用户名: 密码: 验证码:
辣椒对低温胁迫的响应与其低温抗性相关基因的克隆和功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
低温是限制植物生长发育和地理分布最重要的非生物胁迫因子之一。辣椒(Capsicum annuum L.)起源于中南美洲的热带和亚热带地区,对低温敏感,其最适合生长温度为21-27℃,低于12℃和高于30℃生长受到抑制。我们试图通过探索辣椒的防御机制,以期提高其耐寒性。本研究以抗寒辣椒品种P70为材料,0.57mMABA溶液喷施幼苗,72h后进行低温处理。一方面探索外源ABA对低温下辣椒幼苗抗氧化酶活性及其基因表达的影响;另一方面利用抑制消减杂交技术(SSH)分离ABA调节的低温抗性相关基因,并对其功能进行分析。主要内容为:
     (1)为了探索ABA调节的响应低温胁迫反应的生理生化机制,外源ABA预处理后进行低温10℃/6℃(昼/夜)处理。研究结果为:低温引起叶片坏死斑出现,MDA和H2O2含量增加;在遭受低温胁迫72h期间,辣椒MDHAR、DHAR、GR、POD、APX酶活和AsA、GSH含量增加;而在24h期间SOD和CAT活性下降,这些结果表明在CAT失活的情况下,低温启动AsA-GSH循环代谢。常温下ABA预处理引起以上提及的酶活显著增加和AsA、GSH含量的缓慢下降。与仅进行低温胁迫处理相比,在低温胁迫下ABA预处理的幼苗SOD和POD活性增加,而其他的抗氧化酶活性降低,MDA和H2O2含量也表现同步下降;而且相应的Mn-SOD和POD基因被诱导表达。总之,外源ABA能够显著提高SOD和POD酶活及其基因表达,进而增强辣椒对低温诱导氧化胁迫的抵抗性。
     (2)外源ABA可有效缓解低温对辣椒幼苗的伤害。然而,ABA调节的基础分子机理仍不清楚。为了从ABA预处理的遭受48h低温(6℃)的辣椒幼苗上分离差异基因,我们构建了抑制消减杂交文库(SSH)。总共获得235个高质量的ESTs,拼接成73个unigenes,含有18个contigs和55个singletons。其中37个unigenes(50.68%)与NCBI非辰余数据库中的已知功能基因高度同源;其他36个unigenes(49.32%)同源性低或同源基因功能未知。GO功能注解分析37个unigenes分为9类功能。另外采用qRT-PCR技术对18个基因的表达进行分析:ABA预处理低温胁迫的辣椒幼苗10个基因的表达量比清水处理低温胁迫的植株高2倍多;而ABA+低温处理的幼苗其他8个基因的表达量下调,表达量是遭受低温胁迫对照植株的1/3或更小。这些结果表明在响应低温胁迫反应时,ABA能够有效地正负调节辣椒基因表达。
     (3)根据SSH文库分离的差异基因,利用VIGS技术进行初步筛选,其中对5个ESTs克隆全长,分别命名为CaNAC2、CaMBF、CaF-box、CaMADS-box、CaDHN,含有完整的开放阅读框(ORF),GenBank登录号分别为JX402928、JX402927、JX402925、JX402926、JZ198814。
     辣椒CaNAC2开放阅读框为1230bp,属于NAC2亚家族成员。CaNAC2定位于细胞核且具有转录激活活性。CaNAC2主要在辣椒的根和幼嫩种子表达。盐胁迫和ABA处理诱导CaNAC2表达,表明其可能参与ABA介导的盐胁迫反应;而甘露醇和SA处理抑制CaNAC2表达。我们采用病毒诱导沉默技术(VIGS)分析CaNAC2对辣椒抗逆性的调控作用。结果表明:在叶面喷施ABA和清水后进行相同的低温处理下,CaNAC2沉默植株丙二醛含量高于基因未沉默植株(对照),表明CaNAC2沉默引起辣椒膜脂过氧化程度加剧。在ABA+低温处理下,CaNAC2沉默植株过氧化氢含量高于对照;然而,仅进行低温处理的CaNAC2沉默株过氧化氢含量很低,表明过氧化氢可能参与信号转导。与对照相比,高盐胁迫下CaNAC2沉默的离体叶片保持较绿,表明该基因的功能缺失可能与植株保绿有关;而甘露醇处理CaNAC2沉默的离体叶片表型基本没有变化。
     (4)辣椒CaMBF开放阅读框为420bp,分子量为15.3KD等电点为9.86。CaMBF表达在花和幼嫩种子较高,根中基本无表达。在高盐、渗透胁迫、重金属汞和SA处理下CaMBF表达均受到抑制,而低温诱导其表达。将带有35S的组成型CaMV启动子CaMBF超量表达载体导入拟南芥,结果表明:转基因拟南芥CaMBF受高盐、低温和ABA处理下调表达。转基因植株生长较大,莲座叶的叶长和叶宽分别比对照大70%和60%。将野生型和转基因植株进行低温4℃处理,转基因植株的耐寒性比野生型弱。并且拟南芥CaMBF的超量表达负调节一些逆境防御基因如RD29A、ERD15、KIN1、RD22、PDF1.2和PR2。
     (5)辣椒CaF-box编码638个氨基酸,属于F-box蛋白超家族的EBF分枝。CaF-box主要分布在茎和幼嫩种子中。ABA、SA和低温处理诱导CaF-box表达;甘露醇处理抑制CaF-box表达。利用VIGS技术诱导CaF-box沉默,与未发生CaF-box沉默植株相比,在低温胁迫下,CaF-box沉默植株丙二醛和电导率增加,表明CaF-box沉默引起辣椒的耐寒性减弱。在高盐和渗透胁迫下,CaF-box沉默离体叶片明显黄化,表明CaF-box沉默植株出现早衰现象。
     (6)辣椒CaMADS-box开放阅读框为726bp,属于SEP1/AGL2亚家族。CaMADS-box表达量在花中较高,根、叶和种子中几乎无表达。ABA处理对CaMADS-box表达无影响;SA处理12h CaMADS-box表达缓慢下降;而高盐和渗透胁迫CaMADS-box上调表达。辣椒CaDHN开放阅读框为660bp,属于SK2型脱水素。CaDHN主要分布于果实和花中。在低温、高盐、渗透胁迫和SA处理下CaDHN表达增加。
Low temperature is one of the most important abiotic factors limiting the growth,development and geographical distribution of plants. Pepper plant (Capsicum annuum L.)originates from tropical regions and is very sensitive to low temperature. The optimal growthtemperature for pepper plants ranges from21°C to27°C, and growth is retarded below12°Cand above30°C. As part of this effort, we are interested in investigating of plant defensemechanisms, in order to improve plant resistance to environmental stresses. In this study,‘P70’ is a typical pepper cultivar that is fairly tolerant of low temperatures. The pepper variety(cv.‘P70’) seedlings were pretreated with0.57mM abscisic acid (ABA) for72h and thensubjected to chilling stress. We investigated the effect of exogenous ABA on total antioxidantactivity and related genes expression in pepper seedlings subjected to chilling stress.Meanwhile, suppression subtractive hybridization analyzed genes regulated by application ofexogenous ABA in pepper plant leaves under chilling stress. Additionally, functionalidentification of several genes in pepper seedlings subjected to abiotic stress was done. Themain results of the study are as follows:
     (1) To elucidate how physiological and biochemical mechanisms of chilling stress areregulated by ABA pretreatment, the pepper seedlings were pretreated with0.57mM ABA for72h and then subjected to chilling stress at10°C/6°C (day/night). Chilling stress causedsevere necrotic lesions on the leaves and increased malondialdehyde and H2O2levels.Activities of monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase(DHAR), glutathione reductase (GR), guaiacol peroxidase (POD), ascorbate peroxidase(APX), ascorbate (AsA), and glutathione (GSH) increased due to chilling stress during72h,while superoxide dismutase (SOD) and catalase (CAT) activities decreased during24h,suggesting that chilling stress activates the AsA-GSH cycle under CAT deactivation in pepperleaves. ABA pretreatment induced significant increases in the above-mentioned enzymeactivities and progressive decreases in AsA and GSH levels. On the other hand,ABA-pretreated seedlings under chilling stress increased SOD and POD activities andlowered concentrations of other antioxidants compared with untreated chilling-stressed plants.These seedlings showed concomitant decreases in foliage damage symptoms, and levels ofmalondialdehyde and H2O2. Induction of Mn-SOD and POD was observed in chilling-stressed plants treated with ABA. Overall, the results indicate that exogenous application of ABAincreases tolerance of plants to chilling-induced oxidative damage, mainly by enhancing SODand POD activities and related genes expression.
     (2) Application of exogenous ABA effectively alleviates the symptoms of chilling injury,such as wilting and formation of necrotic lesions on pepper leaves; however, the underlyingmolecular mechanism is not understood. The aim of this study was to identify genes that aredifferentially up-or downregulated in ABA-pretreated pepper seedlings incubated at6°C for48h, using a suppression subtractive hybridization (SSH) method. A total of235high-qualityESTs were isolated, clustered and assembled into a collection of73unigenes including18contigs and55singletons. A total of37unigenes (50.68%) showed similarities to genes withknown functions in the non-redundant database; the other36unigenes (49.32%) showed lowsimilarities or unknown functions. Gene ontology analysis revealed that the37unigenes couldbe classified into nine functional categories. The expression profiles of18selected genes wereanalyzed using quantitative RT-PCR; the expression levels of10of these genes were at leasttwo-fold higher in the ABA-pretreated seedlings under chilling stress than water-pretreated(control) plants under chilling stress. In contrast, the other8genes were downregulated inABA-pretreated seedlings under chilling stress, with expression levels that were one-third orless of the levels observed in control seedlings under chilling stress. These results suggest thatABA can positively and negatively regulate genes in pepper plants under chilling stress.
     (3) Based on differential genes identified by SSH technique, in accordance with thetobacco rattle virus (TRV)-based VIGS technique, five genes were isolated using ahomology-based candidate gene method and designated as CaNAC2, CaMBF, CaF-box,CaMADS-box, CaDHN, respectively. They contained complete open reading frames (ORF)and GenBank numbers were JX402928, JX402927, JX402925, JX402926, JZ198814,respectively.
     In this report, pepper CaNAC2belonging to NAC2subfamily, was predicted to encode aprotein of409amino acid residues. The deduced CaNAC2protein was localized in thenucleus of onion epidemical cells and proven to have transactivation and DNA-bindingactivities in yeast. The expression of CaNAC2was largely higher in roots and seeds than thatin other tissues. CaNAC2transcript in pepper leaves was induced by sodium chloride (NaCl)and ABA, indicating that this gene was involved in ABA-mediated salt signaling. However,the expression of CaNAC2was downregulated by mannitol and salicylic acid (SA). Heavymetal Hg treatment had no obvious effect on CaNAC2expression.
     To further examine the effect of loss-of-function of the CaNAC2gene on abiotic stresstolerance, we silenced the CaNAC2gene in pepper plants using a VIGS technique. Loss-of-function of CaNAC2in pepper plants led to increased susceptibility to chilling stress.Following chilling stress pretreated with ABA or water, the thiobarbituric acid reactivesubstances (TBARS) content of the CaNAC2-silenced leaves was significantly higher thanthat of the empty vector control plants. The combination of ABA with chilling stress led to anincreased level of H2O2in the CaNAC2-silenced leaves. However, H2O2content inCaNAC2-silenced seedlings subjected to chilling stress was very low, indicating that H2O2isinvolved in signaling transduction. Meanwhile, compared with the empty vector controlplants, the leaf discs of gene-silenced plants were more severely green under salinity stress.However, no phenotypic differences were observed between leaf discs from empty vectorcontrol and CaNAC2-silenced plants following treatment with300mM mannitol.
     (4) Pepper CaMBF contained an open reading frame (ORF) of420bp. The deducedCaMBF protein consisted of140amino acids with a calculated molecular weight of15.3kDaand an isoelectric point (pI) of9.86. The expression level of CaMBF in flowers and seeds washigher and was not easily detected in roots. CaMBF transcript in pepper seedlings wasupregulated by cold stress and downregulated in response to salinity, osmotic stress, heavymetal Hg and SA. Meanwhile, the expression level of CaMBF in CaMBF-overexpressingArabidopsis was downregulated in response to salinity, cold stress and ABA. Transgenicplants were larger than non-transgenic plants (control), especially the length and width ofrosette leaves were70%and60%larger than control. To study the tolerance ofCaMBF-expressing plants to cold stress, we subjected2-week-old wild-type and transgenicseedlings to4°C and observed visual damage symptoms. Transgenic plants were moresusceptibility than wild-type plants to cold stress. Furthermore, overexpression of CaMBF inArabidopsis negatively regulated some defense transcripts in response to cold stress such asRD22, ERD15, RD29A, PDF1.2and PR2.
     (5) Pepper CaF-box belonging to an ERF branch of F-box superfamily, encoded apolypeptide of638amino acids. CaF-box was mainly expressed in stems and seeds. ABA, SAand cold treatments induced CaF-box transcript; the expression of CaF-box was down-regulated in response to mannitol and heavy metal Hg treatments. To further examine theeffect of loss-of-function of the CaF-box gene on abiotic stress tolerance, we silenced theCaF-box gene in pepper plants using a VIGS technique. The measurement of TBARS andelectrolyte leakage levels revealed stronger lipid peroxidation and cell death in theCaF-box-silenced plants than in the empty vector control plants, suggesting thatloss-of-function of CaF-box significantly compromised cold stress tolerance in pepper plants.When treated with300mM NaCl and300mM mannitol, the leaf discs fromCaF-box-silenced leaves were more severely bleached, indicating that loss-of-function of CaF-box in pepper plants showed early senescence in response to salinity and osmotic stress.
     (6) Pepper CaMADS-box contained an ORF of726bp. The deduced CaMADS-boxprotein consisted of241amino acids and belonged to an SEP1/AGL2-like subfamily. Theexpression level of CaMADS-box in flowers was higher and was not easily detected in roots,leaves and seeds. ABA and heavy metal Hg treatments had no obvious effect onCaMADS-box expression; CaMADS-box transcript gradually decreased during12h of SAtreatment and upregulated by salinity and osmotic stress. Pepper CaDHN, belonging toSK2-type dehydrins, contained an ORF of660bp. Pepper CaDHN was expressed mainly inflowers and fruits. CaDHN transcript in pepper seedlings was differentially upregulated bycold, salinity, osmotic stress and SA and downregulated in response to heavy metal Hgtreatment.
引文
陈娜,郭尚敬,孟庆伟.2005.膜脂组成与植物抗冷性的关系及其分子生物学研究进展.生物技术通讯,2:6~9
    高俊杰,秦爱国,于贤昌.2009.低温胁迫对嫁接黄瓜叶片抗坏血酸—谷胱甘肽循环的影响.园艺学报,36(2):215~220
    李明玉,曹辰兴,于喜艳.2006.低温锻炼对冷胁迫下黄瓜幼苗保护性酶的影响.西北农业学报,15(1):160~164
    刘鸿先,曾韶西,王以柔,等.1985.低温对不同耐冷力的黄瓜幼苗子叶各细胞器中超氧物歧化酶的影响.植物生理与分子生物学学报,11:48~57
    刘鹏,李勃,刘庆忠,等.2003.冷锻炼诱导甜椒抗冷力的生化机理研究.山东农业科学,3:11~14
    刘阳.2007.番茄MBF1转录辅激活因子基因的克隆载体的构建及转化番茄.[硕士学位论文].重庆市:重庆大学
    马艳青,戴雄泽.2000.低温胁迫对辣椒抗寒性相关生理指标的影响.湖南农业大学学报(自然科学版),26(6):461~462
    任旭琴,张林青,孙敏.2006.辣椒叶片对低温的生理响应研究.安徽农业科学,34(24):6439~6440
    苏维埃.1998.植物对温度逆境的适应.植物生理与分子生物学.北京:科学出版社,721~727
    孙歆,雷韬,袁澍,等.2005.脱水素研究进展.武汉植物学研究,23(3):299~304
    王达菲.2009.番茄转录辅激活子LeMBF1在转基因材料中的功能分析.[硕士学位论文].重庆市:重庆大学
    王君丹,胡鸢雷,魏晓,于鹏之,车代弟,林忠平.2004.脱水素基因转化的矮牵牛对干旱胁迫的反应.分子植物育种,2(3):369~374
    徐红霞,陈俊伟,杨勇,孙骏威,严成其.2011.枇杷果实DHN基因克隆及其在低温胁迫下的表达分析.园艺学报,38(6):1071~1080.
    杨广东,郭庆萍.1998.低温对青椒幼苗过氧化物酶和超氧物歧化酶活性的影响.山西农业科学,26(4):44~47
    尹延旭.2009.辣椒抗寒性鉴定技术及其机理研究.[硕士学位论文].杨凌:西北农林科技大学
    郑东虎,葛晓光,张宪政,等.2003.冷胁迫对番茄膜脂过氧化与抗氧化酶系统的影响,北方园艺,4:46~47
    邹志荣,陆帼一.1994.低温对辣椒幼苗膜脂过氧化和保护酶系统变化的影响.西北农业学报,3(3):51~56
    朱自国.2012.中国野生华东葡萄cDNA文库测序及转录因子基因ERF和NAC功能分析.[博士学位论文].杨凌:西北农林科技大学
    Abebe T, Guenzi A C, Martin B, Cushman J C.2003. Tolerance of mannitol-accumulating wheat to waterstress and salinity. Plant Physiol,131:1748~1755
    Achard P, Cheng H, De Grauwe L, et al.2006. Integration of plant responses to environmentally activatedphytohormonal signals. Science,311:91~94
    Aebi H.1984. Catalase in vitro. Methods Enzymol,105:121~126
    Ahmed S S, Gong Z H, Ji J J, Yin Y X, Xiao H J, Khan M A, Rehman A, Ahmad I.2012. Construction ofthe intermediate vector pVBG2307by incorporating vital elements of expression vectors pBI121andpBI221. Genet Mol Res,11(3):3091~3104
    Airaki M, Leterrier M, Mateos R M, Valderrama R, Chaki M, et al.2012. Metabolism of reactive oxygenspecies and reactive nitrogen species in pepper (Capsicum annuum L.) plants under low temperaturestress. Plant Cell Environ,35:281~295
    Allagulova C R, Gimalov F R, Shakirova F M, et al.2003. The plant dehydrins: structure and putativefunction. Biochemistry,68:945~951
    Alvarez-Buylla E R, Liljegren S J, Palaz S, Gold S E, Burgeff C, Ditta G S, Vergara-Silva F, Yanofsky M F.2000. MADS-box gene evolution beyond flowers: expression in pollen, endosperm, guard cells, rootsand trichomes. Plant J,24:457~466
    Ando S, Sato Y, Kamachi S, Sakai S.2001. Isolation of a MADS-box gene (ERAF17) and correlation of itsexpression with the induction of formation of female flowers by ethylene in cucumber plants(Cucumis sativus L). Planta,213:943~995
    Andrade M A, Perez-Iratxeta C, Ponting C P.2001. Protein repeats: structures, functions, and evolution. JStruct Biol,134:117~131
    Apel K, Hirt H.2004. Reactive oxygen species: metabolism, oxidative stress, and signaling. Annu RevPlant Biol,55:373~399
    Arora R, Agarwal P, Ray S, Singh A K, Singh V P, Tyagi A K, Kapoor S.2007. MADS-box gene family inrice: genome-wide identification, organization and expression profiling during reproductivedevelopment and stress. BMC Genomics,8(242):1~21
    Arrigoni O, Dipierro S, Borraccino G.1981. Ascorbate free radical reductase: a key enzyme of the ascorbicacid system. FEBS Lett,125:242~244
    Assmann S M, Shimazaki K L.1999. The multisensory guard cell, stomatal responses to blue light andabscisic acid. Plant Physiol,119:809~816
    Bai C, Sen P, Hofmann K, Ma L, Goebl M, Harper J W, Elledge S J.1996. SKP1connects cell cycleregulators to the ubiquitin proteolysis machinery through a novel motif, the F-box. Cell,86:263~274
    Baisakh N, Subudhi P K, Varadwaj P.2008. Primary responses to salt stress in a halophyte, smoothcordgrass (Spartina alterniflora Loisel.). Funct Integr Genomics,8:287~300
    Balazadeh S, Siddiqui H, Allu A D, Matallana-Ramirez L P, et al.2010. A gene regulatory networkcontrolled by the NAC transcription factor ANAC092/AtNAC2/ORE1during salt-promotedsenescence. Plant J,62(2):250~264
    Beaudoin N, Serizet C, Gosti F, Giraudat J.2000. Interactions between abscisic acid and ethylene signalingcascades. Plant Cell,12:1103~1115
    Bellaire B A, Carmody J, Braud J, Gossett D R, et al.2000. Involvement of abscisic acid-dependent and-independent pathways in the upregulation of antioxidant enzyme activity during NaCl stress in cottoncallus tissue. Free Radic Res,33:531~545
    Bertin P, Bouharmont J, Kinet J M.1996. Somaclonal variation and improvement in chilling tolerance inrice: changes in chilling-induced electrolyte leakage. Plant Breeding,115:268~272
    Bhatnagar-Mathur P, Vadez V, Sharma K.2008. Transgenic approaches for abiotic stress tolerance in plants:Retrospect and prospects. Plant Cell Rep,27:411~424
    Bleecker A B, Kende H.2000. Ethylene: A gaseous signal molecule in plants. Annu Rev Cell Dev Biol,16:1~18
    Bonhomme F, Kurz B, Melzer S, Bernier G, Jacqmard A.2000. Cytokinin and gibberrellin activateSaMADS A, a gene apparently involved in regulation of the floral transition in Sinapis alba. Plant J,24:103~114
    Bray E A.1988. Drought-and ABA-induced changes in polypeptide and mRNA accumulation in tomatoleaves. Plant Physiol,88:1210~1214
    Brendel C, Gelman L, Auwerx J.2002. Multiprotein bridging factor-1(MBF-1) is a cofactor for nuclearreceptors that regulate lipid metabolism. Mol Endocrinol,16:1367~1377
    Brini F, Hanin M, Lumbreras V, Amara I, Khoudi H, Hassairi A, et al.2007. Overexpression of wheatdehydrin DHN-5enhances tolerance to salt and osmotic stress in Arabidopsis thaliana. Plant Cell Rep,26:2017~2043
    Brown R L, Kazan K, McGrath K C, Maclean D J, Manners J M.2003. A role for the GCC-box injasmonate-madiated activation of the PDF1.2gene of Arabidopsis. Plant Physiol,132:1020~1032
    Buchanan C D, Lim S, Salzman R A, Kagiampakis I, Morishige D T, et al.2005. Sorghum bicolor’stranscriptome response to dehydration, high salinity and ABA. Plant Mol Biol,58:699~720
    Bueno P, Piqueras A, Kurepa J, Savouré A, et al.1998. Expression of antioxidant enzymes in response toabscisic acid and high osmoticum in tobacco BY-2cell cultures. Plant Sci,138:27~34
    Caruso A, Morabito D, Delmotte F, et al.2002. Dehydrin induction during drought and osmotic stress inPopulus. Plant Physiol Biochem,40:1033~1042
    Catala R, Santos E, Alonso J M, Ecker J R, Martinez-Zapater J M, Salinas J.2003. Mutations in theCa2+/H+transporter CAX1increase CBF/DREB1expression and the cold-acclimation response inArabidopsis. Plant Cell,15:2940~2951
    Chak R K, Thomas T L, Quatrano R S, Rock C D.2000. The genes ABI1and ABI2are involved in abscisicacid-and drought-inducible expression of the Daucus carota L. Dc3promoter in guard cells oftransgenic Arabidopsis thaliana (L.) Heynh. Planta,210(6):875~883
    Chao Q, Rothenberg M, Solano R, Roman G, Terzaghi W, Ecker J R.1997. Activation of the ethylene gasresponse pathway in Arabidopsis by the nuclear protein ethylene-insensitive3and related proteins.Cell,89:1133~1144
    Cheong Y H, Sung S J, Kim B G, Pandey G K, Cho J S, Kim K N, Luan S.2010. Constitutiveoverexpression of the calcium sensor CBL5confers osmotic or drought stress tolerance in Arabidopsis.Mol Cells,29:159~165
    Chinnusamy V, Jagendorf A, Zhu J.2005. Understanding and improving salt tolerance in plants. Crop Sci,45:437~448
    Chinnusamy V, Zhu J K, Sunkar R.2010. Gene regulation during cold stress acclimation in plants. MethodsMol Biol,639:39~55
    Chinnusamy V, Zhu J, Zhu J K.2007. Cold stress regulation of gene expression in plants. Trends in PlantSci,12:444~451
    Choi H W, Kim Y J, Lee S C, Hong J K, Hwang B K.2007. Hydrogen peroxide generation by the pepperextracellular peroxidase CaPO2activates local and systemic cell death and defense response tobacterial pathogens. Plant Physiol,145:890~904
    Christianson J A, Wilson I W, Llewellyn D J, Dennis E S.2009. The low-oxygen-induced NAC domaintranscription factor ANAC102affects viability of Arabidopsis seeds following low-oxygen treatment.Plant Physiol,149(4):1724~1738
    Chung E, Kim S Y, Yi S Y, et al.2003. Capsicum annuum dehydrin, an osmotic-stress gene in hot pepperplants. Mol Cell,15:327~332
    Clement M, Lambert A, Herouart D, Boncompagni E.2008. Identification of new up-regulated genes underdrought stress in soybean nodules. Gene,426:15~22
    Close T J.1997. Dehydrins: a commonality in the response of plants to dehydration and low temperature.Physiol Plantarum,100:291~296
    Clough S J, Andrew F B.1998. Floral dip: a simplified method for Agrobacterium-mediated transformationof Arabidopsis thaliana. Plant Jl,16(6):735~743
    Collinge M, Boller T.2001. Differential induction of two potato genes, Stprx2and StNAC, in response toinfection by Phytophthora infestans and to wounding. Plant Mol Biol,46:521~529
    Craig K L, Tyers M.1999. The F-box: a new motif for ubiquitin dependent proteolysis in cell cycleregulation and signal transduction. Prog Biophys Mol Biol,72(3):299~328
    D’Angelo C, Weinl S, Batistic O, Pandey G K, Cheong Y H, et al.2006. Alternative complex formation ofthe Ca2+-regulated protein kinase CIPK1controls abscisic acid dependent and independent stressresponses in Arabidopsis. Plant J,48:857~872
    Danyluk J, Perron A, Houde M, et a1.1998. Accumulatlon of an acidic dehydrin in the vicinity of theplasma membrane during cold acclimation of wheat. Plant Cell,10:623~638
    Datta S K, Muthukrishnan S.1999. Pathogenesis-related proteins in plants. Boca Raton: CRC Press:288
    de Azevedo Neto A D, Prisco J T, Eneas-Filho J, Medeiros J V, et al.2005. Hydrogen peroxide pretreatmentinduces salt-stress acclimation in maize plants. J Plant Physiol,162:1114~1122
    Delessert C, Kazan K, Wilson I W, Straeten D V D, Manners J, Dennis E S, Dolferus R.2005. Thetranscription factor ATAF2represses the expression of pathogenesis-related genes in Arabidopsis.Plant Jl,43(5):745~757
    Dharmasiri N, Dharmasiri S, Estelle M.2005. The F-box protein TIR1is an auxin receptor. Nature,435:441~445
    Dhindsa R S, Plumb-Dhindsa P, Thorpe T A.1981. Leaf senescence: correlated with increased levels ofmembrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase andcatalase. J Exp Bot,32:93~101
    Diatchenko L, Lau Y F, Campbell A P, Chenchik A, Moqadam F, et al.1996. Suppression subtractionhybridization: a method for generating differentially regulated or tissue-specific cDNA probes andlibraries. Proc Natl Acad Sci U S A,93:6025~6030
    Dietz K J, Tavakoli N, Kluge C, Mimura T, Sharma S S, et al.2001. Significance of the V-type ATPase forthe adaptation to stressful growth conditions and its regulation on the molecular and biochemical level.J Exp Bot,52:1969~1980
    Ding W, Song L, Wang X, Bi Y.2010. Effect of abscisic acid on heat stress tolerance in the calli from twoecotypes of Phragmites communis. Biol Plantarum,54:607~613
    Ding Z H, Li S M, An X L, Liu X J, Qin H M, Wang D.2009. Transgenic expression of MYB15confersenhanced sensitivity to abscisic acid and improved drought tolerance in Arabidopsis thaliana. J GenetGenomics,36(1):17~29
    Dionisio-Sese M L, Tobita S.1998. Antioxidant responses of rice seedlings to salinity stress. Plant Sci,135:1~9
    Ditta G, Pinyopich A, Robles P, Pelaz S, Yanofsky M F.2004. The SEP4gene of Arabidopsis thalianafunctions in floral organ and meristem identity. Curr Biol,14:1935~1940
    Doherty C J, Van Buskirk H A, Myers S J, Thomashow M F.2009. Roles for Arabidopsis CAMTAtranscription factors in cold-regulated gene expression and freezing tolerance. Plant Cell,21:972~984
    Dreher K, Callis J.2007. Ubiquitin, hormones and biotic stress in plants. Annals of Botany,99:787~822
    Du L, Poovaiah B W.2005. Ca2+/calmodulin is critical for brassinosteroid biosynthesis and plant growth.Nature,437:741~745
    Dubouzet J G, Sakuma Y, Ito Y, Kasuga M, Dubouzet E G, Miura S, Seki M, Shinozaki K,Yamaguchi-Shinozaki K.2003. OsDREB genes in rice, Oryza sativa L., encode transcriptionactivators that function in drought-, high-, salt-and cold-responsive gene expression. Plant J,33:751~763
    Elstner E F.1982. Oxygen activation and oxygen toxicity. Plant Physiol,33:73~96
    Ernst H A, Olsen A N, Larsen S, Leggin L L.2004. Structure of the conserved domain of ANAC, a memberof the NAC family of transcription factors. EMBO Rep,5:297~303
    Faccioli P, Pecchioni N, Cattivelli L, Stanca AM, Terzi V.2001. Expressed sequence tags fromcold-acclimatized barley can identify novel plant genes. Plant Breeding,120:497~502
    Fan H Y, Hu Y, Tudor M, Ma H.1997. Specific interactions between K domains of AG and AGLs,members of the MADS domain family of DNA binding proteins. Plant J,12:999~1010
    Feys B, Benedetti C E, Penfold C N, Turner J G.1994. Arabidopsis mutants selected for resistance to thephytotoxin coronatine are male sterile, insensitive to methyl jasmonate, and resistant to a bacterialpathogen. Plant Cell,6:751~759
    Fleet C M, Sun T P.2005. A DELLAcate balance: The role of gibberellin in plant morphogenesis. CurrOpin Plant Biol,8:77~85
    Fowler S, Thomashow M F.2002. Arabidopsis transcriptome profiling indicated that multiple regulatorypathways are activated during cold acclimation in addition to the CBF cold response pathway. PlantCell,14:1675~1690
    Foyer C H, Descourvieres P, Kunert K J.1994. Protection against oxygen radicals: an important defensemechanism studied in transgenic plants. Plant Cell Environ,17:507~523
    Fryer M J, Andrews J R, Oxborough k.1998. Relationship between CO assimilation, photosyntheticelectron transport, and active, metabolism in leaves of maize in the field during periods of lowtemperature. Plant Physiol,116:571~580
    Fujita M, Fujita Y, Maruyama K, Seki M, Hiratsu K, Ohme-Takagi M, Tran L S, Yamaguchi-Shinozaki K,Shinozaki K.2004. A dehydration-induced NAC protein, RD26, is involved in a novelABA-dependent stress-signaling pathway. Plant J,39:863~876
    Gagne J M, Downes B P, Shiu S H, Durski AM, Vierstra R D.2002. The F-box subunit of the SCF E3complex is encoded by a diverse superfamily of genes in Arabidopsis. Proc Natl Acad Sci USA,99:11519~11524
    Gao M, Wang Q, Wan R, Fei Z J, Wang X P.2012. Identification of genes differentially expressed ingrapevine associated with resistance to Elsinoe ampelina through suppressive subtractionhybridization. Plant Physiol Biochem,58:253~268
    Gechev T, Willekens H, Van Montagu M, Inze D, Van Camp W, Toneva V, Minkov I.2003. Differentresponses of tobacco antioxidant enzymes to light and chilling stress. J Plant Physiol,160:509~515
    Ghassemian M, Lutes J, Chang H S, Lange I, et al.2008. Abscisic acid-induced modulation of metabolicand redox control pathways in Arabidopsis thaliana. Phytochemistry,69:2899~2911
    Ghassemian M, Nambara E, Cutler S, Kawaide H, Kamiya Y, McCourt P.2000. Regulation of abscisic acidsignaling by the ethylene response pathway in Arabidopsis. Plant Cell,12:1117~1126
    Giannopolitis C N, Ries S K.1977. Superoxide dismutases: I. Occurrence in higher plants. Plant Physiol,59:309~314
    Glazebrook J.2005. Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens.Annu Rev Phytopathol,43:205~227
    Godoy A V, Zanetti M E, San Segundo B, Casalongue C A.2001. Identification of a putative Solanumtuberosum transcriptional coactivator up-regulated in potato tubers by Fusarium solani f. sp. Eumartiiinfection and wounding. Physiol Plant,112:217~222
    Godoy J A, Lunar R, Torres-Schumann S, Moreno J, Rodrigo R M, Pintortoro J A.1994. Expression, tissuedistribution and subcellular-localization of dehydrin Tas14in salt-stressed tomato plants. Plant MolBiol,26:1921~1955
    Gray W M, del Pozo J C, Walker L, Hobbie L, Risseeuw E, Banks T, Crosby W L, Yang M, Ma H, EstelleM.1999. Identification of an SCF ubiquitin-ligase complex required for auxin response in Arabidopsisthaliana. Genes Dev,13:1678~1691
    Griffith O W.1980. Determination of glutathione and glutathione disulfide using glutathione reductase and2-vinylpyridine. Anal Biochem,106:207~212
    Gu Y Q, Wildermuth M C, Chakravarthy S, Loh Y T, Yang C, He X, Han Y, Martin G B.2002. Tomatotranscription factors Pti4, Pti5, and Pti6activate defense responses when expressed in Arabidopsis.Plant Cell,14:817~831
    Gulyani V, Khurana P.2011. Identification and expression profiling of drought-regulated genes in mulberry(Morus sp.) by suppression subtractive hybridization of susceptible and tolerant cultivars. Tree GenetGenomes,7:725~738
    Guo H, Ecker J R.2003. Plant responses to ethylene gas are mediated by SCFEBF1/EBF2-dependentproteolysis of EIN3transcription factor. Cell,115:667~677
    Guo W L, Chen R G, Gong Z H, Yin Y X, Ahmedand S S, et al.2012. Exogenous abscisic acid increasesantioxidant enzymes and related gene expression in pepper (Capsicum annuum) leaves subjected tochilling stress. Genet Mol Res,11(4):4063~4080
    Guo W L, Chen R G, Gong Z H, Yin Y X, Li D W.2013. Suppression subtractive hybridization analysis ofgenes regulated by application of exogenous abscisic acid in pepper plant (Capsicum annuum L.)leaves under chilling stress. PLoS ONE,8(6): e66667. doi:10.1371/journal.pone.0066667
    Guo Y F, Gan S S.2006. AtNAP, a NAC family transcription factor, has an important role in leafsenescence. Plant J,46(4):601~612
    Guo Y, Xiong L, Ishitani M, Zhu J K.2002. An Arabidopsis mutation in translation elongation factor2causes superinduction of CBF/DREB1transcription factor genes but blocks the induction of theirdownstream targets under low temperatures. Proc Natl Acad Sci U S A,99(11):7786~7791
    Gutierrez L, Mauriat M, Guénin S, Pelloux J, Lefebvre J F, Louvet R, Rusterucci C, Moritz T, Guerineau F,Bellini C, Wuytswinkel O V.2008. The lack of a systematic validation of reference genes: a seriouspitfall undervalued in reverse transcription-polymerase chain reaction (RT-PCR) analysis in plants.Plant Biotechnol J,6:609~618
    Hammerschmidt R, Nuckles E M, Kuc J.1982. Association of enhanced peroxidase activity with inducedsystemic resistance of cucumber to Colletotrichum lagenarium. Physiol Plant Pathol,20:73~82
    Han Q Q, Zhang J H, Li H X, Luo Z D, Ziaf K, Ouyang B, Wang T T, Ye Z B.2012. Identification andexpression pattern of one stress-responsive NAC gene from Solanum lycopersicum. Mol Biol Rep,39:1713~1720
    Hancock J T, Henson D, Nyirenda M, Desikan R, Harrison J, et al.2005. Proteomic identification ofglyceraldehyde-3-phosphate dehydrogenase as an inhibitory target of hydrogen peroxide inArabidopsis. Plant Physiol Biochem,43(9):828~835
    Hannah M A, Heyer A G, Hincha D K.2005. A global survey of gene regulation during cold acclimation inArabidopsis thaliana. PLoS Genet,1~e26
    Hao Y J, Wei W, Song Q X, Chen H W, Zhang Y Q, Wang F, Zou H F, Lei G, Tian A G, Zhang W K, Ma B,Zhang J S, Chen S Y.2011. Soybean NAC transcription factors promote abiotic stress tolerance andlateral root formation in transgenic plants. Plant J,68:302~313
    He X J, Mu R L, Cao W H, Zhang Z G, Zhang J S, Chen S Y.2005. AtNAC2, a transcription factordownstream of ethylene and auxin signaling pathways, is involved in salt stress response and lateralroot development. Plant J,44:903~916
    Hegedus D, Yu M, Baldwin D, Gruber M, Sharpe A, Parkin I, Whitwill S, Lydiate D.2003. Molecularcharacterization of Brassica napus NAC domain transcriptional activators induced in response tobiotic and abiotic stress. Plant Mol Biol,53:383~397
    Hemming M N, Trevaskis B.2011. Make hay when the sun shines: The role of MADS-box genes intemperature-dependant seasonal flowering responses. Plant Sci,180:447~453
    Henriques R, Jang I C, Chua N H.2009. Regulated proteolysis in light-related signaling pathways. CurrOpin Plant Biol,12(1):49~56
    Hermanson O, Glass C K, Rosenfeld M G.2002. Nuclear receptor coregulators: multiple modes ofmodification. Trends Endocrinol Metab,13:55~60
    Hibara K, Takada S, Tasaka M.2003. CUC1gene activates the expression of SAM related genes to induceadventitious shoot formation. Plant J,36(5):687~696
    Ho M S, Ou C, Chan Y R, Chien C T, Pi H.2008. The utility F-box for protein destruction. Cell Mol LifeSci,65:1977~2000
    Hodges D M, Lester G E, Munro K D, Toivonen P M.2004. Oxidative stress: importance for postharvestquality. HortScience,39:924~929
    Hommel M, Khalil-Ahmad Q, Jaimes-Miranda F, Mila I, Pouzet C, Latchéa A, et al.2008. Over-expressionof a chimeric gene of the transcriptional co-activator MBF1fused to the EAR repressor motif causesdevelopmental alteration in Arabidopsis and tomato. Plant Sci,175:168~77
    Hong S W, Jon J H, Kwak J M, Nam H G.1997. Identification of a receptor-like protein kinase gene rapidlyinduced by abscisic acid, dehydration, high salt, and cold treatments in Arabidopsis thaliana. PlantPhysiol,113:1203~1212
    Honma T, Goto K.2001. Complexes of MADS-box proteins are sufficient to convert leaves into floralorgans. Nature,409:525~529
    Horváth E, Szalai G, Janda T.2007. Induction of abiotic stress tolerance by salicylic acid signaling. J PlantGrowth Regul,26:290~300
    Hoshida H, Tanaka Y, Hibino T, Hayashi Y.2000. Enhanced tolerance to salt stress in transgenic rice thatoverexpresses chloroplast glutamine synthetase. Plant Mol Biol,43(01):103~111
    Hossain Z, Amyot L, McGarvey B, Gruber M, Jung J, et al.2012. The translation elongation factoreEF-1Bb1is involved in cell wall biosynthesis and plant development in Arabidopsis thaliana. PLoSONE,7(1): e30425
    Hsieh T H, Lee J T, Yang P T, Chiu L H, Charng Y Y, Wang Y C, Chan M T.2002. Heterology expressionof the Arabidopsis C-repeat/dehydration response element binding factor1gene confers elevatedtolerance to chilling and oxidative stresses in transgenic tomato. Plant Physiol,129:1086~1094
    Hu H H, Dai M Q, Yao J L, Xiao B Z, Li X H, Zhang Q F, Xiong L Z.2006. Overexpressing a NAM, ATAF,and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proc NatlAcad Sci USA,35:12987~12992
    Hu H, You J, Fang Y, Zhu X, Qi Z, Xiong L.2008. Characterization of transcription factor gene SNAC2conferring cold and salt tolerance in rice. Plant Mol Biol,67:169~181
    Huang X, Madan A.1999. CAP3: a DNA sequence assembly program. Genome Res,9:868~877
    Hung K T, Kao C H.2003. Nitric oxide counteracts the senescence of rice leaves induced by abscisic acid.J Plant Physiol,160:871~879
    Hung K T, Kao C H.2004. Hydrogen peroxide is necessary for abscisic acid-induced senescence of riceleaves. J Plant Physiol,161:1347~1357
    Ignatova L K, Rudenko N N, Mudrik V A, Fedorchuk T P, Ivanov B N.2011. Carbonic anhydrase activityin Arabidopsis thaliana thylakoid membrane and fragments enriched with PSI or PSII. Photosynth Res,110:89~98
    Immink R G, Gadella T W, Ferrario S, Busscher M, Angenent G C.2002. Analysis of MADS boxprotein-protein interactions in living plant cells. Proc Natl Acad,99:2416~2421
    Ito Y, Katsura K, Maruyama K, Taji T., Kobayashi M, Seki M, Shinozaki K, Yamaguchi-Shinozaki K.2006.Functional analysis of rice DREB1/CBF-type transcription factors involved in cold-responsive geneexpression in transgenic rice. Plant Cell Physiol,47:141~153
    Ito Y, Kitagawa M, Ihashi N, Yabe K, Kimbara J, Yasuda J, Ito H, Inakuma T, Hiroi S, Kasumi T.2008.DNA-binding specificity, transcriptional activation potential, and the rin mutation effect for the tomatofruit-ripening regulator RIN. Plant J,55:212~223
    Jaglo-Ottosen K R, Gilmour S J, Zarka D G, Schabenberger O, Thomashow M F.1998. Arabidopsis CBF1overexpression induces COR genes and enhances freezing tolerance. Science,280:104~106
    Jeong M J, Park S C, Kwon H B, Byun M O.2000. Isolation and characterization of the gene encodingglyceraldehyde-3-phosphate dehydrogenase. Biochem Bioph Res Co,278:192~196
    Jiang M, Zhang J.2002. Role of abscissic acid in water stress-induced antioxidant defense in leaves ofmaize seedlings. Free Radic Res,36:1001~1015
    Jiang W J, Bai J, Yang X Y, Yu H J, Liu Y P.2012. Exogenous application of abscisic acid, putrescine, or2,4-epibrassinolide at appropriate concentrations effectively alleviate damage to tomato seedlingsfrom suboptimal temperature stress. HortTechnology,22:137~144
    Jin Y H, Tao D L, Hao Z Q.2003. Environmental stresses and redox status of ascorbate. Acta BotanicaSinica,45:795~801
    Kabe Y, Goto M, Shima D, Imai T, Wada T, Morohashi K, Shirakawa M, Hirose S, Handa H.1999. Therole of human MBF1as a transcriptional coactivator. J Biol Chem,274:34196~34202
    Kasuga M, Liu Q, Miura S, Yamaguchi-Shinozaki K, Shinozaki K.1999. Improving plant drought, salt, andfreezing tolerance by gene transfer of a single stress inducible transcription factor. Nat Biotechnol,17:287~291
    Kasuga M, Miura S, Shinozaki K, Yamaguchi-Shinozaki K.2004. A combination of the ArabidopsisDREB1A gene and stress-inducible RD29A promoter improved drought and low-temperature stresstolerance in tobacco by gene transfer. Plant Cell Physiol,45:346~350
    Katagiri T, Takahashi S, Shinozaki K.2001. Involvement of a novel Arabidopsis phospholipase D, AtPLDd,in dehydration-inducible accumulation of phosphatidic acid in stress signaling. Plant J,26:595~605
    Kepinski S, Leyser O.2005. The Arabidopsis F-box protein TIR1is an auxin receptor. Nature,435:446~451
    Kerdnai-mongkol K, Woodson W R.1999. Inhibition of catalase by antisense RNA increases susceptibilityto oxidative stress and chilling injury in transgenic tomato. J Amer Soc Hort Sci,124(4):330~336
    Kikuchi K, Ueguchi-Tanaka M, Yoshida K T, Nagato Y, Matsusoka M, Hirano H Y.2000. Molecularanalysis of the NAC gene family in rice. Mol Gen Genet,262:1047~1051
    Kim H S, Lee J H, Kim J J, Shinozaki K I.2005. Molecular and functional characterization of CaLEA6, thegene for hydropobic LEA protein from Capsicum annuum. Gene,344:1115~1231
    Kim J, Kim H Y.2006. Molecular characterization of a bHLH transcription factor involved in Arabidopsisabscisic acid-mediated response. Biochim Biophys Acta-Gene Struct Expr,1759(3–4):191~194
    Kim M J, Lim G H, Kim E S, Ko C B, Yang K Y, Jeong J A, Lee M C, Kim C S.2007. Abiotic and bioticstress tolerance in Arabidopsis overexpressing the Multiprotein bridging factor1a (MBF1a)transcriptional coactivator gene. Biochem Bioph Res Co,354:440~446
    Kim S G, Lee A K, Yoon H K, Park C M.2008. A membrane-bound NAC transcription factor NTL8regulates gibberellic acid-mediated salt signaling in Arabidopsis seed germination. Plant J,55:77~88
    Kim S Y, Kim S G, Kim Y S, Seo P J, Bae M, Yoon H K, Park C M.2007. Exploring membrane-associatedNAC transcription factors in Arabidopsis: implications for membrane biology in genome regulation.Nucleic Acids Res,35:203~213
    Kim S, An C S, Hong Y N, Lee K W.2004. Cold-inducible transcription factor, CaCBF, is associated witha homeodomain leucine zipper protein in hot pepper (Capsicum annuum L.). Mol Cell,18:300~308
    Kim S, Kang J Y, Cho D I, Park J H, Kim S Y.2004. ABF2, an ABRE-binding bZIP factor, is an essentialcomponent of glucose signaling and its overexpression affects multiple stress tolerance. Plant J,40:75~87
    Kim T E, Kim S K, Han T J, Lee J S, Chang S C.2002. ABA and polyamines act independently in primaryleaves of cold-stressed tomato (Lycopersicon esculentum). Physiol Plant,115(3):370~376
    Kim Y S, Kim S G, Park J E, Park H Y, Lim M H, Chua N H, Park C M.2006. A membrane-bound NACtranscription factor regulates cell division in Arabidopsis. Plant Cell,18:3132~3144
    Kipreos E T, Pagano M.2000. The F-box protein family. Genome Biol,1(5): l~7
    Kirch H H, Berkel J V, Glaczinski H, Salamini F, Gebhardt C.1997. Structural organization, expression andpromoter activity of a cold-stress-inducible gene of potato (Solanum tuberosum L.). Plant Mol Biol33:897~909
    Kiyosue T, Yamaguchi-Shinozaki K, Shinozaki K.1994. ERD15, a cDNA for a dehydration-induced genefrom Arabidopsis thaliana. Plant Physiol,106:1707~1707
    Knight H, Zarka D G, Okamoto H, Thomashow M F, Knight M R.2004. Abscisic acid induces CBF genetranscription and subsequent induction of cold-regulated genes via the CRT promoter element. PlantPhysiol,135:1710~1717
    Korkmaz A, Korkmaz Y, Demirkiran A R.2010. Enhancing chilling stress tolerance of pepper seedlings byexogenous application of5-aminolevulinic acid. Environ Exp Bot,67:495~501
    Kornyeyev D, Logan B A, Payton P, Allen R D.2001. Enhanced photochemical light utilization anddecreased chilling-induced photoinhibition of photo system II in cotton overexpressing genesencoding chloroplast-targeted antioxidant enzymes. Physiol Plantarum,113(3):323-331
    Kosová K, Vítámvás P, Prá il I T.2011. Expression of dehydrins in wheat and barley under differenttemperatures. Plant Sci,180(1):46~52
    Kovtun Y, Chiu W L, Tena G, Sheen J.2000. Functional analysis of oxidative stress activatedmitogen-activated protein kinase cascade in plants. Proc Natl Acad Sci USA,97:2940~2945
    Krause G H.1994. The role of oxygen in photoinhibition of photosynthesis. in: Foyer C H, Mullineaux P M(Eds.). Causes of photooxidative stress and amelioration of defense systems in plants. Boca Raton.CRC Press:43~76
    Kreps J A, Wu Y, Chang H S, Zhu T, Wang X, Harper J F.2002. Transcriptome changes for Arabidopsis inresponse to salt, osmotic, and cold stress. Plant Physiol,130:2129~2141
    Kubo M, Udagawa M, Horiguchi G, Yamaguchi M.2005. Transcription switches for protoxylem andmetaxylem vessel formation. Genes Dev,19:1855~1860
    Kumar S, Kaur G, Nayyar H.2008. Exogenous application of abscisic acid improves cold tolerance inchickpea (Cicer arietinum L.). J Agron Crop Sci,194(6):449~456
    Kurkela S, Borg-Franck M.1992. Structure and expression of kin2, one of two cold-and ABA-inducedgenes of Arabidopsis thaliana. Plant Mol Biol,19:689~692
    Kwon S Y, Jeong Y Z, Lee H S, Kim JS, Cho KY, Allen RD, Kwak S S.2002. Enhanced tolerance oftransgenic tobacco plants expressing both superoxide dismutase and ascorbate peroxidase inchloroplasts against methyl viologen-mediated oxidative stress. Plant Cell Environ,25:873~882
    Laloi C, Apel K, Danon A.2004. Reactive oxygen signalling: the latest news. Curr Opin Plant Biol,7:323~328
    Lang V, Mantyla E, Welin B, Sundberg B, Palva E T.1994. Alterations in water status, endogenous abscisicacid content, and expression of rab18gene during the development of freezing tolerance inArabidopsis thaliana. Plant Physiol,104:1341~1349
    Lang V, Palva E T. l992. The express of a rab-related gene, rabl8, is induced by abscisic acid during thecold acclim ation process of Arabidopsis thaliana. Plant Mol Biol,20:951~962
    Le Martret B, Poage M, Shiel K, Nugent G D, et al.2011. Tobacco chloroplast transformants expressinggenes encoding dehydroascorbate reductase, glutathione reductase, and glutathione-S-transferase,exhibit altered antioxidant metabolism and improved abiotic stress tolerance. Plant Biotechnol J,9:661~673
    Lechner E, Achard P, Vansiri A, Potuschak T, Genschik P.2006. F-box proteins everywhere. Curr OpinPlant Biol,9:631~638
    Lee B, Henderson D A, Zhu J K.2005. The Arabidopsis cold-responsive transcriptome and its regulationby ICE1. Plant Cell,17:3155~3175
    Lee D H, Lee C B.2000. Chilling stress-induced changes of antioxidant enzymes in the leaves of cucumber:in gel enzyme activity assays. Plant Sci,159:75~85
    Lee S, Seo P J, Lee H J, Park C M.2012. A NAC transcription factor NTL4promotes reactive oxygenspecies production during drought-induced leaf senescence in Arabidopsis. Plant J,70:831~844
    Lee T M, Lur H S, Chu C.1993. Role of abscisic acid in chilling tolerance of rice (Oriza sativa L.)seedlings. I. Endogenous abscisic acid levels. Plant Cell Environ,16:481~490
    Leseberg C H, Eissler C L, Wang X, Johns M A, Duvall M R, Mao L.2008. Interaction Study ofMADS-domain proteins in tomato. J Exp Bot,59:2253~65
    Letunic I, Doerks T, Bork P.2009. SMART6: recent updates and new developments. Nucleic Acids Res,37:D229~D232
    Levin J Z, Meyerowttz E M.1995. UFO: An Arabidopsis gene involved in both floral meristem and floralorgan development. Plant Cell,7(5):529~548
    Li Q, Yu B, Gao Y, Dai AH, et al.2011. Cinnamic acid pretreatment mitigates chilling stress of cucumberleaves through altering antioxidant enzyme activity. J Plant Physiol,168:927~934
    Li W, Li M, Zhang W, Welti R, Wang X.2004. The plasma membrane-bound phospholipase Dd enhancesfreezing tolerance in Arabidopsis thaliana. Nat Biotechnol,22:427~433
    Li W, Qi L, Lin X, Chen H, et al.2009. The expression of manganese superoxide dismutase gene fromNelumbo nucifera responds strongly to chilling and oxidative stresses. J Integr Plant Biol,51:279~286
    Li Y, Liu Y, Zhang JG.2010. Advances in the research on the AsA-GSH cycle in horticultural crops. FrontAgric China,4:84~90
    Lichtenthaler H K.1987. Chlorophylls and carotenoids: pigments of photosynthetic biomemranes. MethodsEnzymol,148:350~382
    Liu L, White M J, MacRae T H.1999. Transcription factors and their genes in higher plants: functionaldomains, evolution and regulation. Eur J Biochem,262:247~257
    Liu Q X, Jindra M, Ueda H, Hiromi Y, Hirose S.2003. Drosophila MBF1is a co-activator for TracheaeDefective and contributes to the formation of tracheal and nervous systems. Development,130:719~728
    Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K.1998. Twotranscription factors, DREB1and DREB2, with an EREBP/AP2DNA binding domain separate twocellular signal transduction pathways in drought-and low-temperature-responsive gene expression,respectively, in Arabidopsis. Plant Cell,10:1391~1406
    Liu Y, Jiang H, Zhao Z, An L.2011. Abscisic acid is involved in brassinosteroids-induced chilling tolerancein the suspension cultured cells from Chorispora bungeana. J Plant Physiol,168:853~862
    Liu Y, Schiff M, Dinesh-Kumar S P.2002. Virus-induced gene silencing in tomato. Plant J,31:777~786
    Liu Z J, Guo Y K, Bai J G.2010. Exogenous hydrogen peroxide changes antioxidant enzyme activity andprotects ultrastructure in leaves of two cucumber ecotypes under osmotic stress. J Plant Growth Regul,29:171~183
    Logan B A, Grace S C, Adams W W, Demmig-Adams B.1998. Seasonal differences in xanthophyll cyclecharacteristics and antioxidants in Mahonia repens growing in different light environments. Oecologia,116:9~17
    Loik M E, Nobe P S.1993. Exogenous abscisic acid mimics cold acclimation for cacti differing in freezingtolerance. Plant Physiol,103:871~876
    Lozano R, Angosto T, Gomez P, Payan C, Capel J, Huijser P, et al.1998. Tomato flower abnormalitiesinduced by low temperatures are associated with changes of expression of MADS-Box genes. PlantPhysiol,117:91~100
    Lu P L, Chen N Z, An R, Su Z, Qi B S, Ren F, Chen J, Wang X C.2007. A novel drought-inducible gene,ATAF1, encodes a NAC family protein that negatively regulates the expression of stress-responsivegenes in Arabidopsis. Plant Mol Biol,63(2):289~305
    Lyons J M, Raison J K.1970. Oxidative activity of mitochondria isolated from plant tissues sensitive andresistant to chilling injury. Plant physiol,45:386~389
    Lyzenga W J, Stone S L.2011. Protein ubiquitination: an emerging theme in plant abiotic stress tolerance.Am J Plant Sci Biotechnol,5:1~11
    Ma X W, Ma F W, Mi Y F, Ma Y H, et al.2008. Morphological and physiological responses of twocontrasting malus species to exogenous abscisic acid application. Plant Growth Regul,56:77~87
    Mahajan S, Tuteja N.2005. Cold, salinity and drought stresses: An overview. Arch Biochem Biophys,444:139~158
    Maldonado-Calderón M T, Sepúlveda-García E, Rocha-Sosa M.2012. Characterization of novel F-boxproteins in plants induced by biotic and abiotic stress. Plant Sci,185:208~217
    Maraschin S F, Caspers M, Potokina E, Wu¨lfert F, Graner A, et al.2006. cDNA array analysis ofstress-induced gene expression in barley androgenesis. Physiol Plant,127:535~550
    Martel C, Vrebalov J, Tafelmeyer P, Giovannoni J J.2011. The tomato MADS-Box transcription factorripening inhibitor interacts with promoters involved in numerous ripening processes in a colorlessnonripening-dependent manner. Plant Physiol,157:1568~1579
    Mateos R M, Bonilla-Valverde D, del R′o L A, Palma J M, Corpas F J.2008. NADP-dehydrogenases frompepper fruits: effect of maturation. Physiol Plantarum,135(2):130~139
    Matsui A, Ishida J, Morosawa T, Mochizuki Y, Kaminuma E, Endo T A, Okamoto M, Nambara E,Nakajima M, Kawashima M, Satou M, Kim J M, Kobayashi N, Toyoda T, Shinozaky K, Seki M.2008.Arabidopsis transcriptome analysis under drought, cold, high-salinity and ABA treatment conditionsusing a tiling array. Plant Cell Physiol,49:1135~1149
    Mauro M F D, Iglesias M J, Arce D P, Valle E M, Arnold R B, et al.2012. MBF1s regulate ABA-dependentgermination of Arabidopsis seeds. Plant Signal Behav,7(2):188~192
    McKenna N J, O'Malley B W.2002. Combinatorial control of gene expression by nuclear receptors andcoreguIator. Cell,108:465~474
    Mckersie B D, Bowley S R, Jones K S.1999. Winter survival of transgenic alfalfa overexpressingsuperoxide dismutase. Plant Physiol,119:839~848
    Mittelheuser C J, van Steveninck R F M.1969. Stomatal closure and inhibition of transpiration induced by(RS)-abscisic acid. Nature,221:281~282
    Moon J, Parry G, Estelle M.2004. The ubiquitin-proteasome pathway and plant development. Plant Cell,16:3181~3195
    Morishita T, Kojima Y, Maruta T, Nishizawa-Yokoi A, Yabuta Y, Shigeoka S.2009. Arabidopsis NACtranscription factor, ANAC078, regulates flavonoid biosynthesis under high-light. Plant Cell Physiol,50:2210~2222
    Moura J C M S, Bonine C A V, Viana J O F, Dornelas M C, Mazzafera P.2010. Abiotic and biotic stressesand changes in the lignin content and composition in plants. J Integr Plant Biol,52(4):360~376
    Mukherjee S P, Choudhuri M A.1983. Implications of water stress-induced changes in the levels ofendogenous ascorbic acid and hydrogen peroxide in vigna seedlings. Physiol Plant,58:166~170
    Mukhopadhyay A, Vij S, Tyagi A K.2004. Overexpression of a zinc-finger protein gene from rice conferstolerance to cold, dehydration, and salt stress in transgenic tobacco. Proc Natl Acad Sci USA,101:6309~6314
    Mu oz-Mayor A, Pineda B, Garcia-Abellán J O, Antón T, et al.2012. Overexpression of dehydrin tas14gene improves the osmotic stress imposed by drought and salinity in tomata. J Plant Physiol,169:459~468
    Nakano Y, Asada K.1981. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinachchloroplasts. Plant Cell Physiol,22:867~880
    Nakashima K, Tran L P, Nguyen D V, Fujita M, Maruyama K, Todaka D, Ito Y, Hayashi N, Shinozaki K,Yamaguchi-Shinozaki K.2007. Functional analysis of a NAC-type transcription factor OsNAC6involved in abiotic and biotic stress-responsive gene expression in rice. Plant J,51:617~630
    Naoki T, HirofumiK, TakashiK.2004. Expression and interaction analysis of Arabidopsis Skpl2relatedgenes. Plant Cell Physiol,45(1):83~91
    Nayyar H, Bains T S, Kumar S.2005. Chilling stressed chickpea seedlings: effect of cold acclimation,calcium and abscisic acid on cryoprotective solutes and oxidative damage. Environ Exp Bot,54:275~285
    Neill S J, Desikan R, Clarke A, Hurst R D, Hancock J T.2002. Hydrogen peroxide and nitric oxide assignalling molecules in plants. J Exp Bot,53:1237~1247
    Nguyen H T, Leipner J, Stamp P, Guerra-Peraza O.2009. Low temperature stress in maize (Zea mays L.)induces genes involved in photosynthesis and signal transduction as studied by suppression subtractivehybridization. Plant Physiol Biochem,47:116~122
    Nylander M, Svensson J, Palva E T, Welin B V.2001. Stress-induced accumulation and tissue-specificlocalization of dehydrins in Arabidopsis thaliana. Plant Mol Biol,45:263~279
    Oberschall A, Deak M, Torok K, Sass L, Vass I, Kovacs I, Feher A, Dudits D, Horvath GV.2000. A novelaldose/aldehyde reductase protects transgenic plants against lipid peroxidation under chemical anddrought stresses. Plant J,24:437~446
    Oh S K, Lee S, Yu S H, Choi D.2005. Expression of a novel NAC domain-containing transcription factor(CaNAC1) is preferentially associated with incompatible interactions between chili pepper andpathogens. Planta,222:876~887
    Ohnishi T, Sugahara S, Yamada T, Kikuchi K, Yoshiba Y, Hirano H Y, Tsutsumi N.2005. OsNAC6, amember of the NAC gene family, is induced by various stresses in rice. Genes Genet Syst,80:135~139
    Olsen A N, Ernst H A, Leggio L L, Skriver K.2005. NAC transcription factors: structurally distinct,functionally diverse. Trends Plant Sci,10:79~87
    Orvar B L, Sangwan V, Omann F, Dhindsa R S.2000. Early steps in cold sensing by plant cells: the role ofactin cytoskeleton and membrane fluidity. Plant J,23:785~794
    Osakabe Y, Maruyama K, Seki M, Satou M, Shinozaki K, Yamaguchi-Shinozaki, K.2005. Leucine-richrepeat receptor-like kinase1is a key membrane-bound regulator of abscisic acid early signaling inArabidopsis. Plant Cell,17:1105~1119
    Paquis S, Mazeyrat-Gourbeyre F, Fernandez O, Crouzet J, Cle′ment C, et al.2011. Characterization of anF-box gene up-regulated by phytohormones and upon biotic and abiotic stresses in grapevine. MolBiol Rep,38:3327~3337
    Paquis S, Mazeyrat-Gourbeyre F, Fernandez O, Crouzet J, Clément C, Baillieul F, Dorey S.2011.Characterization of a F-box gene up-regulated by phytohormones and upon biotic and abiotic stressesin grapevine. Mol Biol Rep,38:3327~3337
    Park M R, Yun K Y, Mohanty B, Herath V, Xu F, Wijaya E, Bajic V B, Yun S J, De Los Reyes BG.2010.Supra-optimal expression of the cold-regulated OsMyb4transcription factor in transgenic rice changesthe complexity of transcriptional network with major effects on stress tolerance and panicledevelopment. Plant Cell Environ,33:2209~2230
    Paw owski T A.2009. Proteome analysis of Norway maple (Acer platanoides L.) seeds dormancy breakingand germination: influence of abscisic and gibberellic acids. BMC Plant Biol,9:48
    Pelaz S, Ditta G S, Baumann E, Wisman E, Yanofsky M F.2000. B and C floral organ identity functionsrequire SEPALLATA MADS-box genes. Nature,405:200~203
    Peng H, Yu X, Cheng H, et al.2010. Cloning and characterization of a novel NAC family gene CarNAC1from chickpea (Cicer arietinum L.). Mol Biotechnol,44:30~40
    Perez-Prat E, Narasimhan M L, Binzel M L, Botella M A, Chen Z, et al.1992. Induction of a putativeCa2+-ATPase messenger-RNA in NaCl-adapted cells. Plant Physiol,100:1471~1478
    Perry S E, Lehti M D, Fernandeze D E.1999. The MADS2domain protein AGAMOUS2like15accumulates in embryonic tissues with diverse origins. Plant Physiol,120:121~129
    Petroski M D, Deshaies R J.2005. Function and regulation of cullin-RING ubiquitin ligases. Nat Rev MolCell Biol,6(1):9~20
    Porat R, Pasentsis K, Rozentzvieg D, et al.2004. Isolation of a dehydrin cDNA from orange and grape-fruitcitrus fruit that is specifically induced by the combination of heat followed by chilling temperatures.Physiol Plant120:256~264
    Potuschak T, Lechner E, Parmentier Y, Yanagisawa S, Grava S, Koncz C, Genschik P.2003.EIN3-dependent regulation of plant ethylene hormone signaling by two Arabidopsis F-box proteins:EBF1and EBF2. Cell,115:679~689
    Prasad T K.1997. Role of catalase in inducing chilling tolerance in pre-emergent maize seedlings. PlantPhysiol,114:1369~1376
    Pressman E, Shaked R, Firon N.2006. Exposing pepper plants to high day temperatures prevents theadverse low night temperature symptoms. Physiol Plantarum,126:618~626
    Puhakainen T, Hess M W, M kel P, Svensson J, Heino P, Palva E T.2004. Over expression of multipledehydrin genes anhances tolerance to freezing stress in Arabidopsis. Plant Mo1Biol,54(5):743~753
    Puranik S, Bahadur R P, Srivastava P S, Prasad M.2011. Molecular cloning and characterization of amembrane associated NAC Family gene, SiNAC from Foxtail Millet [Setaria italica (L.) P. Beauv.].Mol Biotechnol,49:138~150
    Pushpanathan M, Rajendhran J, Jayashree S, Sundarakrishnan B, Jayachandran S, et al.2012. Identificationof a novel antifungal peptide with chitin-binding property from marine metagenome. Protein PeptideLett,19:1289~1296
    Rabbani M A, Maruyama K, Abe H, Khan M A, et al.2003. Monitoring expression profiles of rice genesunder cold, drought, and high-salinity stresses and abscisic acid application using cDNA microarrayand RNA gel-blot analyses. Plant Physiol,133:1755~1767
    Riechmann J L, Meyerowitz E M.1997. MADS domain proteins in plant development. Biol Chem,378:1097~1101
    Risseeuw E P, Daskalchuk T E, Banks T W, et a1.2003. Protein interaction analysis of SCF ubiquitin E3ligase subunits from Arabidopsis. Plant J,34(6):753~767
    Rizhsky I, Liang H, Mittler R.2002. The combined effect of drought stress and heat shock on geneexpression in tobacco. Plant Physiol,130:1143~1151
    Robert-Seilaniantz A, Grant M, Jones J D G.2011. Hormone crosstalk in plant disease and defense: morethan just jasmonate-salicylate antagonism. Annu Rev Phytopathol,49:317~343
    Robertson M, Chandler P M.1994. A dehydrin cognate protein from pea (Pisum sativum L.) with anatypical pattern of expression. Plant Mol Biol,26:805~816
    Saavedra L, Svensson J, Carballo V, Izmendi D, Wellin B, Vidal S.2006. A dehydrin gene inPhyscomitrella patens is required for salt and osmotic stress tolerance. Plant J,45:237~49
    Saibo N J M, Lourenc O T, Oliveira M M.2009. Transcription factors and regulation of photosynthetic andrelated metabolism under environmental stresses. Annals of Botany,103:609~623
    Sanders D, Pelloux J, Brownlee C, Harper J F.2002. Calcium at the crossroads of signaling. Plant Cell,14:S401~S417
    Sangwan V, Foulds I, Singh J, Dhindsa R S.2001. Cold-activation of Brassica napus BN115promoter ismediated by structural changes in membranes and cytoskeleton, and requires Ca2+influx. Plant J,27:1~12
    Sato Y, Murakami T, Funatsuki H, Matsuba S.2001. Heat shock-mediated APX gene expression andprotection against chilling injury in rice seedlings. Journal of Experimental Botany,52(354):145~151
    Schaedle M.1977. Chloroplast glutathione reductase. Plant Physiol,59:1011~1012
    Schi tt M, Palmgren MG.2005. Two plant Ca2+pumps expressed in stomatal guard cells show oppositeexpression patterns during cold stress. Physiol Plant,124:278~283
    Schwechheimer C, Willige B C, Zourelidou M, et a1.2009. Examining protein stability and its relevancefor plant growth and development. Methods Mol Biol,479:147~171
    Schultz J, Milpetz F, Bork P, Ponting C P.1998. SMART, a simple modular architecture research tool:identification of signalling domains. Proc Natl Acad Sci USA,95:5857~5864
    Seki M, Ishida J, Narusaka M, Fujita M, et al.2002. Monitoring the expression pattern of around7,000Arabidopsis genes under ABA treatments using a full-length cDNA microarray. Funct IntegrGenomics,2:282~291
    Seki M, Kamei A, Yamaguchi-Shinozaki K, Shinozaki K.2003. Molecular responses to drought, salinityand frost: common and different paths for plant protection. Curr Opin Biotech,14:194~199
    Seki M, Narusaka M, Ishida J, Nanjo T, Fujita M, Oono Y, Kamiya A, Nakajima M, Enju A, Sakurai T,Satou M, Akiyama K, Taji T, Yamaguchi-Shinozaki K, Carninci P, Kawai J, Hayashizaki Y, ShinozakiK.2002. Monitoring the expression profiles of7000Arabidopsis genes under drought, cold and highsalinity stresses using a full-length cDNA microarray. Plant J,31:279~292
    Selote D S, Khanna-Chopra R.2006. Drought acclimation confers oxidative stress tolerance by inducingco-ordinated antioxidant defense at cellular and subcellular level in leaves of wheat seedlings. PhysiolPlant,127:494~506
    Seo P J, Kim M J, Park J Y, Kim S Y, Jeon J, Lee Y H, Kim J, Park C M.2010. Cold activation of a plasmamembrane-tethered NAC transcription factor induces a pathogen resistance response in Arabidopsis.Plant J,61:661~671
    Seo P J, Kim S G, Park C M.2008. Membrane-bound transcription factors in plants. Trends Plant Sci,13:550~556
    Shan C, Liang Z.2010. Jasmonic acid regulates ascorbate and glutathione metabolism in Agropyroncristatum leaves under water stress. Plant Sci,178:130~139
    Shi Y, Tian S, Hou L, et al.2012. Ethylene signaling negatively regulates freezing tolerance by repressingexpression of CBF and type-A ARR genes in Arabidopsis. Plant Cell,24:2578~2595
    Shinozaki K, Yamaguchi-Shinozaki K, Seki M.2003. Regulatory network of gene expression in thedrought and cold stress responses. Curr Opin Plant Biol,6:410~417
    Slooten L, Capian K, Van-Camp W.1995. Factors affecting the enhancement of oxidative stress tolerancein transgenic tobacco overexpressing manganese superoxide dismutase in the chloroplasts. PlantPhysiol,107(3):737~750
    Smalle J, Vierstra R D.2004. The ubiquitin26S proteasome proteolytic pathway. Annu Rev Plant Biol,55:555~590
    Smallwood M, Bowles D J.2002. Plants in a cold climate. Philos Trans R Soc Lond B Biol Sci,357:831~846
    Souer E, van Houwelingen A, Kloos D, Mol J, Koes R.1996. The no apical meristem gene of Petunia isrequired for pattern formation in embryos and flowers and is expressed at meristem and primordiaboundaries. Cell,85(2):159~170
    Sperotto R A, Ricachenevsky F K, Duarte G L, Boff T, Lopes K L, et al.2009. Identification ofup-regulated genes in flag leaves during rice grain filling and characterization of OsNAC5, a newABA-dependent transcription factor. Planta,230(5):985~1002
    Steponkus P L.1984. Role of the plasma membrane in freezing injury and cold acclimation. Annu RevPlant Physiol,35:543~584
    Stevens R, Page D, Gouble B, Garchery C, et al.2008. Tomato fruit ascorbic acid content is linked withmonodehydroascorbate reductase activity and tolerance to chilling stress. Plant Cell Environ,31:1086~1096
    Sthader L C, Rttchie S, Solle J D, et al.2004. Recessive-interfering mutations in the gibberellin signalinggene SLEEPY1are rescued by overexpression of its homologue, SNEEZY. Proc Natl Acad Sci USA,101(34):12771~12776
    Stirnberg P, van De Sande K, Leyser H M.2002. MAX1and MAX2control shoot lateral branching inArabidopsis. Development,129:1131~1141
    Strader L C, Ritchie S, Soule J D, McGinnis K M, Steber C M.2004. Recessive-interfering mutations in thegibberellin signaling gene SLEEPY1are rescued by overexpression of its homologue, SNEEZY. ProcNatl Acad Sci USA,101:12771~12776
    Su C F, Wang Y C, Hsieh T H, Lu C A, Tseng T H, Yu S M.2010. A novel MYBS3-dependent pathwayconfers cold tolerance in rice. Plant Physiol,153:145~158
    Sun X, Lei T, Yuan S, et al.2005. Progress in research of dehydrins. Journal of Wuhan Botanical Research,23(3):299~304
    Suzuki N, Koussevitzky S, Mittler R, Miller G.2011. ROS and redox signaling in the response of plants toabiotic stress. Plant Cell Environ,35:259~270
    Suzuki N, Rizhsky L, Liang H, Shuman J, Shulaev V, Mittler R.2005. Enhanced tolerance toenvironmental stress in transgenic plants expressing the transcriptional coactivator multiproteinbridging factor1c. Plant Physiol,139:1313~1322
    Suzuki N, Sejima H, Tam R, Schlauch K, Mittler R.2011. Identification of the MBF1heat-responseregulon of Arabidopsis thaliana. Plant J,66:844~851
    Takemaru K I, Harashima S, Ueda H, Hirose S.1998. Yeast coactivatior MBF1mediates GCN4-dependenttranscriptional activation. Mol Cell Biol,18:4971~4976
    Takemaru K I, Li F Q, Ueda H, Hirose S.1997. Multiprotein bridging factor1(MBF1) is an evolutionarilyconserved transcriptional coactivator that connects a regulatory factor and TATA element-bindingprotein. Proc Natl Acad Sci USA,94:7251~7256
    Tan X, Zheng N.2009. Hormone signaling through protein destruction: a lesson from plants. Am J PhysiolEndocrinol Metab,296: E223~E227
    Tanaka Y, Sano T, Tamaoki M, Nakajima N, Kondo N, Hasezawa S.2005. Ethylene inhibits abscisicacid-induced stomatal closure in Arabidopsis. Plant Physiol,138:2337~2343
    Tang L, Kwon S Y, Kim S H, Kim J S, Choi J S, Cho K Y, Sung C K, Kwak S S, Lee H S.2006. Enhancedtolerance of transgenic potato plants expressing both superoxide dismutase and ascorbate peroxidasein chloroplasts against oxidative stress and high temperature. Plant Cell Rep,25:1380~1386
    Tang Y M, Liu M Y, Gao S Q, Zhang Z, Zhao X, Zhao C P, Zhang F T, Chen X P.2012. Molecularcharacterization of novel TaNAC genes in wheat and overexpression of TaNAC2a confers droughttolerance in tobacco. Physiol Plantarum,144:210~224
    Tardif G, Kane N A, Adam H, Labrie L, Major G, Gulick P, Sarhan F, Laliberté J F.2007.Interaction network of proteins associated with abiotic stress response and development in wheat.Plant Mol Biol,63(5):703~718
    Teige M, Scheikl E, Eulgem T, Doczi R, Ichimura K, Shinozaki K, Dangl J L, Hirt H.2004. The MKK2pathway mediates cold and salt stress signaling in Arabidopsis. Mol Cell,15:141~152
    Teper-Bamnolker P, Samach A.2005. The flowering integrator FT regulates SEPAL-LATA3and fruitfullaccumulation in Arabidopsis leaves. Plant Cell,17:2661~2675
    Thomas C L, Jones L, Baulcombe D C, et al.2001. Size constraints for targeting post-transcriptional genesilencing and for RNA-directed methylation in Nictiana benthamuana using a potato virus X vector.Plant J,24:417~425
    Thomas S G, Sun T P.2004. Update on gibberellin signaling. A tale of the tall and the short. Plant Physiol,135:668~676
    Thomashow M F.1999. Plant cold acclimation: Freezing tolerance genes and regulatory mechanisms. AnnuRev Plant Physiol Plant Mol Biol50:571~599
    Tiwari S B, Hagen G, Guilfoyle T J.2004. AUX/IAA proteins contain a potent transcriptional repressiondomain. Plant Cell,16:533~543
    Tojo T, Tsuda K, Yoshizumi T, Ikeda A, Yamaguchi J, Matsui M, et al.2009. Arabidopsis MBF1s controlleaf cell cycle and its expansion. Plant Cell Physiol,50:254~64
    Topuz A, Ozdemir F.2007. Assessment of carotenoids, capsaicinoids and ascorbic acid composition ofsome selected pepper cultivars (Capsicum annuum L.) grown in Turkey. J Food Compos Anal,20:596~602
    Tran L S, Nakashima K, Sakuma Y, Simpson S D, Fujita Y, Maruyama K, Fujita M, Seki M, Shinozaki K,Yamaguchi-Shinozaki K.2004. Isolation and functional analysis of Arabidopsis stress-inducible NACtranscription factors that bind to a drought-responsive cis-element in the early responsive todehydration stress1promoter. Plant Cell,16:2481~2498
    Tran L S, Quach T N, Guttikonda S K, Aldrich D L, Kumar R, Neelakandan A, Valliyodan B, Nguyen H T.2009. Molecular characterization of stress-inducible GmNAC genes in soybean. Mol Genet Genomics,281:647~664
    Tsuda K, Tsuji T, Hirose S, Yamazaki K.2004. Three Arabidopsis MBF1homologs with distinct expressionprofiles play roles as transcriptional co-activator. Plant Cell Physiol,45:225~231
    Tsuda K, Yamazaki K.2004. Structure and expression analysis of three subtypes of Arabidopsis MBF1genes. Biochim Biophys Acta,1680:1~10
    Ulmasov T, Hagen G, Guilfoyle T J.1999. Activation and repression of transcription by auxin-responsefactors. Proc Natl Acad Sci USA,96:5844~5849
    Vaultier M N, Cantrel C, Vergnolle C, Justin A M, Demandre C, Benhassaine-Kesri G, i ek D, ZachowskiA, Ruelland E.2006. Desaturase mutants reveal that membrane rigidification acts as a cold perceptionmechanism upstream of the diacylglycerol kinase pathway in Arabidopsis cells. FEBS Lett,580:4218~4223
    Verslues P E, Zhu J K.2005. Before and beyond ABA: upstream sensing and internal signals that determineABA accumulation and response under abiotic stress. Biochem Soc Trans,33:375~379
    Vij S, Tyagi A K.2007. Emerging trends in the functional genomics of the abiotic stress response in cropplants. Plant Biotechnol J,5:361~380
    Vinocur B, Altman A.2005. Recent advances in engineering plant tolerance to abiotic stress: achievementsand limitations. Curr Opin Biotech,16:123~132
    Vogel J T, Zarka D G, Van Buskirk H A, Fowler S G, Thomashow M F.2005. Roles of the CBF2andZAT12transcription factors in configuring the low temperature transcriptome of Arabidopsis. Plant J,41:195~211
    Wada H, Gombos Z, Murata N.1994. Contribution of membrane-lipids to the ability of thephotosynthetic machinery to tolerate temperature stress. Proc Natl Acad Sci USA,91(10):4273~4277
    Wan H, Yuan W, Ruan M, Ye Q et al.2011. Identification of reference genes for reverse transcriptionquantitative real-time PCR normalization in pepper (Capsicum annuum L.). Biochem Biophys ResCommun,416:24~30
    Wang J E, Li D W, Gong Z H, Zhang Y L.2013. Optimization of virus-induced gene silencing in pepper(Capsicum annuum L.). Genet Mol Res,12(3):2492~2506
    Wang W, Vinocur B, Altman A.2003. Plant responses to drought, salinity and extreme temperatures:Towards genetic engineering for stress tolerance. Planta,218:1~14.
    Wang Y L, Ma F W, Li M J, Liang D, et al.2011. Physiological responses of kiwifruit plants to exogenousABA under drought conditions. Plant Growth Regul,64:63~74
    Wang Z, Xiao Y, Chen W, Tang K, et al.2010. Increased vitamin C content accompanied by an enhancedrecycling pathway confers oxidative stress tolerance in Arabidopsis. J Integr Plant Biol,52:400~409
    Weigel D.1995. The genetics of flower development: from floral induction to ovule morphogenesis. AnnuRev Genet,29:19~39
    Wimmers L E, Ewing N N, Bennett A B.1992. Higher-plant Ca2+-ATPase-primary structure and regulationof messenger-RNA abundance by salt. Proc Natl Acad Sci U S A,89:9205~9209
    Woo H R, Chung K M, Park J H, Oh S A, Ahn T, Hong S H, Jang S K, Nam H G..2001. ORE9, an F-boxprotein that regulates leaf senescence in Arabidopsis. Plant Cell,13:1779~1790
    Wright M.1974. The effect of chilling on ethylene production, membrane permeability, and water loss ofleaves of Phaseolus vulgaris. Planta,120:63~69
    Wu Y, Deng Z, Lai J, Zhang Y, Yang C, Yin B, Zhao Q, Zhang L, Li Y, Yang C, Xie Q.2009. Dual functionof Arabidopsis ATAF1in abiotic and biotic stress responses. Cell Res,19:1279~1290
    Xie D X, Feys B F, James S, Nieto-Rostro M, Turner J G.1998. COI1: An Arabidopsis gene required forjasmonate-regulated defense and fertility. Science,280:1091~1094
    Xie Q, Frugis G, Colgan D, Chua NH.2000. Arabidopsis NAC1transduces auxin signal downstream ofTIR1to promote lateral root development. Genes Dev,14:3024~3036
    Xie Q, Sanz-Burgos A P, Guo H, García J A, Gutiérrez C.1999. GRAB proteins, novel members of theNAC domain family, isolated by their interaction with a geminivirus protein. Plant Mol Biol,39:647~656
    Xiong L, Zhu J K.2003. Regulation of abscisic acid biosynthesis. Plant Physiol,133:29~36
    Xu J, Zhang YX, Guan Z Q, et a1.2008. Expression and function of two dehydrins under environmentalstressed in Brassica juncea L. Mol Breeding,21:431~438
    Xue-Xuan X, Hong-Bo S, Yuan-Yuan M, Gang X, et al.2010. Biotechnological implications from abscisicacid (ABA) roles in cold stress and leaf senescence as an important signal for improving plantsustainable survival under abiotic-stressed conditions. Crit Rev Biotechnol,30:222~230
    Yamaguchi M, Kubo M, Fukuda H, Demura T.2008. VASCULAR-RELATED NAC-DONAIN7isinvolved in differentiation of all types of xylem vessels in Arabidopsis roots and shoots. Plant J,55(4):652~664
    Yamaguchi-Shinozaki K, Shinozaki K.1993. The plant hormone abscisic acid mediates thedrought-induced expression but not the seed-specific expression of rd22, a gene responsive todehydration stress in Arabidopsis thaliana. Mol Gen Genet,238:17~25
    Yan Y S, Chen X Y, Yang K, Sun Z X, Fu Y P, Zhang Y M, Fang R X.2011. Overexpression of an F-boxprotein gene reduces abiotic stress tolerance and promotes root growth in rice. Mol Plant,4(1):190~197
    Yang L, Ji W, Zhu Y, Gao P, Li Y, Cai H, Bai X, Guo D.2010. GsCBRLK, a calcium/calmodulin-bindingreceptor-like kinase, is a positive regulator of plant tolerance to salt and ABA stress. J Exp Bot,61(9):2519~2533
    Yang L, Wang C C, Guo W D, Li X B, Lu M, et al.2006. Differential expression of cell wall related genesin the elongation zone of rice roots under water deficit. Rus J Plant Physiol,53:390~395
    Yang R C, Deng C T, Ouyang B, Ye Z B.2011. Molecular analysis of two salt-responsive NAC-familygenes and their expression analysis in tomato. Mol Biol Rep,38:857~863
    Yang Y W, Wu Y, Pirrello J, Regad F, Bouzayen M, Deng W, Li Z G.2010. Silencing Sl-EBF1and Sl-EBF2expression causes constitutive ethylene response phenotype, accelerated plant senescence, and fruitripening in tomato. J Exp Bot,61(3):697~708
    Yang Y Z, Fanning L, Jack T.2003. The K domain mediates heterodimerization of the Arabidopsis floralorgna identity proteins, APETALA3and PISTILLATA. Plant J,33:47~59
    Yin Z, Rorat T, Szabala B M, Zikó wska A, Malepszy S.2006. Expression of a Solanum sogarandinumSK3-type dehydrin enhanees cold tolerance in transgenic cucumber seedlings. Plant Sci,170(6):1164~172
    Yoshimura K, Masuda A, Kuwano M, Yokota A, Akashi K.2008. Programmed proteome response fordrought avoidance/tolerance in the root of a C-3xerophyte (wild watermelon) under water deficits.Plant Cell Physiol,49:226~241
    Yu H, Wu J, Xu N F, Peng M.2007. Roles of F-box proteins in plant hormone responses. Acta Bioch BiophSin,39(12):915~922
    Yu S, Zhang X, Guan Q, Takano T, Liu S.2007. Expression of a carbonic anhydrase gene is induced byenvironmental stresses in rice (Oryza sativa L.). Biotechnol Lett,29:89~94
    Zanetti M E, Chan R L, Godoy A V, González D H, Casalongué C A.2004. Homeodomain-leucine zipperproteins interact with a plant homologue of the transcriptional co-activator multiprotein bridgingfactor1. J Biochem Mol Biol,37:320~324
    Zhai H, Bai X, Zhu Y, Li Y, Cai H, Ji W, Ji Z, Liu X, Li J.2010. A single-repeat R3-MYB transcriptionfactor MYBC1negatively regulates freezing tolerance in Arabidopsis. Biochem Biophys Res Commun,394:1018~1023
    Zhang N, Schulman A B, Song L Z.2002. Structure of the Cull Rbxl-Skpl-F-box Skp2SCF ubiquitin ligasecomplex. Nature,146:703~709
    Zhang W, Jiang B, Li W, Song H, et al.2009. Polyamines enhance chilling tolerance of cucumber (Cucumissativus L.) through modulating antioxidative system. Sci Hortic,122:200~208
    Zhang W, Wang C, Qin C, Wood T, Olafsdottir G, Welti R, Wang X.2003. The oleate-stimulatedphospholipase D, PLDd, and phosphatidic acid decrease H2O2-induced cell death in Arabidopsis.Plant Cell,15:2285~2295
    Zhang W, Yu L, Zhang Y, Wang X.2005. Phospholipase D in the signaling networks of plant response toabscisic acid and reactive oxygen species. Biochim Biophys Acta,1736:1~9
    Zhang X H, Rao X L, Shi H T, Li R J, Lu Y T.2011. Overexpression of a cytosolicglyceraldehyde-3-phosphate dehydrogenase gene OsGAPC3confers salt tolerance in rice. Plant CellTiss Organ Cult,107:1~11
    Zhang Y X, Li J M, Yu F, Cong L, Wang L Y, Burkard G, Chai T.2006. Cloning and expression analysis ofSKn-type dehydrin gene from bean in response to heavy metals. Mol Biotechnol,32:205~217
    Zhang Y, Tang H R, Luo Y, Hou Y X.2009. Responses of antioxidant enzymes and compounds instrawberry (Fragaria x ananassa ‘Toyonaka’) to cold stress. New Zeal J Crop Hort,37:383~390
    Zhang Y, Xu W, Li Z, Deng X W, Wu W, et al.2008. F-Box protein DOR functions as a novel inhibitoryfactor for abscisic acid-induced stomatal closure under drought stress in Arabidopsis. Plant Physiol,148:2121~2133
    Zhang Z B, Li H Y, Zhang D F, Liu Y H, Fu J, Shi Y S, Song Y C, Wang T Y, Li Y.2012. Characterizationand expression analysis of six MADS-box genes in maize (Zea mays L.). J Plant Physiol,169:797~806
    Zhao C, Avci U, Grant E H, Haigler C H, Beers E P.2008. XND1, a member of the NAC domain family inArabidopsis thaliana, negatively regulates lignocellulose synthesis and programmed cell death inxylem. Plant J,53(3):425~436
    Zhao X C, Schaller G E.2004. Effect of salt and osmotic stress upon expression of the ethylene receptorETR1in Arabidopsis thaliana. Febs Letters,562:189~192
    Zhong R Q, Demura T, Ye Z H.2006. SND1, a NAC domain transcription factor, is a key regulator ofsecondary wall synthesis in fibers of Arabidopsis. Plant Cell,18:3158~3170
    Zhou B Y, Guo Z F, Lin L.2006. Effects of abscisic acid application on photosynthesis and photochemistryof Stylosanthes guianensis under chilling stress. Plant Growth Regul,48:195~199
    Zhou B Y, Guo Z F, Liu Z L.2005. Effects of abscisic acid on antioxidant systems of Stylosanthesguianensis (Aublet) Sw. under chilling stress. Crop Sci,45:599~605
    Zhou Q Y, Tian A G, Zou H F, Xie Z M, Lei G, Huang J, Wang C M, Wang H W, Zhang J S, Chen S Y.2008.Soybean WRKY-type transcription factor genes, GmWRKY13, GmWRKY21, and GmWRKY54, conferdifferential tolerance to abiotic stresses in transgenic Arabidopsis plants. Plant Biotechnol J,6:486~503
    Zhu C, Perry SE.2005. Control of expression and autoregulation of AGL15, a member of the MADS-boxfamily. Plant J,41:583~677
    Zhu J H, Dong C H, Zhu J K.2007. Interplay between cold-responsive gene regulation, metabolism andRNA processing during plant cold acclimation. Curr Opin Plant Biol,10:290~295
    Zhu W, Lu M H, Gong Z H, Chen R G.2011. Cloning and expression of a small heat shock protein geneCaHSP24from pepper under abiotic stress. Afr J Biotechnol,10(25):4968~4976

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700