus: a biotechnologicalperspective.Environment International.31:233-241.
    Dick GJ, Podell S, Johnson HA, Rivera-Espinoza Y, Bernier-Latmani R.2008. Genomic insights into Mn(II)oxidation by the marine alphaproteobacterium Aurantimonas sp. strain SI85-9A1. Applied andEnvironmental Microbiology.biol74:2646-2658.
    Dimkpa CO, Merten D, Svatos A, Buchel G, Kothe E.2009. Siderophores mediate reduced and increaseduptake of cadmium by Streptomyces tendae F4and sunflower (Helianthus annuus), respectively.Journal of Applied Microbiology.107:1687-1696.
    Djoko KY, Xiao Z, Huffman DL, Wedd AG.2007. Conserved mechanism of copper binding and transfer. Acomparison of the copper-resistance proteins PcoC from Escherichia coli and CopC fromPseudomonas syringae. Inorganic Chemistry.46:4560-4568.
    El Aafi N, Brhada F, Dary M, Maltouf AF, Pajuelo E.2012. Rhizostabilization of metals in soils usingLupinus luteus inoculated with the metal resistant rhizobacterium Serratia sp. MSMC541.International Journal of Phytoremediation.14:261-274.
    Elbein AD, Pan YT, Pastuszak I, Carroll D.2003. New insights on trehalose: a multifunctional molecule.Glycobiology.13(4):17R-27R.
    Evangelou MW, Bauer U, Ebel M, Schaeffer A.2007. The influence of EDDS and EDTA on the uptake ofheavy metals of Cd and Cu from soil with tobacco Nicotiana tabacum. Chemosphere.68:345-353.
    Fan B, Rosen BP.2002. Biochemical characterization of CopA, the Escherichia coli Cu(I)-translocatingP-type ATPase. The Journal of Biological Chemistry.277:46987-46992.
    Fan LM, Ma ZQ, Liang JQ, Li HF, Wang ET, Wei GH.2011. Characterization of a copper-resistantsymbiotic bacterium isolated from Medicago lupulina growing in mine tailings. BioresourceTechnology.,102,703–709.
    Fassler E, Evangelou MW, Robinson BH, Schulin R.2010. Effects of indole-3-acetic acid (IAA) onsunflower growth and heavy metal uptake in combination with ethylene diamine disuccinic acid(EDDS). Chemosphere.80:901-907.
    Foyer C., Noctor G.2005. Oxidant and antioxidant signalling in plants: A re-evaluation of the concept ofoxidative stress in a physiological context. Plant, Cell&Environmen.28:1056–1071.
    Franke S, Grass G, Nies DH.2001. The product of the ybdE gene of the Escherichia coli chromosome isinvolved in detoxification of silver ions. Microbiology.147:965-972.
    Franke S, Grass G, Rensing C, Nies DH.2003. Molecular analysis of the copper-transporting efflux systemCusCFBA of Escherichia coli. Journal of Bacteriology.185:3804-3812.
    Frey B KC, Zierold K.2000. Distribution of Zn in functionally different leaf epidermal cells of thehyperaccumulator Thlaspi caerulescens. Plant, Cell&Environment.23:675-667.
    Fry, S. C.1989. Cellulases, hemicelluloses and auxin-stimulated growth: a possiblerelationship.Physiologia Plantarum.75:532-536.
    Gadd GM.2000. Bioremedial potential of microbial mechanisms of metal mobilization and immobilization.Current Opinion in Biotechnology.ol11:271-279.
    Gade LH.2000. Highly Polar Metal-Metal Bonds in "Early-Late" Heterodimetallic Complexes.Angewandte Chemie International Edition.39:2658-2678.
    Galardini M, Mengoni A, Brilli M, Pini F, Fioravanti A, et al.2011. Exploring the symbiotic pangenome ofthe nitrogen-fixing bacterium Sinorhizobium meliloti. BMC Genomics.12:235.
    Gamalero E, Trotta A, Massa N, Copetta A, Martinotti MG, et al.2004. Impact of two fluorescentpseudomonads and an arbuscular mycorrhizal fungus on tomato plant growth, root architecture and Pacquisition. Mycorrhiza.14:185-192.
    Ghosh M SS.2005. A review on phytoremediation of heavy metals and utilization of its byproducts.Applied Ecology and Environmental Research.3:1-18.
    Gisbert C RR, de Haro A, Walker DJ, Pilar Bernal M, Serrano R, Avino JN.2003. A plant geneticallymodified that accumulates Pb is especially promising for phytoremediation..2003;303(2):440–445.Biochemical and Biophysical Research Communications.303:440-445.
    Glick BR.2010. Using soil bacteria to facilitate phytoremediation. Biotechnology Advances.28:367-374.
    Glick BR, Bashan Y.1997. Genetic manipulation of plant growth-promoting bacteria to enhance biocontrolof phytopathogens. Biotechnology Advances.15:353-378.
    Gonzalez RC, Gonzalez-Chavez MC.2006. Metal accumulation in wild plants surrounding mining wastes.Environmental Pollution.144:84-92.
    Graham PH, Vance CP.2003. Legumes: importance and constraints to greater use. Plant Physiology.ogy131:872-877.
    Grass G RC.2001. CueO is a multi-copper oxidase that confers copper tolerance in Escherichia coli.Biochemical and Biophysical Research Communications.286:902-908.
    Grass G, Thakali K, Klebba PE, Thieme D, Muller A, et al.2004. Linkage between catecholatesiderophores and the multicopper oxidase CueO in Escherichia coli. Journal of Bacteriology.186:5826-5833.
    Gupta A, Matsui K, Lo JF, Silver S.1999. Molecular basis for resistance to silver cations in Salmonella.Nature Medicine.5:183-188.
    Gupta N NP, Chauhan RS.2012. Differential transcript profiling through cDNA-AFLP showed complexityof rutin biosynthesis and accumulation in seeds of a nutraceutical food crop (Fagopyrum spp.). BMCGenomics.13:231.
    Han J, Sun L, Dong X, Cai Z, Sun X, et al.2005. Characterization of a novel plant growth-promotingbacteria strain Delftia tsuruhatensis HR4both as a diazotroph and a potential biocontrol agent againstvarious plant pathogens. Systematic and Applied Microbiology.l28:66-76.
    Hanahan D.1983. Studies on transformation of Escherichia coli with plasmids.Journal of MolecularBiology.166:557-580.
    Harrison J J., Ceri H., Turner R J.2007. Multimetal resistance and tolerance in microbial biofilms. NatureReviews Microbiology.5(12):928-938.
    Hontzeas N, Zoidakis J, Glick BR, Abu-Omar MM.2004. Expression and characterization of1-aminocyclopropane-1-carboxylate deaminase from the rhizobacterium Pseudomonas putida UW4: akey enzyme in bacterial plant growth promotion. Biochimica et Biophysica Acta.1703:11-19.
    Huang JWW, Chen, J. J., Berti, W. R.&Cunningham, S. D.1997. Phytoremediation of lead-contaminatedsoils: role of synthetic chelates in lead phytoextraction. Environmental Science&Technology.31:800-805.
    Huffman DL, Huyett J, Outten FW, Doan PE, Finney LA, et al.2002. Spectroscopy of Cu(II)-PcoC and themulticopper oxidase function of PcoA, two essential components of Escherichia coli pco copperresistance operon. Biochemistry.41:10046-10055.
    Idris R TR, Puschenreiter M, Wenzel WW, Sessitsch A.2004. Bacterial communities associated withflowering plants of the Ni hyperaccumulator Thlaspi goesingense.Applied and EnvironmentalMicrobiology.70:2667-2677.
    Jan FA, Ishaq M, Ihsanullah I, Asim SM.2010. Multivariate statistical analysis of heavy metals pollution inindustrial area and its comparison with relatively less polluted area: a case study from the City ofPeshawar and district Dir Lower. Journal of Hazardous Materterial.176:609-616.
    Jarup L., Akesson A.2009. Current status of cadmium as an environmental health problem. Toxicology andApplied Pharmacology.238:201–208.
    Jeon JR, Baldrian P, Murugesan K, Chang YS.2012. Laccase-catalysed oxidations of naturally occurringphenols: from in vivo biosynthetic pathways to green synthetic applications. Microbial Biotechnology.5:318-332.
    Jimenez, I., Speisky, H.2000. Effects of copper ions on the free radical-scavenging properties of reducedglutathione: implications of a complex formation. Journal of Trace Elements in Medicine andBiology.14,161–167.
    Jing YD, He ZL, Yang XE.2007. Role of soil rhizobacteria in phytoremediation of heavy metalcontaminated soils. Journal of Zhejiang University SCIENCE B.8:192-207.
    Kataoka K, Komori H, Ueki Y, Konno Y, Kamitaka Y, et al.2007. Structure and function of the engineeredmulticopper oxidase CueO from Escherichia coli--deletion of the methionine-rich helical regioncovering the substrate-binding site.Journal of Molecular Biology.373:141-152.
    Khan AG.2005. Role of soil microbes in the rhizospheres of plants growing on trace metal contaminatedsoils in phytoremediation. Journal of Trace Elements in Medicine and Biology.18:355-364.
    Khan MS ZA, Wani PA, Oves M.2009. Role of plant growth promoting rhizobacteria in the remediation ofmetal contaminated soils. Environmental Chemistry Letters.7:1-19.
    Kidd P BJ, Bernal MP, Navari-Izzo F, Poschenrieder C, Shilev S, et al.2009. Trace element behaviour atthe root-soil interface: implications in phytoremediation. Environmental and Experimental Botany.67:243-259.
    Kim C, Lorenz WW, Hoopes JT, Dean JF.2001. Oxidation of phenolate siderophores by the multicopperoxidase encoded by the Escherichia coli yacK gene. Journal of Bacteriology.183:4866-4875.
    Klein P, Kanehisa M, DeLisi C.1985. The detection and classification of membrane-spanning proteins.Biochimica et Biophysica Acta.815:468-476.
    Kulathila R, Kulathila R, Indic M, van den Berg B.2011. Crystal Structure of Escherichia coli CusC, theOuter Membrane Component of a Heavy Metal Efflux Pump. PLoS One6.
    Lebeau T, Braud A, Jezequel K.2008. Performance of bioaugmentation-assisted phytoextraction applied tometal contaminated soils: a review. Environmental Pollution.153:497-522.
    Lee SM, Grass G, Rensing C, Barrett SR, Yates CJ, et al.2002. The Pco proteins are involved inperiplasmic copper handling in Escherichia coli. Biochemical and Biophysical ResearchCommunications.295:616-620.
    Li Z, Ma Z, Hao X, Wei G.2012. Draft genome sequence of Sinorhizobium meliloti CCNWSX0020, anitrogen-fixing symbiont with copper tolerance capability isolated from lead-zinc mine tailings.Journal of Bacteriology.194:1267-1268.
    Lian Mei Fan, Zhan Qiang Ma, Jian Qiang Liang, Hui Fen Li, En Tao Wang, Ge Hong Wei.2011.Characterization of a copper resistant Sinorhizobium meliloti CCNWSX0020isolated from Medicagolupulina in mine tailings. Bioresource Technology.102:703-709.
    Lodewyckx C, Taghavi, S., Mergeay, M., Vangronsveld, J., Clijsters, H., Lelie, D. van der.2001. The effectof recombinant heavy metal-resistant endophytic bacteria on heavy metal uptake by their host plant.Plant Biotechnology Journal.3:173-187.
    Loftin IR, Franke S, Blackburn NJ, Mcevoy MM.2007. Unusual Cu(I)/Ag(I) coordination of Escherichiacoli CusF as revealed by atomic resolution crystallography and X-ray absorption spectroscopy. ProteinScience.16:2287-2293.
    Long F, Su CC, Zimmermann MT, Boyken SE, Rajashankar KR, et al.2010. Crystal structures of the CusAefflux pump suggest methionine-mediated metal transport. Nature.467:484-U140.
    Lund PA, Ford SJ, Brown NL.1986. Transcriptional regulation of the mercury-resistance genes oftransposon Tn501. Journal of General Microbiology.132:465-480.
    Lutsenko S, Kaplan JH.1995. Organization of P-type ATPases: significance of structural diversity.Biochemistry.34:15607-15613.
    Lee M.Y., Shin H.W.2003. Cadmium-induced change in antioxidant enzymes from the marine algaNanochloropsis oculata.Journal of Applied Phycology.15:13-19.
    Ma Y, Prasad MN, Rajkumar M, Freitas H.2011. Plant growth promoting rhizobacteria and endophytesaccelerate phytoremediation of metalliferous soils. Biotechnology Advances.29:248-258.
    Ma Y, Rajkumar M, Freitas H.2009. Isolation and characterization of Ni mobilizing PGPB from serpentinesoils and their potential in promoting plant growth and Ni accumulation by Brassica spp.Chemosphere.75:719-725.
    Macomber L, Imlay JA.2009. The iron-sulfur clusters of dehydratases are primary intracellular targets ofcopper toxicity. Proceedings of the National Academy of Sciences. U S A106:8344-8349.
    Mailloux R J., Lemire J., Appanna V D.2011. Metabolic networks to combat oxidative stress inPseudomonas fluorescens. Antonie van Leeuwenhoek.99(3):433-442.
    Mana-Capelli S, Mandal AK, Arguello JM.2003. Archaeoglobus fulgidus CopB is a thermophilicCu2+-ATPase-Functional role of its histidine-rich N-terminal metal binding domain. Journal ofBiological Chemistry.278:40534-40541.
    Mandal AK, Cheung WD, Arguello JM.2002. Characterization of a thermophilic P-type Ag+/Cu+-ATPasefrom the extremophile Archaeoglobus fulgidus. Journal of Biological Chemistry.277:7201-7208.
    Mandal AK, Yang Y, Kertesz TM, Arguello JM.2004. Identification of the transmembrane metal bindingsite in Cu+-transporting PIB-type ATPases. The Journal of Biological Chemistry.279:54802-54807.
    Masella, R., Di Benedetto, R., Vari, R., Filesi, C., Giovannini, C.2005. Novel mechanisms of naturalantioxidant compounds in biological systems: involvement of glutathione and glutathione-relatedenzymes. The Journal of Nutritional Biochemistry.16,577–586.
    McGrath SP ZF, Lombi E.2001. Plant and rhizosphere process involved in phytoremediation ofmetal-contaminated soils. Plant and Soil.232:207-214.
    Mcintyre H J., Davies H., Hore T A.2007. Trehalose biosynthesis in Rhizobium leguminosarum bv. Trifoliiand its role in desiccation tolerance. Applied and Environment Microbiology.73(12):3984-3992.
    Mendez MO, Maier RM.2008. Phytostabilization of mine tailings in arid and semiarid environments--anemerging remediation technology.Environmental Health Perspectives.116:278-283.
    Meuwly, P., and P.-E. Pilet.1991. Local treatment with indole-3-acetic acid induces differential growthresponses in Zea mays L. roots. Planta.185:58-64.
    Miller C D., Pettee B., Zhang C., Pabst M., Mclean J E., Anderson S J.2009. Copper and cadmium:responses in pseudomonas putida KT2440. Lett. Appl. Microbiol.49(6):775-783.
    Miransari M.2011. Hyperaccumulators, arbuscular mycorrhizal fungi and stress of heavy metals.Biotechnology Advances.29:645-653.
    Mittler R., Vanderauwera S., Gollery M., van Breusegem F.2004. Reactive oxygen gene network of plants.Trends in Plant Science.9:490–498.
    Moller JV, Juul B, le Maire M.1996. Structural organization, ion transport, and energy transduction ofP-type ATPases. Biochimica et Biophysica Acta.1286:1-51.
    Munson GP, Lam DL, Outten FW, O'Halloran TV.2000. Identification of a copper-responsivetwo-component system on the chromosome of Escherichia coli K-12. Journal of Bacteriology.182:5864-5871.
    Nandakumar R., Espirito-Santo C., Madayiputhiya N., Grass G.2011. Quantitative proteomic profiling ofthe Escherichia coli response to metallic copper surfaces. Biometals.24:429-444.
    Nies DH.2003. Efflux-mediated heavy metal resistance in prokaryotes. FEMS Microbiology Reviews.27:313-339.
    Nriagu JO, Pacyna JM.1988. Quantitative assessment of worldwide contamination of air, water and soilsby trace metals. Nature.333:134-139.
    Outten CE, Outten FW, O'Halloran TV.1999. DNA distortion mechanism for transcriptional activation byZntR, a Zn(II)-responsive MerR homologue in Escherichia coli. The Journal of BiologicalChemistry.274:37517-37524.
    Outten FW, Outten CE, Hale J, O'Halloran TV.2000. Transcriptional activation of an Escherichia colicopper efflux regulon by the chromosomal MerR homologue, cueR. The Journal of BiologicalChemistry.275:31024-31029.
    Palma M., Worgall S., Quadri L.E.N.2003. Transcriptome analysis of the Pseudomonas aeruginosaresponse to iron. Archives of Microbiology.180:374–379.
    Paolacci AR, Miraldi C, Tanzarella OA, Badiani M, Porceddu E, et al.2007. Gene expression induced bychronic ozone in the Mediterranean shrub Phillyrea latifolia: analysis by cDNA-AFLP. TreePhysiology.27:1541-1550.
    Pastor J, Hernandez AJ, Prieto N, Fernandez-Pascual M.2003. Accumulating behaviour of Lupinus albus L.growing in a normal and a decalcified calcic luvisol polluted with Zn. Journal of Plant Physiology.ogy.160:1457-1465.
    Patten, C. L., and B. R. Glick.2002. Role of Pseudomonas putida indoleacetic acid in development of thehost plant root system. Applied and Environmental Microbiology.68:3795-3801.
    Petersen C, Moller LB.2000. Control of copper homeostasis in Escherichia coli by a P-type ATPase, CopA,and a MerR-like transcriptional activator, CopR. Gene.261:289-298.
    Phan G, Benabdelhak H, Lascombe MB, Benas P, Rety S, et al.2010. Structural and Dynamical Insightsinto the Opening Mechanism of P. aeruginosa OprM Channel. Structure.18:507-517.
    Post RL, Hegyvary C, Kume S.1972. Activation by adenosine triphosphate in the phosphorylation kineticsof sodium and potassium ion transport adenosine triphosphatase. The Journal of BiologicalChemistry.247:6530-6540.
    Quintanar L, Stoj C, Taylor AB, Hart PJ, Kosman DJ, et al.2007. Shall we dance? How a multicopperoxidase chooses its electron transfer partner. Accounts of Chemical Research.40:445-452.
    Ragnarsdottir KV HD.2005. Trace metals in soils and their relationship with scrapie occurrence.Geochimica et Cosmochimica Acta.69:196.
    Rajkumar M, Ae N, Prasad MN, Freitas H.2010. Potential of siderophore-producing bacteria for improvingheavy metal phytoextraction. Trends in Biotechnology.28:142-149.
    Rensing C, Grass G.2003. Escherichia coli mechanisms of copper homeostasis in a changing environment.FEMS Microbiology Reviews.27:197-213.
    Requena N, Perez-Solis E, Azcon-Aguilar C, Jeffries P, Barea JM.2001. Management of indigenousplant-microbe symbioses aids restoration of desertified ecosystems. Applied and EnvironmentalMicrobiology.67:495-498.
    Rice WJ, Kovalishin A, Stokes DL.2006. Role of metal-binding domains of the copper pump fromArchaeoglobus fulgidus. Biochemical and Biophysical Research Communications.348:124-131.
    Rivas R, Vizcaino N, Buey RM, Mateos PF, Martinez-Molina E, et al.2001. An effective, rapid and simplemethod for total RNA extraction from bacteria and yeast. Journal of Microbiological Methods.47:59-63.
    Roberts SA, Weichsel A, Grass G, Thakali K, Hazzard JT, et al.2002. Crystal structure and electrontransfer kinetics of CueO, a multicopper oxidase required for copper homeostasis in Escherichia coli.Proceedings of the National Academy of Sciences. U S A99:2766-2771.
    Roberts SA, Wildner GF, Grass G, Weichsel A, Ambrus A, et al.2003. A labile regulatory copper ion liesnear the T1copper site in the multicopper oxidase CueO. The Journal of Biological Chemistry.278:31958-31963.
    Rodríguez-Llorente ID GD, Lafuente A, Dary M, El Hamdaoui A, Delgadillo J, Doukkali, KCM, Pajuelo E.2010. Cadmium biosorption of themetalresistantOchrobactrum cytisi Azn6.2.Engineering in Life Sciences.10:49-56.
    Rodriguez-Salazar J., Suarez R., Caballero-Mellado J., Iturriaga G.2009. Trehalose accumulation inAzospirillum brasilense improves drought tolerance and biomass in maize plants. FEMS MicrobiologyLetters.296(1):52–59.
    Rouch DA, Brown NL.1997. Copper-inducible transcriptional regulation at two promoters in theEscherichia coli copper resistance determinant pco. Microbiology-Uk.143:1191-1202.
    Rugh CL, Wilde HD, Stack NM, Thompson DM, Summers AO, et al.1996. Mercuric ion reduction andresistance in transgenic Arabidopsis thaliana plants expressing a modified bacterial merA gene.Proceedings of the National Academy of Sciences. U S A93:3182-3187.
    Salt DE, Smith RD, Raskin I.1998. Phytoremediation. Annual Review of Plant Physiology.ogy and PlantMolecular Biology.49:643-668.
    Salunkhe P., T pfer T., Buer J., Tümmler B.2005. Genome-wide transcriptional profiling of thesteady-state response of Pseudomonas aeruginosa to hydrogen peroxide. Journal of Bacteriology.187:2565–2572.
    Sarret G, Saumitou-Laprade P, Bert V, Proux O, Hazemann JL, et al.2002. Forms of zinc accumulated inthe hyperaccumulator Arabidopsis halleri. Plant Physiology.130:1815-1826.
    Sazinsky MH, Mandal AK, Arguello JM, Rosenzweig AC.2006. Structure of the ATP binding domain fromthe Archaeoglobus fulgidus Cu+-ATPase.Journal of Biological Chemistry.281:11161-11166.
    Schalk IJ, Hannauer M, Braud A.2011. New roles for bacterial siderophores in metal transport andtolerance. Environmental Microbiology.13:2844-2854.
    Schalscha E AI.1998. Heavy metals in rivers and soils of central chile. Water Sci Technol37:251-255.
    Schneiker-Bekel S, Wibberg D, Bekel T, Blom J, Linke B, et al.2011. The complete genome sequence ofthe dominant Sinorhizobium meliloti field isolate SM11extends the S. meliloti pan-genome.Journal ofBiotechnology.155:20-33.
    Shi JY, Lin HR, Yuan XF, Chen XC, Shen CF, et al.2011. Enhancement of copper availability andmicrobial community changes in rice rhizospheres affected by sulfur. Molecules.16:1409-1417.
    Silva Z., Alarico S., Nobre A., Horlacher R., Marugg J., Boos W., Mingote A I., da Costa M S.2003.Osmotic adaptation of Thermus thermophilus RQ-1: lesson from a mutant deficient in synthesis oftrehalose. Journal of bacteriology.185(20):5943-5952.
    Simon R PU, Puhler A.1983. A brod host range mobilization system for in vivo genetic engineering:Transposon mutagenesis in Gram negative bacteria. Biotechnology Advances.1:784-791.
    Solioz M, Vulpe C.1996. CPx-type ATPases: a class of P-type ATPases that pump heavy metals. Trends inBiochemical Sciences.21:237-241.
    Solomon EI, Sundaram UM, Machonkin TE.1996. Multicopper Oxidases and Oxygenases. ChemicalReviews.96:2563-2606.
    Sriprang R HM, Yamashita M, Ono H, Saeki K, Murooka Y.2002. A novel bioremediation system forheavy metals using the symbiosis between leguminous plant and genetically engi-neered rhizobia.Journal of Biotechnology.99:279-293.
    Sriprang R, Hayashi M, Ono H, Takagi M, Hirata K, et al.2003. Enhanced accumulation of Cd2+by aMesorhizobium sp. transformed with a gene from Arabidopsis thaliana coding for phytochelatinsynthase. Applied and Environmental Microbiology.69:1791-1796.
    Stoeger T, Proetzel GE, Welzel H, Papadimitriou A, Dony C, et al.2002. In situ gene expression analysisduring BMP2-induced ectopic bone formation in mice shows simultaneous endochondral andintramembranous ossification. Growth Factors.20:197-210.
    Stoyanov JV, Hobman JL, Brown NL.2001. CueR (YbbI) of Escherichia coli is a MerR family regulatorcontrolling expression of the copper exporter CopA. Molecular Microbiology.39:502-511.
    Summers AO.1992. Untwist and shout: a heavy metal-responsive transcriptional regulator. Journal ofBacteriology.174:3097-3101.
    Suzuki, K.T., Nakamura, M., Hatanaka, Y., Kayanoki, Y., Tatsumi, H.,Taniguchi, N.1997. Induction ofapoptotic cell death in human endothelial cells treated with snake venom: implication of intracellularreactive oxygen species and protective effects of glutathione and superoxide dismutases. Journal ofBiochemistry.122,1260–1264.
    Tang XJ, Chen QY.2012. Copper-mediated radical cross-coupling reaction of2,2-dichloro-1,1,1-trifluoroethane (HCFC-123) with phenols or thiophenols. Organic Letters.14:6214-6217.
    Tassi E, Pouget J, Petruzzelli G, Barbafieri M.2008. The effects of exogenous plant growth regulators inthe phytoextraction of heavy metals. Chemosphere.71:66-73.
    Tatsuya Ueki, Yasuhisa Sakamoto, Nobuo Yamaguchi and Hitoshi Michibata.2003. Bioaccumulation ofCopper Ions by Escherichia coli Expressing Vanabin Genes from the Vanadium-Rich Ascidian Ascidiasydneiensis samea. Applied and Environmental Microbiology.69:6442-6446.
    Tseng TT, Gratwick KS, Kollman J, Park D, Nies DH, et al.1999. The RND permease superfamily: anancient, ubiquitous and diverse family that includes human disease and development proteins. Journalof Molecular Microbiology and Biotechnology.1:107-125.
    Turrens, J.F.2003. Mitochondrial formation of reactive oxygen species. Journal of Physiology.552,335–344.
    Ultra VU YA, Iwasaki K, Tanaka S, Kang YM, Sakurai K.2005. Influence of chelating agent addition oncopper distribution and microbial activity in soil and copper uptake by brown mustard (Brassicajuncea). Journal of Plant Nutrition and Soil Science.51:193-202.
    Uroz S, Calvaruso C, Turpault MP, Frey-Klett P.2009. Mineral weathering by bacteria: ecology, actors andmechanisms. Trends In Microbiology.17:378-387.
    Vaccaro L, Scott KA, Sansom MSP.2008. Gating at Both Ends and Breathing in the Middle:Conformational Dynamics of TolC. Biophysical Journal.95:5681-5691.
    Valko, M., Rhodes, C.J., Moncol, J., Izakovic, M., Mazur, M.2006. Free radicals, metals and antioxidantsin oxidative stress-induced cancer. Chemico-biological interactions.160,1–40.
    Van Aken B.2008. Transgenic plants for phytoremediation: helping nature to clean up environmentalpollution. Trends in Biotechnology.26:225-227.
    Wani PA, Khan MS, Zaidi A.2007. Effect of metal tolerant plant growth promoting Bradyrhizobium sp.(vigna) on growth, symbiosis, seed yield and metal uptake by greengram plants. Chemosphere.70:36-45.
    Weckx, H. Clijesters.1996. Oxidative damage and defense mechanisms in primary leaves of Phaseolusvulgaris as a result of root assimilation of toxic amounts of copper. Physiologia Plantarum.96:506–512.
    Weir T.L., Stull V.J., Badri D., Trunck L.A., Schweizer H.P., Vivanco J.2008. Global gene expressionprofilessuggest an important role for nutrient acquisition in earlypathogenesis in a plant model ofPseudomonas aeruginosa infection. Applied and Environmental Microbiology.74:5784–5791.
    Wernimont AK, Huffman DL, Finney LA, Demeler B, O'Halloran TV, et al.2003. Crystal structure anddimerization equilibria of PcoC, a methionine-rich copper resistance protein from Escherichia coli.Journal of biological inorganic chemistry.8:185-194.
    Wolf A., Krmer R., Morbach S.2003. Three pathways for trehalose metabolism in Corynebacteriumglutamicum ATCC13032and their significance in response to osmotic stress. Molecular Microbiology.49(4):1119-1134
    Wood TK.2008. Molecular approaches in bioremediation. Current Opinion in Biotechnology.19:572-578.
    Wu Q, Wang S, Thangavel P, Li Q, Zheng H, et al.2011. Phytostabilization potential of Jatropha curcas L.in polymetallic acid mine tailings. International Journal of Phytoremediation.13:788-804.
    Xue Y, Davis AV, Balakrishnan G, Stasser JP, Staehlin BM, et al.2008. Cu(I) recognition via cation-pi andmethionine interactions in CusF. Nature Chemical Biology.4:107-109.
    Y. L.2006. Shrinking Arable Lands Jeopardizing China Food Security.Worldwatch Institute, April18,2006.
    Yang Q, Tu S, Wang G, Liao X, Yan X.2012. Effectiveness of applying arsenate reducing bacteria toenhance arsenic removal from polluted soils by Pteris vittata L. International Journal ofPhytoremediation.14:89-99.
    Yoshimizu T, Omote H, Wakabayashi T, Sambongi Y, Futai M.1998. Essential Cys-Pro-Cys motif ofCaenorhabditis elegans copper transport ATPase. Bioscience, Biotechnology, and Biochemistry.62:1258-1260.
    Zaidi S, Usmani S, Singh BR, Musarrat J.2006. Significance of Bacillus subtilis strain SJ-101as abioinoculant for concurrent plant growth promotion and nickel accumulation in Brassica juncea.Chemosphere.64:991-997.
    Zarei M, Hempel S, Wubet T, Schafer T, Savaghebi G, et al.2010. Molecular diversity of arbuscularmycorrhizal fungi in relation to soil chemical properties and heavy metal contamination.Environmental Pollution.158:2757-2765.
    Zarei M, Konig S, Hempel S, Nekouei MK, Savaghebi G, et al.2008. Community structure of arbuscularmycorrhizal fungi associated to Veronica rechingeri at the Anguran zinc and lead mining region.Environmental Pollution.156:1277-1283.
    Zhang L, Koay M, Maher MJ, Xiao Z, Wedd AG.2006. Intermolecular transfer of copper ions from theCopC protein of Pseudomonas syringae. Crystal structures of fully loaded Cu(I)Cu(II) forms. Journalof the American Chemical Society.128:5834-5850.
    Zhou L, Singleton C, Le Brun NE.2012. CopAb, the second N-terminal soluble domain of Bacillus subtilisCopA, dominates the Cu(I)-binding properties of CopAab. Dalton Transactions.41:5939-5948.
    Zhuang X, Chen J, Shim H, Bai Z.2007. New advances in plant growth-promoting rhizobacteria forbioremediation.Environment International.33:406-413.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700