用户名: 密码: 验证码:
供氮水平等对中间砧苹果碳氮营养利用、分配特性影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
矮砧集约高效栽培是苹果栽培的发展方向,目前我国在矮砧利用上主要是矮化中间砧。生产上由于栽培技术研究滞后,中间砧苹果旺长与早衰现象共存,如何既保证稳健生长又及时成花结果是栽培管理的核心,这就需要明确中间砧苹果C、N营养特性。为此,我们利用稳定性同位素~(15)N和~(13)C双标记技术,研究了SH_(18)、SH_(28)、SH_(38)、SHc、CG_(24)和Mark等6个中间砧对苹果生长发育及碳氮营养的影响,以生产上最常用的富士/M_(26)/平邑甜茶为试材研究不同氮素水平下年周期碳氮营养利用特性,以宫藤富士/SH_1/八棱海棠、宫藤富士/SH_6/平邑甜茶等为试材研究了摘心和摘老叶等栽培措施对苹果生长发育及碳氮营养的影响,以期为中间砧苹果优质丰产栽培技术制定提供依据。主要结果如下:
     1.不同中间砧苹果幼树在不同氮水平下的碳氮特性研究:根据生物量进行聚类分析可把供试中间砧分为3类:对生长抑制作用最强的有CG_(24),居中的有SH_(18)、SH_c、SH_(38)、Mark,抑制最弱的是SH_(28)。不同类型中间砧幼树在不同施氮水平下树体生物量差异显著,在不施氮肥(N0)、适宜施氮肥(N100)和过量施氮肥(N200)三个氮素水平下,对树体生长抑制最弱的SH_(28)中间砧苹果幼树随着施氮量增加树体生物量显著增加,而其他中间砧苹果幼树表现出在适宜供氮条件下生物量最大,继续增加氮素供应反而抑制生长,表明单纯通过增加氮肥用量不能促进抑制作用较强中间砧苹果的生长,需要在适应供氮条件下才能促进生长。不同中间砧在不同供氮水平下对~(15)N的利用及其分配差异显著,对树体生长抑制最弱的SH_(28)中间砧苹果幼树随着施氮量增加~(15)N利用率逐渐升高,~(15)N更多分配到地上部,根系的~(15)N分配率逐渐减少;而CG_(24)和SH_(38)中间砧苹果幼树在适宜供氮条件下氮素利用率最高,但~(15)N分配率存在显著差异;CG_(24)在过量施氮条件下~(15)N更多分配到根系,地上部的~(15)N分配率逐渐减少,不施氮肥和适宜施氮条件下更多分配到地上部,根系~(15)N分配率减少;SH_(38)在适宜施氮条件下~(15)N更多的分配到根系,地上部的~(15)N分配率减少,而不施氮肥和过量施氮条件下更多的分配到地上部,根系~(15)N分配率减少。不同中间砧在不同施氮水平下苹果幼树地上部和根系的~(13)C分配率差异显著,对树体生长抑制最弱的SH_(28)中间砧苹果幼树在过量施氮肥条件下~(13)C更多分配到地上部,根系~(13)C分配减少,而不施氮肥和适宜施氮肥条件下~(13)C更多分配到根系,地上部~(13)C分配率减少;SH_(38)中间砧苹果幼树随着施氮量增加~(13)C更多分配到地上部,根系~(13)C分配逐渐减少;而CG_(24)在适宜施氮肥条件下~(13)C更多分配到地上部(根系~(13)C分配率最低17.63%),不施氮肥条件下其次,过量施氮肥条件下最低(根系~(13)C分配率最高27.14%)。
     2.烟富3/M_(26)/平邑甜茶幼树年周期碳氮特性研究:从秋梢旺长期不同氮素水平下烟富3/M_(26)/平邑甜茶幼树生物量来看,M_(26)中间砧为抑制作用较强的类型。年周期中其对不同氮素水平的反应,在春梢旺长期三者间差异不显著,随着施氮量增加生物量有增加趋势;到春梢停长期适宜施氮肥和过量施氮肥树体生物量显著高于不施氮肥,仍然呈随着施氮肥量增加生物量增加趋势;而在秋梢旺长期适宜施氮肥最高。适宜施氮肥处理较过量施氮肥处理在秋梢旺长期生物量发生改变与春梢停长期适宜施氮肥处理树体细根显著高于过量施氮肥处理有关。在年周期不同氮素水平对~(15)N的利用及其分配影响方面,虽然最终表现为适宜施氮肥处理~(15)N的利用率最高,但在春梢旺长期是以不施氮肥处理最高,到春梢停长期开始以适宜施氮肥最高。各施氮肥处理均表现为随着生长期的延长,根系~(15)N分配率逐渐减少,地上部~(15)N分配率逐渐增加。施氮对~(13)C分配影响显著,随着生长期的延长,不施氮肥树体根系~(13)C分配率逐渐增高,地上部~(13)C分配率逐渐减少;适宜施氮肥和过量施氮肥初期促进根系~(13)C分配率显著升高,但随着生长期的延长逐渐减少,地上部~(13)C分配率逐渐增高。适宜施氮利于维持均衡的碳氮代谢,使碳氮同化产物在地上和地下部分配均衡,对翌年树体生长的促进作用较当年更为显著。淀粉累积量与果树成花显著相关,本试验整个生长期内,叶片淀粉含量均表现为不施氮肥条件下最高,同时不施氮肥条件下叶片ABA含量也表现为最高。因此不同氮水平下树体光合产物的分配与贮藏形态的差异是由ABA的合成差异所造成。
     3.摘心对不同中间砧苹果碳氮特性影响的研究:在4年生宫藤富士/SH1/八棱海棠大树和1年生宫藤富士/SH6/平邑甜茶幼树结果均表明,与对照相比摘心可显著抑制树体长势,氮吸收量和碳固定量显著减少;摘心后~(13)C和~(15)N向贮藏器官分配比率显著升高,而新生器官(叶片、新梢和细根)的比率显著降低;叶片IAA含量显著降低,而ABA含量显著上升。
     4.摘老叶对中间砧苹果幼树碳氮特性影响的研究:以1年生宫藤富士/SH6/平邑甜茶幼树为试材进行摘老叶试验,结果表明,与对照相比摘除中心干下部老叶显著促进中心干生长,碳固定量显著下降,氮吸收量差异不显著;~(13)C和~(15)N向当年新生器官(叶片和新梢)分配比率显著升高,而贮藏器官的比率显著降低;叶片ABA含量逐渐降低,而GA3含量逐渐上升。
Dwarf rootstock efficient intensive cultivation is a new developing trend of appleindustry with the dwarfing interstocks using the most widely. Since the backward oncultivation technique study and the vigorous growth and premature senescence of theinterstock making the robust growth of interstocks consistent with timely flowering andbearing is the heart of management, which needs to study deep into the nutritioncharacteristics on carbon and nitrogen of interstocks. Therefore, double labelling technique of~(15)N and~(13)C stable isotopes was used to study the effect on growth and development and thecarbon and nitrogen nutrition of SH_(18)、SH_(28)、SH_(38)、SHc、CG_(24)and Mark, the yearly C、Nutilization characteristics of different nitrogen levels of commonly-used Fuji/M_(26)/M.hupehensis Rehd.in production, and effects of pinching and old leaf picking on growth andcarbon and nitrogen nutrition of Borkh cv. Fuji/SH1/Malus robusta Rehd. and Borkh cv.Fuji/SH6/M. hupehensis Rehd., in order to provide evidence for high quality and yieldcultivation technique of trees with interstocks. The main results were as follows:
     1.C、N characteristics of different nitrogen levels on young apple trees with differentinterstocks: the testing interstocks were classified into three different types based onclustering analysis of biomass: CG_(24)has the strongest effect on growth inhibition, while SH_(28)the weakest, and SH_(18)、SHc、SH_(38)and Mark showed medium inhibition effect. Significantdifferences can be found on biomass of different nitrogen levels on young apple trees, of theno nitrogen (N0)、proper nitrogen(N100)and over-dose nitrogen(N200)treatment, biomassof SH_(28)increased with the increasing application of nitrogen, while biomass of the other treesshowed the best results with the proper amount of nitrogen application, and continuousapplication of nitrogen existed inhibition effect, indicating that proper amount of nitrogen isessential for the promotion of young apple tree with strongly inhibition interstocks.Significant differences can be seen on~(15)N utilization and distribution of various nitrogenapplication,~(15)N utilization rate of trees with interstock SH_(28)increased with the increasingapplication of nitrogen,and the~(15)N is mostly distributed into the aboveground, while the root~(15)N distribution rate decreases; however, trees with interstock CG_(24)and SH_(38)shows thehighest~(15)N utilization rate with the treatment of proper amount of nitrogen; and~(15)Ndistribution differs significantly:~(15)N is mostly distributed to the root of CG_(24)with over-doseapplication of nitrogen, while the aboveground~(15)N distribution rate decreased, the~(15)N distribution into aboveground of CG24was superior to root system in the treatment of nonitrogen application and proper nitrogen application;~(15)N of trees with interstock SH_(38)wasmostly distributed to root system with proper nitrogen application, and the~(15)N distributionrate of aboveground was superior to root system in the treatment of no nitrogen applicationand over-dose application of nitrogen.~(13)C distribution rate of different nitrogen levels on treeswith various interstocks differs significantly:~(13)C was mostly distributed to aboveground intrees with interstock SH_(28)with the treatment of over-dose nitrogen application, while~(13)Cdistribution rate of the root system decreased;~(13)C distribution rate of aboveground wassuperior to root system with the treatment of no nitrogen application and proper nitrogenapplication;~(13)C was mostly distributed to aboveground in trees with interstock SH_(38)with theincreasing application amount of nitrogen;~(13)C distribution of different nitrogen levels on treeswith different interstocks differs significantly,~(13)C was mostly distributed to aboveground intrees with interstock SH_(28)under the treatment of over-dose nitrogen application, and~(13)C of theroot system decreased, and~(13)C distribution into aboveground was superior to root system inthe treatment of no nitrogen application and proper nitrogen application;~(13)C was mostlydistributed to aboveground with interstock SH_(38)under the increasing application amount ofnitrogen, and the~(13)C distribution rate of rootstock decreased; in trees with interstock CG24,~(13)C is mostly distributed to the aboveground under proper nitrogen application (~(13)Cdistribution rate of root being the lowest17.63%), and then no nitrogen treatment,while theover-dose application of nitrogen showed the lowest~(13)C distribution rate(~(13)C distribution rateof root being the highest27.14%).
     2. Study on annual cycle of carbon and nitrogen characteristics of Yantai Fuji3/M_(26)/M.hupehensis Rehd.: Biomass during autumn shoots growth period under different nitrogenlevels showed that M_(26)interstock is the type of strong inhibition. According to their annualcycle effects under different nitrogen levels, no obvious difference were found above thosethree treatments during the stage of vigorous growth of spring shoots. With the increase ofnitrogen levels, the biomass also increased; at spring shoots growth arrest stage, the biomassof medium nitrogen and excess nitrogen were higher than the treatment with no nitrogen, andthere were significantly differences among those three treatments, with the increase ofnitrogen, the biomass also increased; however at autumn shoots growth period, the biomass ofmedium nitrogen was the highest. Compared to over-dose nitrogen, the biomass of mediumnitrogen has changed at autumn shoots growth period, this related to the fine root biomass ofmedium nitrogen is higher than that of excess nitrogen. About the respect of utilization anddistribution of~(15)N, although the utilization of medium nitrogen was the highest, no nitrogen was the highest during the stage of vigorous growth of spring shoots, until to spring shootsgrowth arrest stage, medium nitrogen was the highest. With the development of growth period,every treatment showed that the distribution of~(15)N of root was decreased, with aerial partincreased. The treatment of no nitrogen, the distribution of~(13)C of root increased, while aerialpart decreased; those were contrary to the treatment of medium nitrogen and over-dosenitrogen treatment. Medium nitrogen could keep balance of C and N metabolism, madecarbon and nitrogen assimilated broaden and deepen the optimization between abovegroundand underground portion, this could promote tree growth next year. Starch content wassignificantly related to flower formation, In this study, starch content and ABA content ofleaves were the highest in the treatment of no nitrogen. Therefore the distribution and storageform of photosynthetic products were caused by ABA synthetic differences.
     3. C、N characteristics of pinching on apple trees with different interstocks: Study onfour-year-old Borkh cv. Fuji/SH1/M. hupehensis Rehd. and one-year-old Borkh cv.Fuji/SH6/Malus robusta Rehd. showed that pinching significantly inhibited the tree vigorcompared with control, and decreased the uptake of nitrogen and the carbon fixationsignificantly, while increased~(13)C and~(15)N distribution rate on storage organs significantly, anddecreased the ratio of new organs(leaves, shoot and fine roots) significantly; IAA contents ofleaves significantly decreased, while the ABA contents significantly increased.
     4. C、N characteristics of picking old leaf on young apple trees: with old leaves pickingon one-year-old Borkh cv. Fuji/SH6/Malus robusta Rehd., results showed that, picking oldleaves could significantly improve the growth of center stem compared to control, the carbonfixation significantly reduced, with no obvious difference can be seen on the uptake ofnitrogen. The~(13)C and~(15)N distribution rate on neonatal organs(leaves and shoot) significantlyincreased, with the ratio of storage organs significantly decreased; ABA contents of leavesgradually reduced, while GA3contents gradually increased.
引文
蔡可,张映磺,陈景治,韩家玉.八种生长调节物质对棉铃脱落的影响[J].植物生理学报,1979,5(1):35-40.
    曹翠玲,李生秀.供氮水平对小麦生殖生长期间叶片光合速率、NR活性和核酸含量及产量的影响[J].植物学通报,2003,20(30):319-324
    陈景顺.红富士苹果密植丰产栽培技术[D].中国农业出版社,1996
    陈新宝,吴倩.苹果树精细刻芽技术[J].西北园艺,2002,(1):20-22
    陈新平.苹果新优品种及优质高效栽培技术[D].郑州:中原农民出版社,2009
    陈学森,韩明玉,苏桂林,刘凤之,过国南,姜远茂,毛志泉,彭福田,束怀瑞.当今世界苹果产业发展趋势及我国苹果产业优质高效发展意见[J].果树学报,2010,27(4):598-604
    褚贵新,沈其荣,张娟,肖龙云,峁泽圣.用15N富集标记和稀释法研究旱作水稻/花生间作系统中氮素固定和转移[J].植物营养与肥料学报,2003,9(4):385-389
    单德鑫.烤烟对氮肥的吸收利用及不同形态氮肥对烤烟产量和品质的影响[D].东北农业大学博士学位论文.2002
    丁宁,姜远茂,彭福田,陈倩,王富临,周恩达.等氮量分次追施对盆栽红富士苹果叶片衰老及15N-尿素吸收、利用特性的影响[J].中国农业科学,2012,45(19):4025-4031
    丁平海,郗荣庭,张玉星,王国英,魏静.河北省主要苹果营养状况及施肥设计[J].河北农业大学学报.1994,17(3):5-10
    丁志祥.我国主要落叶果树的矮砧资源及其矮化效应[J].四川农业大学学报.1997,15(3):358-364
    董海荣.棉花增铵营养的形态反应及其生理调节机制的研究[D].河北农业大学硕士学位论文,2002
    杜纪壮,石海强.北方果树嫁接实用技术图说[M].北京:中国农业出版社,2005
    段成国,李宪利,刘焕芳,高东升,李萌.摘叶对大樱桃休眠花芽内源激素及活性氧代谢的调控[J].中国农业科学,2005,38(1):203-207
    段彦丹.梨树休眠期贮藏营养的研究[D].河北农业大学硕士学位论文,2006
    樊秀芳,刘旭峰,张建堂,史联让. SX126苹果矮化砧在陕西区试表现[J].西北农林科技大学学报,2005,33(10):47-50
    冯焕德,李丙智,张林森,金会翠,李焕波,韩明玉.不同施氮量对红富士苹果品质、光合作用和叶片元素含量的影响[J].西北农业学报,2008,17(1):229-232
    冯蕾.施肥对水稻植株碳氮分配与积累的影响[D].西安建筑科技大学硕士学位论文,2011
    葛顺峰,姜远茂,魏绍冲,房祥吉.不同供氮水平下幼龄苹果园氮素去向初探[J].植物营养与肥料学报.2011,7(4):949-955
    顾曼如,束怀瑞,周宏伟.苹果氮素营养研究V-不同形态15N的吸收、运转特性[J].山东农业大学学报,1987,18(4):17-24
    顾曼如,张若柕,束怀瑞,黎文文,黄化成.苹果氮素营养研究初报—植物中氮素营养的年周期变化特性[J].园艺学报,1981,8(4):22-28
    郭春海.配方施肥与植物激素应用[M].石家庄:河北科学技术出版社,1999
    郭建军,叶庆生,李玲. GA调节禾谷类α-淀粉酶基因表达的信号转导及分子机制[J].植物学通报,2002,19(1):63-69.
    郭丽琢,张福锁,李春俭.打顶对烟草生长、钾素吸收及其分配的影响[J].应用生态学报,2002,13:819-822
    郭素萍,祁娇娇,张雪梅,阎爱华,李保国,张清敏.拉枝刻芽对烟富3苹果萌芽和内源激素含量的影响[J].河北林业科技,2011,(4):1-5
    郭亚芬,米国华,陈范骏,张福锁.硝酸盐供应对玉米侧根生长的影响[J].植物生理与分子生物学学报,2005,31(1):90-96
    韩明玉,李丙智.陕西苹果矮化砧木调查与思考[J].西北园艺,2012(8):50-52
    韩明玉,张芳芳,张立新,刘长虹,赵彩平.矮化中间砧富士苹果初夏土施15N-尿素的吸收分配特性[J].农业科学,2011,44(23):4841-4847
    韩明玉.苹果矮砧集约高效栽培模式[J].果农之友,2009(9):12-12
    韩振海.苹果矮化密植栽培:理论与实现[M].北京:科学出版社,2011
    韩振海,曾骧,王福钧.晚秋叶施尿素和生长调节剂对富士苹果幼树贮藏氮素的影响[J].园艺学报,1992,19(1):15-21
    花蕾,王永熙,刘炳辉,邹养军,赵芳,安金海,周天仓,张笃智,聂俊峰.提高渭北苹果品质的生产技术研究."九五"国家科技攻关计划农业领域优秀论文集[C].北京:中国农业出版社,2001
    华敦谅,潘江炎,吴友军,邱坚强,赵中流,涂文仕,黄德林,钟建军.板栗新梢摘心、摘叶对促发分枝的效果[J].浙江柑橘,2007,24(1):40-42
    华珞,韦东普,白玲玉,陈世宝.氮锌硒肥配合施用对白三叶草的固氮作用与氮素转移的影响[J].生态学报,2001,21(4):588-592
    黄绍文,孙桂芳,金继运,何萍,王秀芳,张国刚,谢佳贵,张宽.不同氮水平对高油玉米吉油一号籽粒产量及其营养品质的影响[J].中国农业科学,2004,37(2):250-255
    霍常富.根系氮吸收过程及其主要调节因子[J].应用生态学报,2007,18(6):1356-1364
    霍学喜,刘军第,刘天军.2012年苹果产业发展趋势与政策建议[J].中国果业信息,2012,29(1):38-39
    姜琳琳,韩立思,韩晓日,战秀梅,左仁辉,吴正超,袁程.氮素对玉米幼苗生长、根系形态及氮素吸收利用效率的影响[J].植物营养与肥料学报,2011,17(1):247-253
    姜远茂,彭福田,张宏彦.山东省苹果园土壤有机质及养分状况研究[J].土壤通报,2001,32(4):167-169
    姜远茂,张宏彦,张福锁.北方落叶果树养分资源综合管理理论与实践[M].北京:中国农业大学出版社,2007
    蒋立平.氮素形态对柑桔根系生长的影响[J].中国柑桔,1990,6:14-16
    金争平,温秀凤,顾玉凯,张吉科,姜同海,高岩,金书源.打顶和摘叶对沙棘雄株生长发育的影响[J].国际沙棘研究与开发,2009,7(3):14-21
    巨晓堂,潘家荣,刘学军,张福锁.北京郊区冬小麦/夏玉米轮作体系中氮肥去向研究[J].植物营养与肥料学报,2003,9(3):264-270
    克劳斯特·福斯特著.温带果树生理学[J].李正之译.山东泰安:山东农业大学,1991,47-48
    李红波,姜远茂,彭福田,赵林,王磊,房祥吉,葛顺峰.不同类型红富士苹果对春季土施15N-尿素的吸收、分配和利用特性研究[J].植物营养与肥料学报,2010,6(4):986-991
    李红波,姜远茂,魏绍冲,葛顺峰,房祥吉.“嘎啦”苹果对一次和分次施入15N-尿素的吸收、分配和利用[J].园艺学报,2011,38(9):1727-1732
    李慧峰,王海波,李林光,杨健明.苹果树摘心效应[J].落叶果树,2011,2:11-12
    李金洪,李伯航.矿质营养对玉米子粒营养品质的影响[J].玉米科学,1995,3(3):54-58
    李俊华,种康.植物生长素极性运输调控机理的研究进展[J].植物学通报,2006,23(5):466-477
    李莉,黄子蔚,陈冠文,吕昭智,李中军.棉花打顶对激素的影响与养分吸收变化[J].干旱区研究,2006,23(4):604-608
    李绍华,罗正荣,刘国杰.果树栽培概论[M].北京:高等教育出版社,1999
    李天忠,张志宏.现代果树生物学[M].北京:科学出版社,2008
    李燕婷,米国华,陈范骏,劳秀荣,张福锁.玉米幼苗地上部/根间氮的循环及其基因差异[J].植物生理学报,2001,27(3):226-230
    李育农.苹果属植物种质资源研究[M].北京:中国农业出版社,2001
    李正之.果树矮化密植[M].上海:上海科学技术出版社,1982
    梁遂权,王学柱,万同香.早实枳生物学特性及其砧木试验[J].浙江柑橘,1999,16(3):2-4
    林淑芳.国内外苹果矮化砧木选育与使用概况[J].吉林农业科学,1997(1):27-29,76
    林余益,徐季娥,龚云池,高占峰,陈良.夏施15N-尿素在鸭梨树体内的吸收分配规律及其去向的研究[J].河北农业技术师范学院学报,1992,6(4):41-46
    刘建才,姜远茂,彭福田,魏绍冲,葛顺峰,王富林,周恩达.不同根域空间施有机肥对苹果15N吸收利用和产量品质的影响[J].安徽农业科学,2012,40(15):8508-8511
    刘魁英,赵宗芸.木质部输导阻力对苹果树体矮化的影响[J].北京农学院学报,1994,(2):139-144
    刘显臣.摘心对欧李实生苗生长于成花的影响[J].甘肃农业大学学报,2010,45(5):92-95
    刘新宇,巨晓堂,张丽娟,李鑫,袁丽金,刘楠.不同施氮水平对冬小麦季化肥氮去向及土壤氮素平衡的影响[J].植物营养与肥料学报,2010,16(2):296-303
    刘志,李喜森,伊凯,荣志祥,杨锋,杨巍.苹果矮化砧木‘辽砧2号’选育[J].果树学报,2004,21(5):501-502
    陆秋农,贾定贤.中国果树志·苹果卷[M].北京:中国农业科技出版社,中国林业出版社,1999
    罗雪华,邹碧霞,吴菊群,杨俐苹.氮水平和形态配比对巴西橡胶树花药苗生长及氮代谢、光合作用的影响[J].植物营养与肥料学报,2011,17(3):693-701
    马宝焜,徐继忠,孙建设.关于我国苹果矮砧密植栽培的思考[J].果树学报,2010,27(1):105-109
    马月萍,戴思兰.植物花芽分化机理研究进展[J].分子植物育种,2003,1(4):539-545
    孟桂元,贺再新,孙焕良,周清明,周静.作物打顶栽培研究进展[J].中国农学通报,2010,26(24):144-148
    米国华,陈范骏,张福锁.作物养分高效的生理基础与遗传改良[M].北京:中国农业大学出版社,2012
    米国华.玉米自交系氮效率基因型差异[C].氮素循环与农业和环境学术研讨会论文,2001
    闵炬,施卫明.不同施氮量对太湖地区大棚蔬菜产量、氮肥利用率及品质的影响[J].植物营养与肥料学报,2009,15(1):151-157
    倪为民,陈晓亚,许智宏,薛红卫.生长素极性运输研究进展[J].植物学报,2000,42(3):221-228
    牛自勉,王贤萍,赵梁军,许月明.内源激素在苹果短枝型品种预选上的应用研[J].中国农学通报,1995,11(5):14-18
    潘瑞炽,李玲.植物生长调节剂:原理与应用[M].广州:广东高等教育出版社,2007
    潘增光,束怀瑞.苹果秋梢对树体生理活性的影响极其防衰功能[J].果树科学,1996,13(增刊):1-4
    彭福田,姜远茂,顾曼如,束怀瑞.落叶果树氮素营养研究进展[J].果树学报,2003,20(1):54-58
    彭静,彭福田,魏绍冲,主春福,周鹏,姜远茂.氮素形态对平邑甜茶IPT3表达与内源激素含量的影响[J].中国农业科学,2008,51(11):3716-3721
    彭良志,胥洱. BA和GA3对华盛顿脐橙幼果14C-光合产物调配的影响[J].园艺学报,1990,17(2):111-116
    彭强吉,胡斌,罗昕,李庭.不同打顶时间和高度对北疆高产棉花产量的影响[J].中国棉花,2012,39(5):23-25
    平晓燕,周广胜,孙敬松.植物光合产物分配及其营养因子研究进展[J].植物生态学报,2010,34(1):100-111
    齐鑫,王敬国.应用13C脉冲标记方法研究不同施氮量对冬小麦净光合碳分配及其向地下输入的影响[J].农业环境科学学报,2008,27(6):2524-2530
    钦绳武,刘芷宇.土壤-根系微区养分状况的研究Ⅵ.不同形态肥料氮素在根际的迁移规律[J].土壤学报,1989,26(2):117-123
    邵开基,李登科,张忠仁,郜晓梦. SH系苹果矮化砧性状及生理特性的研究[J].园艺学报,1991,18(4):289-295
    沈德绪,林伯年.果树童期与提早结果[M].上海:上海科技出版社,1989
    沈其荣,徐国华.小麦和玉米叶面标记尿素态15N的吸收和运输[J].土壤学报,2001,38(1):67-74
    沈其荣,殷士学,杨超光,陈巍.13C标记技术在土壤和植物营养研究中的应用[J].植物营养与肥料学报,2006,(1):98-105
    施卫明,徐梦熊,刘芷宇.土壤-植物根系微区养分状况的研究Ⅳ-电子探针制样方法的比较及其应用[J].土壤学报,1987,24(3):286-290
    时向东,刘艳芳,文志强,黄克久,程刚.打顶对烟株根系活力及内源激素含量的影响[J].西北农林科技大学学报(自然科学版),2008,36(2):144-147
    束怀瑞.苹果学[M].北京:中国农业出版社,1999
    宋润刚,马玉坤,张宝香.山葡萄结果枝不同时期摘心对坐果率和产量影响[J].北方园艺,2010(11):44-45
    谭金芳.作物施肥原理与技术[M].北京:中国农业大学出版社,2003
    汪景彦,贾定贤,米文广.苹果新品种及其栽培要点[M].西安:陕西科学技术出版社,1992
    汪景彦.苹果矮化密植[M].北京:中国农业科技出版社,1988
    汪景彦.短枝型红富士苹果高产栽培[M].西安:陕西科学技术出版社,1997
    汪景彦.提高苹果外观质量新技术[J].果树科学,1995,12(3):200-202
    王磊,姜远茂,彭福田,魏绍冲,李红波,葛顺峰,房祥吉.红富士苹果枝条下垂处理对15N尿素吸收、分配及利用的影响[J].园艺学报,2010,37(7):1033-1040
    王丹,肖慈木,范昭鸣.砧木影响梁平柚树体生长的形态解剖研究[J].绵阳农专学报,1996,13(4):1-3,14
    王殿发,孙祎龙,崔金虎. GM256矮化中间砧苹果树的栽培试验[J].中国果树,1993(1):3-5
    王东.施氮量对土壤氮素变化和小麦产量与品质影响的生理生态基础[D].山东农业大学博士学位论文,2005
    王国英,王立国.北方果树整形修剪技术百问百答[M].北京:中国农业出版社,2005
    王海宁,葛顺峰,姜远茂,魏绍冲,彭福田,陈倩.苹果砧木生长及吸收利用硝态氮和铵态氮特性比较[J].园艺学报,2012,39(2):343-348
    王金政,薛晓敏,路超.我国苹果生产现状与发展对策[J].山东农业科学,2010(6):117-119
    王金政.果树优质高效安全生产十大关键技术[M].济南:山东科学技术出版社,2008
    王磊,姜远茂,彭福田.主枝开张角度对盆栽红富士苹果13C和15N分配、利用的影响[J].植物营养与肥料学报,2011,17(2):433-437
    王丽琴,唐芳,张静,束怀瑞.苹果矮化砧对14C-同化物运输分配的影响[J].核农学报,2003,17(3):212-214
    王少先,彭克勤,夏石头,王勇.烟草碳、氮代谢及氮肥施用对烟草产量和品质的影响[J].中国农学通报,2004,20(2):135-138
    王艳,米国华,张福锁.氮对不同基因型玉米根系形态变化的影响研究[J].中国生态农业学报,2003,11(3):69-71
    王正银.作物营养与品质[M].北京:中国农业科技出版社,1999
    王中英,白瑞琴,吕晓燕.矮化中间砧和乔砧苹果树水势变化研究[J].园艺学报,1997,24(2):191-193
    王中英,董明,古润泽.矮化中间砧红星苹果幼树碳素代谢研究Ⅰ碳素营养的积累、分配与贮存[J].山西农业大学学报,1986,6(2):119-124
    王中英,解思敏,杨佩芳,王贵.苹果砧木矮化性状的综合解剖学结构[J].园艺,1983(2):20-24
    韦剑锋,罗艺,米超,蓝立斌,陈超君,刘欢雨.施氮方法对甘蔗干物质积累、产量及品质的影响[J].湖北农业科学,2012,51(7):1341-1347
    卫双玲,高桐梅,张海洋,孙梅英,刘焱,张仙美.不同时期打顶对不同地点夏芝麻产量、品质及光合特性的影响[J].华北农学报,2010,25(4):170-174
    吴楚,王政权,范志强,孙海龙.氮胁迫对水曲柳幼苗养分吸收、利用和生物量分配的影响[J].应用生态学报,2004,15(11):2034-2038
    吴永成,尹传春,董云章,陈明祥,袁继超.施氮方式对川中丘陵区玉米产量和氮肥利用的影响[J].四川农业大学学报,2012,30(1):2-6
    夏国海,罗新书.苹果幼树秋季14C同化物贮藏及再利用[J].园艺学报,1990,17(2):96-101
    谢海生.氮肥施用时期对苹果幼树吸收、贮藏和再利用15N的影响[J].山东农业大学学报,1986,17(4):45-52
    杨恩聪,景德华,李进学,岳建强.留桩摘心对柠檬幼树成枝与挂果的效应[J].西南农业学报,2009,22(4):1053-1056
    杨每宁,韩志强.苹果短枝型与普通品种的生物学差异[J].北方园艺,1995(2):18-19
    杨铁钢.不同品种和氮素水平下小麦高效氮素利用的生理机制研究[D].南京农业大学博士学位论文,2007
    杨兴洪,罗新书.萌芽前苹果枝条对15N-尿吸收和分配利用[J].园艺学报,1991,18(2):126-139
    尹涛,邵永春,宫象晖,王正欣,沙广利.日本盛冈系苹果砧木的特征及应用[J].落叶果树,2008(1):56-57
    于迟,张鹤,李鸿莉,王忆,张新忠,韩振海.苹果矮化中间砧SH40激素含量及生长素转运蛋白基因pin1表达[J].中国农业大学学报,2012,17(2):80-84
    宇万太,周桦,徐永刚,马强,陈进宁,陈桂金,黄世芳,李松海.追施氮肥当年与翌年对桉树生长及各部位氮贮量的影响[J].生态学杂志,2010,29(9):1703-1708
    原永兵,刘成连,王永章,马德功,李晓东.现代苹果矮化密植技术研究[J].落叶果树,2011,43(6):1-6
    曾骧,韩振海,郝中宁.果树叶片氮素贮藏和再利用规律及其对果树生长发育的影响[J].北京农业大学学报,1991,17(2):97-102
    曾骧,李光晨,黄卫东,张起刚.苹果短果枝叶片晚秋施用15N尿素的运转和分配[J].园艺学报,1986,13(4):225-230
    曾骧.枣树叶片内氮素贮藏和循环利用的研究[J].核农学报,1991,5(1):37-43
    曾骧.果树生理学[M].北京:北京农业大学出版社,1992
    张春胜.氮磷钾对莱阳茌梨产量和品质的影响研究[J].莱阳农学院学报,1992,9(3):226-230
    张丹,刘国顺,章建新,徐敏.打顶时期对烤烟根系活力及烟碱积累规律的影响[J].中国烟草科学,2006(1):38-41
    张芳芳,韩明玉,张立新,刘长虹,赵彩平.红富士苹果对初夏土施15N-尿素的吸收、分配和利用特性[J].果树学报,2009,26(2):135-139
    张浩,龚荐,罗时石,葛才林,马飞. ABA对水稻花后剑叶光合产物输配作用的示踪动力学研究[J].核农学报,1996,10(4):244-250
    张绍玲.施氮量对不同树势红富士苹果生长和果实品质的影响[J].河南农业科学,1993(5):28-30
    张翔,毛家伟,黄元炯,李文勋,桂炎伟,陈启龙.不同施肥处理对烤烟干物质积累与分配的影响[J].中国土壤与肥料,2011(3):31-34,91
    张序,姜远茂,彭福田,赵祥奎,李延菊,赵登超.“红灯”甜樱桃对秋季叶施15N-尿素的吸收、分配及利用特性[J].植物营养与肥料学报,2007,13(4):684-688
    赵登超,姜远茂,彭福田,张进,张序,隋静,何乃波.不同施肥时期对冬枣15N贮藏及翌年分配利用的影响[J].中国农业科学,2006,39(8):1626-1631
    赵宏伟.不同氮素营养水平下春玉米碳氮代谢机理的研究[D].东北农业大学博士学位论文,2003
    赵建栋.不同打顶时间与方法对甜荞产量极其构成因素的影响[J].现代农业科技,2012(11):11-11,14
    赵林,姜远茂,彭福田,李盼盼,王磊,李洪波.嘎拉苹果对春施15N-尿素的吸收、利用与分配特性[J].植物营养与肥料学报,2009,15(6):1439-1443
    赵彦君.苹果树强拉枝及配套管理技术[J].甘肃林业科技教育,2010,(5):39-40
    赵营,同延安,赵护兵.不同供氮水平对夏玉米养分积累、转运及产量的影响[J].植物营养与肥料学报,2006,12(5):622-627
    周凤.三种砧木对李树(Prunus Lindl.)影响的初步研究和评价.河北农业大学硕士论文[D],2002
    钟茜,巨晓堂,张福锁.华北平原冬小麦/夏玉米轮作体系对氮素环境承受力分析[J].植物营养与肥料学报,2006,12(3):285-293
    周鹏,彭福田,魏绍冲,彭勇.氮素形态对平邑甜茶细胞分裂素水平和叶片生长的影响[J].园艺学报,2007,34(2):269-274
    周睿,束怀瑞.高等植物中的山梨醇及其代谢[J].植物生理学通讯,1993,29(5):384-390
    周润生.苹果树的摘心和扭梢[J].农业知识,1994(6):19-20
    周顺利,张福锁,王兴仁.土壤硝态氮时空变异与土壤氮素表现盈亏Ⅱ.夏玉米[J].生态学报,2002,22(1):48-53
    主春福,彭福田,彭静,李光杰,刘丽娟,李丁丁.不同施氮处理对平邑甜茶根系构型的影响[J].山东农业科学,2008(4):57-61
    Agren GI, Ingestad T. Root-shoot ratio as balance between nitrogen productivity andphotosynthesis[J]. Plant Cell Environ,1987(10):579-586
    Alboresi A, Gestin C, Leydecker MT, Bedu M, Meyer C, Truong HN. Nitrate, a signalrelieving seed dormancy in Arabidopsis[J]. Plant Cell Environ,2005(28):500-512
    Aphalo PJ, Leto T. Effects of light quality on growth and N accumulation in birch seedlings[J].Tree Physiol,1997(17):125-132
    Bangerth F. Polar auxin transport as a signal in the regulation of tree and fruit development[J].Acta Hort.,1993(329):70-74
    Baton G W, Robinson M A. Intestock effects upon apple leaf and fruit mineral content[J]. CanJ Plant Sci,1977(57):227-234
    Bauer G A, Berntson G M. Ammonium and nitrate acquisition by plants in response toelevated CO2concentration: the rules of root physiology and architecture[J]. Tree physiol,2001(21):137-144
    Beak Bane A B, ROGERS W S.The relative importance of strains and root in deterrningrootstock influence in apples[J]. Horti Sci,1986(31):91-110
    Beck E H. Regulation of shoot/root ratio by cytokinins from roots in Urtica dioica: opinion[J].Plant Soil,1996(185):3-12
    Bloom AJ, Chapin FS, Mooney HA. Resource limitation in plants-an economic analogy[J].Ann Rev Ecol Syst,1985(16):363-392
    Bryant JP, Chapin FS, Klein DR. Carbon/nutrient balance of boreal plants in relation tovertebrate herbivory[J]. Oikos,1983(40):357-368
    Caba J M, Centeno M L, Fernandez B, et a1.Inoculation and nitrate alter phytohormone levelsin soybean roots: differences between a supernodulating mutant and the wild type[J]. Planta,2000(211):98-104
    Castro-Marin I, Loef I, Bartetzko L, Searle I, Coupland G, Stitt M, Osuna D. Nitrate regulatesfloral induction in Arabidopsis, acting independently of light, gibberellin and autonomouspathways[J]. Planta,2011(223):539-552
    Claver IP, Zhou HM. Enzymatic hydrolysis of defatted wheat germ by proteases and the effecton the functional properties of resulting protein hydrolysates[J]. J Food Biochem,2005,29(1):13-26
    Colmer TD, Bloom AJ. A comparison of NH4+and NO3-net fluxes along roots of rice andmaize[J]. Plant, Cell and Environment,1998(21):240-246
    Crawford NM, Glass ADM. Molecular and physiological aspects of nitrate uptake inplants[J].Trends Plant Sci,1998,3(10):385-389
    Cruz C, Lips SH, Martins-LoucaoMA. Uptake regions of inorganic nitrogen in roots of carobseedlings[J]. Physiologia Plantarum,1995(95):167-175.
    Curtis D, Righetti TL, Mielker E, Facteau T. Postharvest Mineral Analysis of Corkspotted andExtra Fancy "Anjou" Pears. Amer. Soc[J]. Hort. Sci.1990(116):969-974
    Daniel-Vedele AJ. Transporters responsible for the uptake and partitioning of nitrogenoussolutes[J]. Annu Rev Plant Physiol Plant Mol Biol,2001(52):659-688
    Daniel-Vedele F, Filleur S, Caboche M. Nitrate transport: a key step in nitrate assimilation[J].Curr Opin Plant Biol,1998(1):235-239
    De Jong TM, KR Day, RS Johnson. Partitioning of leaf nitrogen with respect to within canopylight exposure and nitrogen availability in peach[J]. Trees,1989(3):89-95
    De Jong TM. Leaf nitrogen content and CO2assimilation capacity in peach[J]. Amer. Soc. Hort.Sci.1982(107):955-959
    Evans JR. Photosynthesis and nitrogen relationships in leaves of C3plants[J]. Oecologica,1989(78):9-19
    Facust M, Wang SY, Line J. The possible role of indole-3-acetic acid[J]. Amer Soc Hort Sci,1994,119(6):1215-1221
    Fallahi E, Chun I, Neilsen H G, et al. Effect of three rootstocks on photosynthesis, leaf mineralnutrition, and vegetable growth of "BC-2Fuji"apple tree[J]. J Plant Nutr,2001,24(6):827-834
    Fischer WN, Andr B, Rentsch D, et al. Amino acid transport in plants[J]. Trends in PlantScience,1998(3):188-195
    Gower ST, Vogt KA, Grier CC. Carbon dynamics of Rocky Mountain Douglas-fir: Influenceof water and nutrient availability[J]. Ecol Monogr,1992,62:43-65
    Guo FQ, WangRC, ChenMS,et al. The Arabidopsis dual affinity nitrate transporter geneAtNRT1.1.(CHL1) is activated and functions in nascent organ development duringvegetative and reproductive growth[J]. PlantCell,2001(13):1761-1777
    Gutierrez RA, Lejay L, Dean A, Chiaromonte F, Shasha DE, Coruzzi GM. Qualitative networkmodels and genome-wide expression data define carbon/nitrogen-responsive molecularmachines in Arabidopsis[J]. Genome Biol,2007(8): R7
    H. Yoshioka, K. Nagai,K. Aoba, M. Fukumoto. Seasonal changes of carbohydrates metabolismin apple trees[J]. Scientia Horticulturae,1988,36(8):219-227
    Hill cottingham D G, Lioyd-Jones C P. Nitrogen-15in apple nutrition investigation[J]. Journalof the Science of Food and Agriculture,1975,26(2):165-173
    Hong Li Li, He Zhang, Chi Yu, Li Ma, Yi Wang, Xin Zhong Zhang, Zhen Hai Han. Possibleroles of auxin and zeatin for initiating the dwarfing effect of M9used as apple rootstock orinterstock[J]. Acta Physiol Plant,2012(34):235–244
    Huppe HC, Turpin DH. Integration of carbon and nitrogen metabolism in plant and algalcells[J]. Annu Rev Plant Physiol Plant Mol Biol,1994(45):577-607
    Jaumie F M. Faust Stem anatomical structure of delicious and golden delicious apple hybridswith various growthdynamics[J]. Acta Hort,1984(146):69-79
    Jindal K K. Stomate number poke size and their correlation with growth of apple rootstocks[J].Hort Abrt,1988,8:466
    Jones O P. Effect of rootstock and interstock on the xylem sap composition in apple trees:effects on nitrogen, phosphorus and potassium content[J]. Ann Bot,1971(35):825-828
    Jung H, Lee J. Physical treatments influencing lateral shoot development in one-year-oldFuji/M.9nursery apple trees[J]. Horticulture, Environment and Biotechnology,2008(5):265-270
    Kennedy J, Rowe R W, Samuelson T J. The effects of apple rootstock genotypes on mineralcontent of scion leaves[J]. Euphytica,1980,29(2):488-482
    Khemira H. Influence of Canopy Orientation on Fruiting of "Anjou" Pears and PostharvestUrea Spray on Ovule Longevity and Fruit Set of " Comice " Pears. M.S. thesis[J], OregonState University, Corvallis, OR.1991
    Kojema K, Yayata Y, Yamamolo M. Effects of cropping on photosynthesis, dark resperation,leaf ABA concentration and inflorescence induction in Satsuma mandarin[J]. Japan SocHort Sci,1995(64):9-16
    Krapp A, Berthomé R, Orsel M, Mercey-Boutet S, Yu A, Castaings L, Elftieh S, Major H,Renou JP, Daniel-Vedele F. Arabidopsis roots and shoots show distinct temporaladaptation patterns toward nitrogen starvation[J]. Plant Physiol,2011,157(3):1255-1282
    Kronzucker HJ, Schjoerring JK, ErnerY, et al. Dynamic interactions between root NH4+influxand long-distance N translocation in rice: Insights into feed-back processes[J]. Plant CellPhysiology,1998(39):1287-1293
    Lockard RG, Schneideri GW. Stock and scion growth relationships and the dwarfingmechanism in apple[J]. Hort Reviews,1981(3):315-354
    Lu Y H, Watanabe A, Kimura M. Input and distribution of photosyn-thesized carbon in aflooded soil[J]. Global Biogeochem Cycles,2002(16):321-328
    Marschner H. Mineral nutrition of higher plants. Plant, Cell&Environment,1988,11:147-148
    Mengel K, Robinp, Salsacl. Nitrate reductase activity in shoots and roots of maize seedlings asaffected by the from nitrogen nutrition and pH of the nutrition solution[J]. Plant Physiol,1983(71):618-622
    Miller AJ, Smith SJ. Nitrate transport and compartmentation in cereal root cells[J]. Journal ofExperimental Botany,1996(47):843-854
    Nazoa P, Vidmar JJ, TranbargerTJ, et al. Regulation of the nitrate transporter gene ATNRT2.1in Arabidopsis thaliana: Responses to nitrate, amino acids and developmental stage[J].Plant Molecular Biology,2003(52):689-703
    Okuda H. A comparison of IAA and ABA levels in leaves and roots of two Citrus cultivars ofalternate bearin[J]. J Hort Sci Biot,2000(75):355-359
    Olien W C, Lakso A N. A comparison of the dwarfing character and water relations of fiveapple rootstocks[J]. Acta Horticulturae,1986(146):151-157
    Ouellette D R, Unrath C R, Young E. Manual and chemical branch inducement in fall-andspring-planted Empire apple on two rootstocks[J]. Hortscience,1996,31(1):82-88
    Palenchar PM, Kouranov A, Lejay LV, Coruzzi GM. Genome-wide patterns of carbon andnitrogen regulation of gene expression validate the combined carbon and nitrogen(CN)-signaling hypothesis in plants[J]. Genome Biol,2004(5): R91
    Parry M S, Rogers S. Effects of interstock length and vigour on the field performance of Cox'sOrange Pippin apples[J]. J Hort Sci,1972(47):97-105
    Price J, Laxmi A, St Martin SK, Jang JC. Global transcription profiling reveals multiple sugarsignal transduction mechanisms in Arabidopsis[J]. Plant Cell,2004(16):2128-2150
    Rahayu YS, Walch-Liu P, Neumann G, Romheld V, von Wiren N, Bangerth F. Root-derivedcytokinins as long-distance signals for NO3--induced stimulation of leaf growth[J]. J ExpBot,2005(56):1143-52
    Rakngan J, Gemma H, Iwahori S. Flower bud formation in Japanese pear trees under adverseconditions and effects of some growth regulators[J]. J Hort Sci,1997(72):83-91
    Reed R C, Brady S R, Muday G K. Inhibition of auxin movement from the shoot into the rootinhibits lateral root development in Arabidopsis[J]. Plant Physiol,1998(118):1369-1378
    Rhodes D I, Stone B A. Proteins in walls of wheat aleurone cells[J]. J Cereal Sci,2002,36(1):83-101
    Ruegger M, Dewey E, Hobbie L, Brown D, Bernasconip, Turner J, Muday G, Estelle M.Reduced naphtylphthalamic acid binding in the tier3mutant of Arabidopsis is associatedwith a reduction in polar auxin transport and diverse morphological defects[J]. Plant Cell,1997(9):745-757
    Sakakibara H. Cytokinins: Activity, Biosynthesis, and Translocation[J]. Plant Biology,2006(57):431-449
    Sakakibara H. Nitrate-specific and cytokinin-mediated nitrogen signaling pathways in plant[J].Journal of Plant Research,2003(116):253-257
    Schachtman DP, Schroeder JI. Structure and transport mechanism of high-affinity potassiumuptake transporter from higher plants[J]. Nature,1994(370):655-658
    Shear CB. Interaction of Calcium and Nitrogen and Time of Calcium Availability in Relationto the Development of Apple Disorders. Proc.7th Intl. Colloq[J]. Plant Analysis Fertil.Problems, Hanover, German Soc. Plant Nut,1974:427-436
    Shindy WW, Weaver RJ. Plant regulators alter translocation of photosynthetic products[J].Nature,1967(241):1024-1025
    Shindy WW. Export of photosynthetic effected when leaves are pretreated with growthsubstances[J]. Nature,1970,277:301-302
    Stassen PJC, JH Terblanche, DK Strydom. The effect of time and rate of nitrogen applicationon development and composition of peach trees[J]. Agoplantae,1981(13):55-61
    Tagliavini M, Millard Quartieri M. Storage of foliar-absorbed nitrogen and remobilization forspring growth in young nectarine (Prunus persica var.nectarina) trees[J]. Tree Physiology,1998(18):203-207
    Takatoshi Kiba, Toru Kudo, Mikiko Kojima and Hitoshi Sakakibara. Hormonal control ofnitrogen acquisition: roles of auxin, abscisic acid, and cytokinin[J]. J. Exp. Bot.,2011,62(4):1399-1409
    Takei K, Sakakibara H, Sugiyama T. Identification of genes encoding adenylateisopentenyltransferase, a cytokinin biosynthesis enzyme, in Arabidopsis thaliana[J]. TheJournal of Biological Chemistry,2001,276(28):26405-26410
    Takei K, Sakakibara H, Taniguchi M, Sugiyama T.Nitrogen dependent accumulation ofcytokinins in root and the translocation to leaf: implicaion of cytokinin species that inducesgene expression of maize response regulator[J]. Plant Cell Physiology,2001(42):85-93
    Taylor AR, Bloom AJ. Ammonium, nitrate, and proton fluxes along the maize root[J]. Plant,Cell Environment,1998(21):1255-1263
    Taylor BK, B.van den Ende. The nitrogen nutrition of the peach trees.Ⅳ. Storage andmobilization of nitrogen in mature trees[J]. Autral. J. Agr. Res,1969(20):869-881
    Terblanche JJ, Gurgen KH, Hesebeck I. An Integrated Approach to Orchard Nutrition andBitter Pit Control. Mineral Nutrition of Fruit Trees (D Atkinson, JE Jackson,RO Sharples,and WM Waller, eds.)[J]. Butterworths, London,1980,71-82
    Tian Q Y, Chen F J, Liu J X, et al. Inhibition of maize root growth by high nitrate supply iscorrelated with reduced IAA levels in roots[J]. J Plant Physiol,2008(165):942-951
    Tian Q Y, Sun P, Zhang W H. Ethylene is involved in nitrate‐dependent root growth andbranching in Arabidopsis thaliana[J]. New Phytol,2009(184):918-931
    Titus JS, Kang SM. Nitrogen metabolism, translocation, and recycling in apple trees[J].Horticultural Reviews.1982(4):204-246
    Tsay Y F, Ho C H, Chen H Y, Lin S H. Integration of Nitrogen and Potassium Signaling. Annu.Rev[J]. Plant Biol.,2011(62):207-226
    Ussahatanonta S, Simons R K. Graft union development of the Golden Delicious apple whencombined with varied dwarfing rootstock[J]. Fruit Varieties,1988(42):152-159
    Vollrecht P, Kasernir H I. Effects of exogenously supplied ammonium on root development ofScots pine (Pinus sylvestris L.) seedlings[J]. Bot Acta,1992,105(4):306-312
    Volz R K, Gibbs H M, Popenoe J. Branch induction on apple nursery trees effects of growthregulators and defoliation[J]. New Zealand Journal of Crop and Horticultural Science,1994(3):277-283
    Walch Liu P, Ivanov I, Filleur S, Gan Y B, Reamans T, Forde B G. Nitrogen regulation of rootbranching[J]. Annals of Botany,2006(97):875-881
    Wang MY, Siddiqi MY, Ruth TJ, et al. Ammonium uptake by rice rootsⅡ. Kinetics of13NH4+influx across the plasmalemma[J]. Plant Physiology,1993(103):1259-1267
    Weaver RJ, Shindy WW, Kliewer WM. Growth regulator induced movement of photosyntheticproducts into fruits of "Black Corinth" grapes[J]. Plant Physiol.,1969(44):183-188
    Weeks WD, Southwick FW, Drake M, Olanyk GW. Relation of Differential N and KFertilization to Tree Performance, Fruit Quality, and Storage Disorders of "Delicious"Apples[J]. College of Agriculture, University of Massachusetts,1965
    Williams L E, Miller A J. Transporters responsible for the uptake and partitioning ofnitrogenous solutes[J]. Annu Rev Plant PysioI Plant Mol Bio,2001,52(6):659-688
    Williams RR. The Effect of summer nitrogen applications on the quality of apple blossom[J]. JHort Sci,1965(40):31-41
    Zhao D Y, Tian Q Y, Li L H, Zhang WH. Nitric oxide is involved in nitrate-induced inhibitionof root elongation in Zea mays L[J]. Ann Bot,2007(100):497-503
    Zilkah S, Lnrie S, Lapsker Z, et a1.The ripening and storage quality of nectarine fruits inresponse to preharvest application of gibberellic acid[J]. J. Hort. Sci,1997,72(3):355-362

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700