用户名: 密码: 验证码:
奶山羊乳腺组织乳脂代谢相关miRNAs的筛选及功能验证
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
山羊乳中总脂肪含量,尤其是其中与人类健康密切相关的中短链脂肪酸及不饱和脂肪酸含量均高于牛乳。山羊乳的乳脂特点应与其乳腺乳脂代谢密切相关。然而,在乳脂代谢基因中,至今尚未发现山羊特异性表达或者具有特异功能的基因。据此推测山羊乳脂代谢的特点可能与其在基因不同水平(如转录后、翻译水平)的调控机制有关。MicroRNAs (miRNAs)是一类在转录后水平调控基因表达的小分子RNA,其功能几乎涉及生命活动的各个方面。已证实miRNAs是调控脂肪和肝脏组织中脂肪代谢的重要因子,然而,现有研究缺乏(?)niRNAs调控山羊乳腺乳脂代谢的研究报道。因此,本研究从miRNAs调控乳腺乳脂代谢的角度出发,通过测序技术获得西农萨能奶山羊乳腺组织miRNAs表达谱,分析其序列特征,检测其在乳腺组织不同阶段的表达水平,筛选与山羊乳脂代谢相关的miRNAs,并通过在山羊乳腺上皮细胞(GMEC)中过表达miRNAs,检测细胞中与乳脂代谢相关的指标,证实miRNAs对山羊乳脂合成和组成具有重要影响,同时发现3对可在乳腺组织中协同表达的miRNAs,发现其协同调控山羊乳腺组织乳脂代谢。本研究从miRNAs调控角度阐明山羊乳脂代谢分子调控机制、揭示山羊乳腺泌乳机理,为后期增加乳脂含量及改善乳组成等研究提供重要的理论和试验依据。论文主要结果如下:
     1.利用Solexa测序技术检测山羊泌乳中期乳腺组织中的小RNAs序列,测序结果经数据库过滤后得到高质量小RNAs序列读数22,084,321个,其中长度为22个核苷酸(nt)的小RNA读数最多,约占所有小RNAs读数的33.4%。将测序所得序列与小RNAs数据库中已知序列进行比对,结果发现山羊乳腺组织中含有5种小RNA,分别为tRNAs、 rRNAs、snoRNAs、snRNAs和miRNAs,其中miRNAs的读数最多(10,534,221),约占乳腺组织小RNAs,总读数的47.7%。对miRNAs序列进行鉴定,共获得1,143个miRNAs,其中931个为保守miRNAs,212个为山羊新的候选miRNAs。将山羊931个保守miRNAs与miRBase (17.0)数据库中已注释的miRNAs序列进行比对,结果发现:(1)山羊和牛的保守niRNAs数目最多,达575个,其中,山羊与牛特有的miRNAs数目为116个;(2)335个miRNAs的391个末端碱基发生变化,其中碱基减少的数目大于增加的数目,且miRNAs3'端的碱基变化数目大于5'端;(3)109个碱基发生替换,包括63个转换和46个颠换。
     2.利用定量PCR技术检测山羊30个miRNAs在泌乳中期和干奶期乳腺组织中的表达量,获得17个差异表达miRNAs。利用PicTar和TargetScan软件预测miRNAs的靶基因,并通过GO和KEGG软件预测靶基因的功能并进行靶基因富集,结果发现17个差异表达miRNAs的靶基因主要参与乳腺发育、细胞增殖、乳脂合成等代谢过程。从17个差异表达miRNAs及10个功能已知(调控其它动物脂质代谢),miRNAs中,通过催乳素实验获得4个(miR-23a、miR-27a、miR-103和miR-200a)表达量受催乳素调控的miRNAs,推测这4个miRNAs可能与山羊乳腺组织乳脂代谢有关。
     3.从山羊基因组DNA上扩增出200bp至500bp长的pri-miR-23a、pri-miR-27a、 pri-miR-103和pri-miR-200a序列(皆包括pre-miRNA及侧翼序列),与牛的序列相比,山羊pre-miR-27a3'端第11个碱基由A变为G,山羊其余pre-miRNAs序列与牛相同。以pri-miRNAs为插入片段,成功构建重组腺病毒载体pAd-miRNAs。将腺病毒载体转染HEK293细胞株,病毒载体包装成功后获得Ad-miR-23a、Ad-miR-27a、Ad-miR-103和Ad-miR-200a4种腺病毒,用这4种病毒分别感染GMEC,72h后检测细胞中miRNAs表达水平,结果发现病毒介导miRNAs的表达量依次为对照(感染Ad的GMEC)的3.48、1.94、2.92和2.48倍。
     4.检测感染Ad-miR-10372h时GMEC中的乳脂合成相关指标,结果显示:miR-103过表达可促进细胞中乳脂积累,与对照(感染Ad的细胞)相比,细胞中甘油三酯的含量增加0.33倍,总脂肪酸含量增加0.16倍,不饱和脂肪酸含量增加0.42倍,其中,不饱和脂肪酸c9-C18:1和c9,t11-C18:2含量大幅上调,较对照相比分别上调0.35倍和1.26倍,同时,脂肪酸和甘油三酯合成及脂滴生成相关基因FASN, DGAT1、ADRP、SLA27A6等表达量升高。在感染病毒0、24、48和72h的GMEC中,miR-103过表达可上调PPARγ、 SREBP-lc和LXRa及它们下游基因mRNAs表达水平,同时下调脂解和氧化相关基因HSL、ATGL、CPT1和ACOX1的表达量。此外,miR-103与PANK3在乳腺组织中的表达量之间具有正相关关系,相关系数达0.891,且在GMEC中进行miR-103过表达和抑制试验时,PANK3的表达量随着miR-103表达量变化而改变。
     5.检测感染Ad-miR-27a72h时GMEC中的乳脂合成相关指标,结果显示:与对照(感染Ad的细胞)相比,过表达miR-27a能抑制细胞中脂滴形成,下调甘油三酯含量,降低不饱和脂肪酸/饱和脂肪酸的比例,其中,不饱和脂肪酸c9,C18:1和c9,t11-C18:2含量大幅下降,较对照分别下降0.36和0.45倍,而饱和脂肪酸C16:0和C18:0含量升高,较对照分别升高0.19和1.02倍。检测感染病毒0、24、48和72h时细胞中乳脂代谢相关基因的表达量:PPARγ蛋白表达量降低,其下游基因、负责甘油三酯合成的DGAT1的表达量下降,同时,与脂滴形成相关的基因ADRP和TIP47表达量升高,与脂解、氧化相关的基因HSL、ATGL和ACOX1表达量升高。
     6.检测感染Ad-miR-23a72h时GMEC中的乳脂合成相关指标,结果显示:与对照相比,过表达miR-23a的细胞中脂滴含量增加1.83倍,甘油三酯含量增加2.21倍,同时,乳脂合成相关基因FASN、DGAT1和TIP47的表达量升高,依次为对照的1.82、1.89、2.93倍,而脂解相关基因ATGL的表达量降低,仅为对照的0.6倍。此外,过表达miR-23a还可增加固醇转运相关基因ABCA1和ABCG2的表达水平。检测感染Ad-miR-200a72h时GMEC中乳脂代谢相关基因的表达量,结果发现miR-200a对乳脂合成各阶段相关基因的表达皆有影响,其可降低FASN和ADRP的表达量,提高SCD、 DGTA1和HSL的表达量,同时还可调控PPARγ和SREBP-1c的表达水平。
     7.利用Pearson相关系数分析miR-23a、miR-27a、miR-103和miR-200a在泌乳中期山羊乳腺组织中表达量之间的相关性,结果发现miR-23a与miR-27a、miR-27a与miR-200a、miR-200a与miR-103三对miRNAs之间的表达量具有正相关关系,它们的相关系数依次为0.79、0.57和0.716。此外,在这三对miRNAs中,miR-23a与miR-27a、 miR-27a与miR-200a之间在过表达时均表现为相互促进作用,而miR-103与miR-200a在过表达时表现为相互抑制作用。
Goat milk has higher fat content than cow milk. Goat milk also contains greater amounts of short-chain fatty acids, medium-chain fatty acids, and unsaturated fatty acids which are considered good for human health. These characteristics of goat milk may be attributable to the mechanism of milk fat metabolism. In comparison to cow, no specific gene in goat has been identified. Furthermore, the gene's function identified in goat and cow is the same according to the current reports. It has been hypothesized that the difference in milk fat content and composition between goat and cow are caused by the difference in gene expression and regulation in each levels (i.e., post-transcription, post-translation). MicroRNAs (miRNAs) are small, non-coding RNAs that have emerged as key post-transcriptional regulators of gene expression in nearly all molecular metabolisms. MiRNAs have been reported to be important regulators for lipid and fat metabolism both in adipose and liver tissues. Little is known about the biological roles of miRNAs in goat mammary gland. To investigate the function of miRNAs regulating milk fat metabolism in goat mammary gland, we choose miRNAs as an entry point and performed a large scale miRNAs sequencing to obtain the miRNA profile in lactating mammary gland of Xinong Saanen dairy goats. We characterized goat miRNAs, measured their expression in mammary gand during different phases, and screened miRNAs associated with milk fat synthesis. Then, we over-expressed the miRNAs in goat mammary gland epithelial cells (GMEC) by using recombinant adenovirus, and measured the indices of milk fat synthesis of the GMEC. We also identified the synergistic regulation among miRNAs in mammary gland. This study is helpful with understanding the mechanism of lactation and milk fatty acid metabolism, and will provide a new subject for improving the quality of goat milk and increasing beneficial content of fatty acid in milk. The main results of this study were showed as following:
     1. Solexa sequencing technique was used to profile all small RNAs in mammary gland of lactating goats. After filtering low quality data,22,084,321clean reads of small RNAs were obtained. Among these small RNAs, the number of22nucleotides (nt) small RNAs (33.4%of total small RNAs reads) is the most dominant fragments. Based on the results of sequence alignment, five categories small RNA (tRNAs, rRNAs, snoRNAs, snRNAs, and miRNAs) were identified in goat mammary gland, of which miRNAs (10,534,221reads) has the highest percentage composition accounted for47.7%of total small RNAs reads. Goat mammary gland contains1,143miRNAs including931conserved miRNAs and212novel miRNA candidates. The931conserved miRNAs were aligned with current annotated miRNAs in the miRBase (Release17.0). Results of sequence alignment showed:(1) goat and cow (575miRNAs) have the largest number of conserved miRNAs, at meanwhile, goat and cow (116miRNAs) also have the largest number of specific miRNAs which have been identified only in two species;(2) Among conserved miRNAs,335miRNAs containing391end variations were identified. Frequency of base reduction is higher than base addition.3'base variations happen more easily than5';(3)109base substitutions containing63transitions and46transversions were found.
     2. PCR was used to identify the expression levels of the read top30miRNAs in mammary gland during mid-lactation and dry period.17differently expressed miRNAs were identified. PicTar and TargetScan softwares were used to predict miRNA targets. GO Term and KEGG softwares were used to enrich the miRNAs targets. The majority of target function of the17miRNAs is associated with processes of development, proliferation and fat synthesis. Among the17miRNAs and10known function (regulating lipid metabolism in other mammals) miRNAs,4miRNAs (miR-23a, miR-27a, miR-103, and miR-200a) were identified by prolactin experiment. The4miRNAs positively response to prolactin and had potential functions of regulating milk fat metabolism in goat mammary gland.
     3.200-500bp lengths (including pre-miRNA and flanking sequences) of pri-miR-23a, pri-miR-27a, pri-miR-103and pri-miR-200a were amplified from goat genome, respectively. In comparison to cow, goat pre-miR-27a has one base mutation from A to G on position11of3'. The other goat pre-miRNAs have identical sequences with cow.4recombinant adenovirus plasmids were constructed with their respective pri-miRNA as an inserted sequence. The adenovirus plasmids were transfected to HEK293and packaged in the cells successfully. Adenovirus stably over-expressed miRNAs in GMEC. The miRNA expression mediated by their respective virus in GMEC were3.48-(miR-23a),1.94-(miR-27a),2.92-(miR-103), and2.48-fold (miR-200a) compared with controls (Ad-infected GMECs).
     4. Indices of milk fat synthesis were measured in Ad-miR-103-infected cells at72h post infection. In comparison to Ad-infected cells, Ad-miR-103-infected cells accumulated more fat droplets. Triglyceride content increased by0.33-fold, total fatty acid content increased by0.16-fold, and unsaturated fatty acid content increased by0.42-fold. Specifically, c9-C18:1and c9,t11-C18:2contents were increased by1.35-and2.16-fold. The expression of FASN, DGAT1, ADRP and SLA27A6associated with milk fat synthesis increased by1.15-,1.21-,18.02-and14.0-fold, respectively. Furthermore, throughout the observation period (0,24,48and72h post infection), expression of PPARy, SREBP-1c, LXRa and the downstream genes of them were all up-regulated. At meanwhile, expression of HSL, ATGL, CPT1and ACOX1 related to fatty acid lipolysis and oxidation was down-regulated. In addition, a strong correlation was identified between miR-103and its host gene PANK3(correlation coefficient R=0.891) in mammary gland, and miR-103can transcriptionally regulate PANK3expression in GMEC.
     5. Indices of milk fat synthesis were measured in Ad-miR-27a-infected cells at72h post infection. In comparison to Ad-infected cells, fat droplet accumulation in Ad-miR-27a-infected cells was suppressed. The triglyceride content and total fatty acid content both decreased. Specifically, c9,C18:1and c9,t11-C18:2contents decreased by0.64-and0.55-fold, whereas, C16:0and C18:0contents increased by1.19and2.02-fold, resulting the decreased ratio of unsaturated/saturated fatty acid content. Furthermore, throughout the observation period (0,24,48and72h post infection), the expression of PPARy protein was suppressed, and the expression of DGAT1, which is related to triglyceride synthesis and also a downstream gene of PPARy, was down-regulated, too. Additionally, HSL, ATGL and ACOX1expression associated with oxidation and lipolysis was increased, as well as ADRP and TIP47involved in fat droplet formation.
     6. In comparison to Ad-infected cells, fat droplet and triglyceride contents in Ad-miR-23a-infected cells increased by0.83-and1.21-fold. The expression of FASN, DGAT1and T1P47associated with milk fat synthesis increased by0.82-,0.89-and1.93-fold, whereas, the expression of ATGL related to lipolysis decreased by0.40-fold. Additionally, over-expression of miR-23a up-regulated the expression of ABCA1and ABCG2involved in cholesterol transport. Over-expression of miR-200a in GMEC affected the expression of genes involved in all phases of milk fat synthesis. MiR-200a down-regulated the expression of FASN and ADRP, whereas, up-regulated the expression of SCD, DGAT1and HSL. Furthermore, miR-200a altered the expression of PPARy and SREBP-1c.
     7. Pearson correlation coefficient (R) was used to analysize the relationship between miRNAs in mammary gland of lactating goats. A strong correlation was identified between3pairs of miRNAs, miR-103and miR-200a (R=0.716), miR-27a and miR-200a (R=0.57), miR-23a and miR-27a (R=0.79). Furthermore, miR-103and miR-200a can mutually down-regulate expression, and the other two pairs can mutually up-regulated expression.
引文
程光民,陈凤梅,林雪彦,李福昌,王中华,王君荣.2009.葡萄糖和胰岛素同时灌注对奶山羊乳脂合成的而影响.动物营养学报,2:241-252
    佟慧丽,高学军,李庆章,严云勤.2008.胰岛素、催乳素对奶山羊乳腺上皮细胞泌乳功能的影响.畜牧兽医学报,6:721-725
    罗军,单翠燕,刘拉平,王海滨,孙小琴,王学清,武会娟.2005.不同胎次西农萨能羊鲜乳中链和短链脂肪酸组成的初步研究.西北农林科技大学学报(自然科学版),33:24-28
    王桂芝,李成渤,秦孜娟,王建民,戈新,赵金山,李培培,王建华.2010.崂山奶山羊DGAT1基因多态性及泌乳性状的关系.中国农业科学,22:151-156
    王桢,罗军,王伟,赵旺生,林先滋.2010.奶山羊乳腺上皮细胞的分离、培养及鉴定.生物工程学报,26(8):1123-1127
    武会娟,罗军,赵旺生,王伟.2010.西农萨能奶山羊泌乳中期和后期乳腺组织差异基因的筛选.畜牧兽医学报,39:136-142
    杨双娟,徐成权,吴江维,杨公社.2010.SOCS3基因重组腺病毒的构建及其在猪脂肪细胞中的表达.生物工程学报,26(4):462-469
    朱江江,罗军,王紫骞,许会芬,孙雨婷,石恒波,郝娟,赵丽媛.2012.西农萨能羊乙酰/丙二酸单酰基转移酶基因重组腺病毒载体的构建.畜牧兽医学报,3:231-243
    Alferez MJM, Barrionuevo M, Aliaga IL, Sampelayo MRS, Lisbona F, Robles JC, Campos MS.2001. Digestive utilization of goat and cow milk fat in malabsorption syndrome. J Dairy Res,68:451-461
    Alonso L, Fontecha J, Lozada L, Fraga MJ, Juarez M.1999. Fatty acid composition of caprine milk:major, branched-chain, and trans fatty acids. J Dairy Sci,82:878-884
    Alvarez JP, Pekker I, Goldshmidt A, Blum E, Amsellem Z, Eshed Y.2006. Endogenous and synthetic microRNAs stimulate simultaneous, efficient, and localized regulation of multiple targets in diverse species. The Plant Cell,18:1134-1151
    Angulo AJ, Mahecha LL, Olivera AM.2009. Synthesis, composition and modification of the bovine milk fat:a valuable nutrient for the human health. Revista MVZ Cordoba,14:1856-1866
    Arner P, Langin D.2007. The role of neutral lipases in human adipose tissue lipolysis. Lipid metab,18: 246-250
    Avril-Sassen S, Goldstein LD, Stingl J, Blenkiron C, Quesne JL, Spiteri I, Karagavriilidou KK, Watson CJ, Tavare S, Miska EA, Caldas C.2009. Characterization of microRNA expression in post-natal mouse mammary gland development. BMC Genom,10:548
    Azuma-Mukai A, Oguri H, Mituyama T.2008. Characterization of endogenous Homo sapiens Argonautes and their miRNA partners in RNA silencing. PNAS,105:7964-7969
    Babayan VK.1981. Medium chain length fatty acid esters and their medical and nutritional applications. J Am Oil Chem Soc,59:49-51
    Badaoui B, Serradilla JM, Tomas A, Urrutia B, Ares JL, Carrizosa J, Sanchez A, Jordana J, Amills M.2007. Goat acetyl-coenzyme A carboxylase a:molecular characterization, polymorphism. And association with milk traits. J Dairy Sci,90(2):1039-1043
    Bagga S, Bracht J, Hunter S, Massirer K, Holtz J, Eachus R, Rasquinelli AE.2005. Regulation by let-7 and lin-4 miRNAs results in target mRNA degradation. Cell,122(4):553-563
    Barte DP.2004. MicroRNAs:Genomics, biogenesis, mechanism, and function. Cell,116:281-297
    Bauman DE, Davis CL.1974. Biosynthesis of milk fat. In:Larson BL, Smith VR, editors. In Lactation:a comprehensive treatise. New York:Acad Press:31-75
    Behm-Ansmant I, Rehwinkel J, Doerks T, Stark A, Bork P, Izaurralde E.2006. MRNA degradation by miRNAs and GW182 requeres both CCR4:NOT deadenylase and DCP1:DCP2 decapping complexes. Gene Dev,20(14):1885-1898
    Bhattacharya A, Banu J, Rahman M, Causey J, Fernandes G.2006. Biological effects of conjugated linoleic acids in health and disease. J Nutrutional Biochem,17(12):789-810
    Binsbergen RV, Veerkamp RF, Calus MPL.2012. Makeup of the genetic correlation between milk production traits using genome-wide single nucleotide polymorphism information. J Dairy Sci,95: 2132-2143
    Bionaz M, Loor JJ.2008. Gene networks driving bovine milk fat synthesis during the Lactation cycle. BMC Genom,9:366
    Bionaz M, Loor JJ.2011. Gene networks driving bovine mammary protein synthesis during the lactation cycle. Bioinform biol insights,332:782-810
    Block RC, Harris WS, Reid KJ, Sands SA, Sperus JA,2008. EPA and DHA in blood cell membranes from acute coronary syndrome patients and controls. Atherosclerosis,197(2):821-828
    Borchert GM, Lanier W, Davidson BL.2006. RNA polymerase III transcribes human microRNAs. Nat Struct Mol Biol,13:1097-1101
    Borena T, Xionga Y, Hakamd A, Wenhama R, Aptea S.2008. MicroRNAs and their target messenger RNAs associated with endometrial carcinogenesis. Gynecologic Oncology,110:206-215
    Braconi C, Henry JC, Koqure T, Schrnittgen T, Patel T.2011. The role of microRNAs in human liver cancers. Seminars Oncol,38(6):752-763
    Brennecke J, Stark A, Russell RB, Cohen SM 2005. Principles of MicroRNA-Target Recognition. PLoS Biol,3(3):e85
    Cao P, Deng Z, Wan M, Huang W, Cramer SD.2010. MicroRNA-101 negatively regulates Ezh2 and its expression is modulated by androgen receptor and HIF-lalpha/HIF-1 beta. Mol Cancer,9:108
    Chang J, Nicolas E, Marks D, Sander C, Lerro A, Buendia MA, Xu CX, Mason WS, Moloshok T, Bort R, Zaret KS, Tayor JM.2004. MiR-122, a mammalian liver-specific microRNA, is processed from her mRNA and may downregulate the high affinity cationic amino acid transporter CAT-1. RNA Bio,1: 10-13
    Chen JF, Murchison EP, Tang RH, Callis TE, Tatsuguchi M, Deng ZL, Rogas M, Hammond SM, Scheider MD, Selzman CH, Meissner G, Patterson C, Hannon GJ, Wang DZ.2008. Targeted deletion of Dicer in the heart leads to dilated cardiomyopathy and heart failure. PNAS,5:2111-2116
    Chen X, Gao C, Li H, Huang L, Sun Q, Dong Y, Tian C, Gao S, Dong HL, Guan DP, Hu XY, Zhao SJ, Li L, Zhu L, Yan Q, Zhang JF, Zen K, Chen YZ.2010. Identification and characterization of microRNAs in raw milk during different periods of lactation, commercial fluid and powdered milk products. Cell Res,20:1128-1137
    Cheng YX, Liu GB, Pan Q, Guo SF, Yang XH.2011. Elevated expression of liver X receptor alpha (LXRa) in myocardium of streptozotocin-induced diabetic rats. Inflammation,34:698-706
    Cheung L, Gustavsson C, Norstedt G, Tollet-Egnell P.2009. Sex-different and growth hormone-regulated expression of microRNA in rat liver. BMC,10:13
    Chilliard Y, Ferlay A.2004. Dietary lipids and forage interactions on cow and goat milk fatty acid composition and sensory properties. Rep Nutr Dev,44:467-492
    Chilliard Y, Ferlay A, Mansbridge RM, Doreau M.2000. Ruminant milk fat plasticity:nutritional control of saturated, polyunsaturated, trans and conjugated fatty acids. Ann Zootech,49:181-205
    Chilliard Y, Rouel J, Leroux C.2012. Goat's alpha-sl casein genotype influences its milk fatty acid composition and delta-9 desaturation ratios. Anim Feed Sci Technol,131(3-4):474-487
    Christl SU, Eisner HD, Dusel G.1996. Antagonistic effects of sulfide and butyrate on proliferation of colonic mucosa:a potential role for these agents in the pathogenesis of ulcerative colitis. Dig Dis Sci, 41(12):2477-2481
    Chung M, Ha S, Jeong S, Bok J, Cho K, Baik M, Choi Y.2000. Cloning and characterization of bovine stearoyl CoA desaturasel cDNA from adipose tissues. Biosci Biotechnol Biochem,64(7):1526-1530
    Cirera S, BirckM, Busk PK, Fredholm M.2010. Expression profiles of miRNA-122 and its target CAT1 in minipigs (Sus scrofa) fed a high-cholesterol diet. Comp Med,60:136-1341
    Clegg RA, Barber MC, Pooley L, Ernens I, Larondelle Y.2001. Milk fat synthesis and secretion:molecular and cellular aspects. Livestock Pro Sci,70:3-14
    Clop A, Marcq F, Takeda H, Pirottin D, Tordoir X, Bibe B, Bouix J, Caiment F, Elsen JM, Eychenne F, Larzul C, Laville E, Meish F, Milenkovic D, Tohin J, Charlier C, Geoges M.2006. A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep. Nat Genet,38:813-818
    Cohen SM.2010. MicroRNAs in CNS Development and Neurodegeneration:insights from Drosophila genetics. Res Persp Neurosci,10:69-77
    Cui J, Eldredge JB, Xu Y, Puett D.2011. MicroRNA expression and regulation in human ovarian carcinoma cells by luteinizing hormone. PLoS ONE,6:e21730
    Damiano F, Alemanno S, Gnoni GV, Siculella L.2010. Translational control of the sterol-regulatory transcription factor SREBP-1 mRNA in response to serum starvation or ER stress is mediated by an internal ribosome entry site. Biochem J,429:603-612
    Davalos A, Goedeke L, Smibert P, Ramireza CM.2011. MiR-33a/b contribute to the regulation of fatty acid metabolism and insulin signaling. PNAS,108:9232-9237
    Dickerson RE.1971. The structure of cytochrome c and the rates of molecular evolution. J Molec Evolution,1:26-45
    Dimitrios I, Konstantinos NM, Pagona O, Aspasia T.2008. Integrative MicroRNA and Proteomic Approaches Identify Novel Osteoarthritis Genes and Their Collaborative Metabolic and Inflammatory Networks. PLoS ONE,3(11):e3740
    Doege H, Stahl A.2006. Protein-mediated fatty acid uptake:Novel insights from in vivo models. Physiology,21:259-268
    Dong CG, Wu KK, Feng SY, Wang XJ, Shao JF, Jian Q.2012. Co-inhibition of microRNA-10b and microRNA-21 exerts synergistic inhibition on the proliferation and invasion of human glioma cells. Inter J oncol,41(3):1005-1012
    Doreau M, Bauchart D, Chilliard Y.2010. Enhancing fatty acid composition of milk and meat through animal feeding. Anim Rep Sci,51:19-29
    Dorn GW, Matkovich SJ, Eschenbacher WH.2012. A Homo sapiens 3'miR-499 mutation alters cardiac mRNA targeting and function. Circresaha,111:260752
    Ducharme NA, Bickel PE.2008. Minireview:lipid droplets in lipogenesis and lipolysis. Endocrinology, 149:942-949
    Duncan RE, Ahmadian M, Jaworski K, Sarkadi-Nagy E, Sul HS.2007. Regulation of lipolysis in adipocytes. Annu Rev Nutr,27:79-101
    Ecker J, Langmann T, Moehle C, Schmitz G.2007. Isomer specific effects of Conjugated Linoleic Acid on macrophage ABCG1 transcription by a SREBP-1c dependent mechanism. BBRC,352:805-811
    Ellis S, Akers RM, Capuco AV, Safayi S.2012. Triennial lactation symposium:bovine mammary epithelial cell lineages and parenchymal development. J Anim Sci,90:1666-1673
    Elyakim E, Sitbon E, Faerman A, Tabak S, Montia E.2010. Hsa-miR-191 is a candidate oncogene target for hepatocellular carcinoma therapy. Cancer Res,70:8088-8087
    Enright AJ, John B, Gaul U, Tuschl T, Sander C, Marks DS.2003. MicroRNA targets in Drosophila. Genome Biol,5:R1
    Esau C, Davis S, Murray SF, Yu XX, Pandy SK, Pear M, Watts L, Booten SL, Grahan M, McKay R, Subramaniam A, Propp S, Lollo BA, Freier S, Bennett CF, Bhanot S, Monia BP.2006. MiR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab,3:87-98
    Fahy E, Subramaniam S, Brown HA, Glass CK, Merrill AH, Murphy RC, Raetz CRH, Russell DW, Seyama Y, Shaw W, Shimizu T, Spener F, Meer GV, VanNieuwenhze MS, White SH, Witztum JL, Dennis EA.2005. A comprehensive classification system for lipids. J Lipid Res,46 (5):839-61
    Fajas L, Auboeuf D, Raspe E, Schoonjans K, Lefevvre AM, Saladin R, Najib J, Laville M, Fruchart JC, Deeb S, Vidal-Puig A, Flier J, Briggs MR, Staels B, Vidal H, Auwerx J.1997. The organization, promoter analysis, and expression of the human PPAR gene. J Bio Chem,272:18779-18789
    Fernandez-Valverde SL, Taft RJ, Mattick JS.2010. Dynamic isomiR regulation in Drosophila development. RNA,16:1881-1888
    Fielding BA, Frayn KN.1998. Lipoprotein lipase and the disposition of dietary fatty acids. Br J Nutr,80: 495-502
    Fontanesi L, Scotti E, Dolezal M, Lipkin E, Dall'Olio S, Zambonelli P, Bigi D, Davoli R, Soller M, Russo V.2010. Bovine chromosome 20:milk production QTL and candidate gene analysis in the Italian Holstein-Friesian breed. Ital J Anim Sci,6:133-135
    Frankel LB, Christoffersen NR, Jacobsen A, Lindow M, Krogh A.2008. Programmed cell death 4 (PDCD4) is an important functional target of the microRNA miR-21 in breast cancer cells. J Bio Chem,283: 1026-1033
    Ding L, Xu YJ, Zhang W, Deng Y, Si MS.2010. MiR-375 frequently downregulated in gastric cancer inhibits cell proliferation by targeting JAK2. Cell Res,20:784-793
    Frost RJA, Rooij EV.2010. MiRNAs as therapeutic targets in ischemic heart disease. J Cardiovasc Translational Res,3:280-288
    Gao P, Tchernyshyov I, Chang TC, Lee YS, Kita K, Ochi T, Zeller KI, De MAM, Van EJE, Mendell JT, Dang CV.2011. C-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature,458:762-765
    Gebeshuber CA, Zatloukal K, Martinez J.2009. miR-29a suppresses tristetraprolin, which is a regulator of epithelial polarity and metastasis. EMBO reports,10:400-405
    Gesellchen V, Boutros M.2004. Managing the genome:microRNAs in Drosophila. Differentiation,72: 74-80
    Giraldez AJ, Mishima Y, Rihel J, Grocock RJ, Van Dongen S, Inoue K, Enright AJ, Schier AF.2006. Zebrafish miR-430 promotes deadenylation and clearance of maternal mRNAs. Science,312(5770): 75-79
    Griffiths-Jones S, Hui JHL, Marco A, Ronshaugen M.2011. MicroRNA evolution by arm switching. EMBO reports,12:172-177
    Gu ZL, Eleswarapu S, Jiang HL.2008. Identification and characterization of microRNAs from the bovine adipose tissue and mammary gland. L FEBS,581:981-988
    Haenlein GFW.2001. Past, present and future perspectives of small ruminant dairy research. J Dairy Sci, 84:2097-2115
    Haenlein GFW.2004. Goat milk in human nutrition. Small Rumin Res,51:155-163
    Hansen HO, Grunnet I, KnudsenBiochem J.1984. Triacylglycerol synthesis in goat mammary gland. The effect of ATP, Mg2+ and glycerol 3-phosphate on the esterification of fatty acids synthesized de novo. Biochem J,220:513-519
    Hart IC, Bines JA, Morant SV, Ridley J L.1978. Endocrine control of energy metabolism in the cow: Comparison of the levels of hormones (prolactin, growth hormone, thyroxine, and insulin) and metabolites in the plasma of high and low-yielding cattle at various stages of lactation. J Endocrinol, 77:333-345
    He A, Zhu L, Gupta N, Chang Y, Fang F.2007. Overexpression of micro ribonucleic acid 29, highly up-regulated in diabetic rats, leads to insulin resistance in 3T3-L1 adipocytes. Mol Endocrinol,21: 2785-2794
    He L, Hannon GJ.2004. MicroRNAs:small RNAs with a big role in gene regulation. Nat Rev Genet,5: 522-531
    Helmer RA, Panchoo M, Dertien JS, Bhakta SM, Hewetson A, Chilton BS.2010. Prolactin-induced Jak2 phosphorylation of RUSH:A key element in Jak/RUSH signaling. Mol Cell Endocrinol,325: 143-149
    Hennighausen L, Robinson GW.2001. Signaling pathways in mammary gland development. Dev Cell,1: 67-475
    Hennighausen L, Robinson GW, Wagner KU, Liu XW.1997. Prolactin signaling in mammary gland development. J Bio Chem,272:7567-7569
    Hogan JC, Stephens JM.2005. The regulation of fatty acid synthase by STAT5a. Diabetes,54:1968-1975
    Huse JT, Brennan C, Hambardzumyan D, Wee B, Pena J.2009. The PTEN-regulating microRNA miR-26a is amplified in high-grade glioma and facilitates gliomagenesis in vivo. Genes & Dev,23:1327-1337
    Hsu SD, Lin FM, Wu WY, Liang C, Huang WC, Chan WL, Tsai WT, Chen G.Z, Lee CJ, Chiu CM, Chen CH, Wu GZ, Huang CY, Tsou AP, Huang HD.2010. MiRTarBase:a database curates experimentally validated microRNA-target interactions. Nucleic Acids Res,10:1-7
    Iliopoulos D, Drosatos K, Hiyama Y, Goldberg IJ, Zannis VI.2010. MicroRNA-370 controls the expression of microRNA-122 and Cptl alpha and affects lipid metabolism. J Lipid Res,51:513-1523
    Jeppesen J, Kiens B.2012. Regulation and limitations to fatty acid oxidation during exercise. J Physiol, 590:1059-1068
    Ji JL, Zhang JS, Huang GC, Qian J, Wang XQ, Mei S.2009. Over-expressed microRNA-27a and 27b influence fat accumulation and cell proliferation during rat hepatic stellate cell activation. FEBS L, 583(4):759-766
    Ji ZB, Wang GZ, Xie ZJ, Zhang CL, Wang JM.2012. Identification and characterization of microRNAs in the dairy goat (Capra hircus) mammary gland by Solexa deep-sequencing technology. Mol Biol Rep, 39:9361-9371
    Jin WB, Li NN, Zhang B, Wu FL, Li WJ, Guo AG, Deng ZY.2008. Identification and verification of microRNA in wheat (Triticum aestivum). J Polym Res,121:351-355
    Jin WW, Dodson MV, Moore SS, Basarab JA, Guan LL.2010. Characterization of microRNA expression in bovine adipose tissues:a potential regulatory mechanis of subcutaneous adpose tissue development. BMC Mol Bio,11:29
    Joglekar MV, Patil D, Joglekar VM, Rao GV, Reddy DN.2009. The miR-30 family microRNAs confer epithelial phenotype to human pancreatic cells. PubMed,1:137-47
    Juarez M, Ramos M.1987. Physico-chemical characteristics of goat's milk as distinct from those of cow's milk. Inter Dairy Fed,202:54-67
    Jump DB.2004. Fatty acid regulation of gene transcription. Cri Rev Clinical Lab Sci,41:41-78
    Kadegowda AKG, Bionaz M, Piperova LS, Erdman RA, Loor JJ.2009. Peroxisome proliferator-activated receptor-y activation and long-chain fatty acids alter lipogenic gene networks in bovine mammary epithelial cells to various extents. J Dairy Sci,92:4276-4289
    Kajimoto K, Naraba H, Iwai AN.2006. MicroRNA and 3T3-L1 pre-adipocyte differentiation. RNA,12(9): 1626-1632
    Kang JX, Wang J.2005. A simplified method for analysis of polyunsaturated fatty acids. BMC Biochem,6: 5-8
    Karbiener M, Fischer C, Nowitsch S, Opriessnig P, Papak C, Ailhaud G, Dani C, Amri EZ, Scheideler M. 2009. MicroRNA miR-27b impairs human adipocyte differentiation and targets PPARy. BBRC, 390(2):247-251
    Khvorova A, Reynolds A, Jayasena SD.2003. Functional siRNAs and miRNAs exhibit strand bias. Cell, 23:4051-4060
    Kim J, Krichevsky A, Grad Y, Hayes GD, Kosik KS, Church GM, Ruvkun G.2004. Identification of many microRNAs that copurify with polyribosomes in mammalian neurons. PNAS,101:360-365
    Kim J, Yoon H, Ramirez CM.2011. MiR-106b impairs cholesterol efflux and increases Abeta levels by repressing ABCA1 expression. Exp Neuro,23:526-532
    Kim MY, Linardic C, Obeid L, Hannun Y.2001. Identification of sphingomyelin turnover as an effector mechanism for the action of tumor necrosis factor alpha and gamma-interferon. Specific role in cell differentiation. J Bio Chem,266(1):484-489
    Kim VN.2005. MicroRNA biogenesis:coordinated cropping and dicing. Nat Rev Mol Cell Bio,6: 376-385
    Kl"oting N, Berthold S, Kovacs P.2009. MicroRNA expression in human omental and subcutaneous adipose tissue. PLoS ONE,4(3):e4699
    Knouf EC, Garg K, Arroyo JD, Correa Y, Sarkar D, Parkin RK, Wurz K, O'Briant KC, Godwin AK, Urban ND, RUzzo WL, Getleman R, Drescher CW, Swisher EM, Tewari M.2012. An integrative genomic approach identifies p73and p63 as activators of miR-200 microRNA family transcription. Nucleic Acids Res,40(2):499-510
    Koprowsk JA, Tucker HA.1973. Serum prolactin during various physiological states and its relationship to milk production in the bovine. Koprowski and Tucker,92:1480
    Korpal M, Lee ES, Hu GH, Kang Y.2008. The miR-200 family inhibits EMT and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2. JBC,283(22):14910-14914
    Kuefer R, Genze F, Zugmaier W, Hautmann RE, Rinnab L, Gschwend JE, Angelmeier M, Estrada A, Buechele B.2007. Antagonistic effects of sodium butyrate and N-(4-hydroxyphenyl)-retinamide on prostate cancer. Neoplasia,9(3):246-253
    Kuhn DE, Martin MM, Feldman DS, Terry AV, Nuovo GJ, Elton TS.2008. Experimental validation of miRNA targets. Methods,44(1):47-54
    Kulshreshtha R, Davuluri RV, Calin GA, Ivan M.2008. A microRNA component of the hypoxic response. Cell Death Differ,15:667-671
    Kuniyasu H, Yoshida K, Sasaki T, Sasahira T, Fujii K, Ohmori H.2006. Conjugated linoleic acid inhibits peritoneal metastasis in human gastrointestinal cancer cells. Int Journal Cancer,118(3):571-576
    Landgraf P, Rusu M, Sheridan R, Sewer A, Lovino N, Aravin A, Pfeffer S, Rice A, Kamphorst AO, Landthaler M, Lin C, Socci ND, Hermida L, Fulci V, Chiaretti S, Foa R, Schliwka J, Fuchs U, Novosel A, Muller RU, Schermer B, Bissels U, Inman J, Phan Q, Chien M, Weir DB, Choksi R, Vita GD, Frezzetti D, Trompeter H, Hornung V, Teng G, Hartman G, Palkovits M, Palkovits M, Lauro RD, Wernet P, Macino G, Rogler CE, Nagel JW, Ju JY, Papavasiliou FN, Benzing T, Lichter P, Tan W, Brownstein MJ, Bosio A, Borkhardt A, Russo JJ, Sander C, Zavolan M, Tuschl T.2007. A mammalian microRNA expression atlas based on small RNA library sequencing. Cell,129:1401-1414
    Lau NC, Seto AG, Kim J, Kuramochi-Miyagawa S, Nakano T, Bartel DP, Kingston RE.2006. Characterization of the piRNA complex from rat testes. Science,313(5785):363-367
    Lee EK, Lee MJ, Abdelmohsen K, Kim W, Kim MM, Srikantan S, Martindale JL, Hutchison ER, Kim HH, Marasa BS, Selimyan R, Egan JM, Smith SR, Fried SK, Gorospe M.2011. MiR-130 suppresses adipogenesis by inhibiting peroxisome proliferator-activated receptor y expression. Mol Cell Bio, 31(4):626-638
    Lee Y, Kim MJ, Han JJ, Yeom KH, Lee S, Baek SH, Kim VN.2004. MicroRNA genes are transcribed by RNA polymerase Ⅱ. EMBO J,23:4051-4060
    Leea S, Paulsona KG, Murchisonc EP, Afanasiev OK, Alken C, Leonard JH, Byrd DR, Hannon GJ, Nghiem P.2011. Identification and validation of a novel mature microRNA encoded by the Merkel cell polyomavirus in Homo sapiens Merkel cell carcinomas. J Clinical Virology,52:272-275
    Lewis BP, Burge CB, Barte DP.2005. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell,120:15-20
    Li HX., Luo X, Liu RX, Yang YJ, Yang GS.2008. Roles of Wnt/β-catenin signaling in adipogenic differentiation potential of adipose-derived mesenchymal stem cells. Mol Cell Endocrinol,291: 116-124
    Li GX, Wu ZS, Li XJ, Ning XM, Li YJ, Yang GS.2011. Biological role of MicroRNA-103 based on expression profile and target genes analysis in pigs. Mol Bio Rep,38:4777-4786
    Li LO, Ellis JM, Paich HA, Wang SL, Gong N, Altshuller G, Thresher RJ, Koves TR, Watkins SM, Muoio DM, Cline GW, Shulman GI, Coleman TA.2009. Liver-specific loss of long chain Acyl-CoA Synthetase-1 decreases triacylglycerol synthesis and P-Oxidation and aters phospholipid fatty acid composition. J Nutr Biochem,284:27816-27826
    Li MZ, Xia YL, Gu YR, Zhang K, Lang Q, Chen L, Guan JQ, Luo ZG, Chen HS, Li Y, Li X, Jiang AA, Shuai SR, Wang JY, Zhu Q, Zhou XC, Gao XL, Li XW.2010. MicroRNAome of porcine Pre-and postnatal development. PLoS ONE,5:e11541
    Li R, Li Y, Kristiansen K, Wang J.2008. SOAP:short oligo-nucleotide alignment program. Bioinformatics, 24:713-714
    Lim WK, Micklem G.2011. MicroRNAs dysregulated in breast cancer preferentially target key oncogenic pathways. Mol Biosyst,7:2571-2576
    Lin ZQ, Murtaza I, Wang K, Jiao JQ, Gao J, Li PF. 2011. MiR-23a functions downstream of NFATc3 to regulate cardiac hyperitrophy. PNAS,106(29):12103-12108
    Lodish HF, Zhou BY, Liu GW, Chen CZ.2008. Micromanagement of the immune system by microRNAs. Nat Rev Immun,8:120-130
    Lu H, Buchan RJ, Cook SA.2010. MicroRNA-223 regulates Glut4 expression and cardiomyocyte glucose metabolism. Cardiovasc Res,86:410-420
    Luedde, T.2010. MicroRNA-151 and its hosting gene FAK (focal adhesion kinase) regulate tumor cell migration and spreading of hepatocellular carcinoma. Hepatology,52:1162-1164
    Luo X, Lin H, Pan Z, Xiao J, Zhang Y, Lu Y, Yang B, Wang Z.2008. Down-regulation of miR-1/miR-133 contributes to re-expression of pacemaker channel genes HCN2 and HCN4 in hypertrophic heart. J Bio Chem,283:20045-20052
    Mannaerts GP, Van Veldhoven PP, Casteels M.2000. Peroxisomal lipid degradation via (3-and a-oxidation in mammals. Cell Biochem Biophy,32:78-83
    Marcinkiewicz A, Gauthier D, Garcia A, Brasaemle DL.2006. The phosphorylation of serine 492 of perilipin a directs lipid droplet fragmentation and dispersion. J Bio Chem,281:11901-11909
    Marquart TJ, Allen RM, Ory DS, Baldan A.2010. MiR-33 links SREBP-2 induction to repression of sterol transporters. PNAS,107:12228-12232
    Mather IH, Keenan TW.1998. Origin and secretion of milk lipids. J Mam Gland Bio Neoplasia,3: 259-273
    Mathonnet G, Fabian MR, Svitkin YV, Parsyan A, Huck L, Murata T, Biffo S, Merrick WC, Darzynkiewicz E, Pillai RS, Filipowicz W, Duchaine TF, Sanenberg N.2007. MicroNA inhibition of translation initiation in vitro by targeting the capbingding complex dIF4F. Science,317(5845):1764-1767
    Martinelli R, Nardelli C, Pilone V, Buonomo T, Buono P, Masone S, Persico G, Forestieri P, Pastore L, Sacchetti L.2010. MiR-519d overexpression is associated with human obesity. Obesity,18(11): 2170-2176
    McBride D, Carre W, Sontakke S, Hogg CO, Law A, Donadeu FX, Clinton M.2012. Identification of miRNAs associated with the follicular-luteal transition in the ruminant ovary. Reproduction,144: 221-233
    McFadden JW, Corl BA.2009. Activation of AMP-activated protein kinase (AMPK) inhibits fatty acid synthesis in bovine mammary epithelial cells. BBRC,390:388-393
    McManaman JL, Russell TD, Schaack J, Orlicky DJ, Robenek H.2007. Molecular determinants of milk lipid secretion. J Mam Gland Bio Neoplasia,12:259-268
    Medina-Gomez G, Gray SL, Yetukuri L, Shimomura K, Virtue S, Campbell M, Curtis RK, Jimenez-Linan M, Blout M, Yeo GSH, Lopez M, Seppanen-Laakso T, Ashcroft FM, Qresic M, Vidai-Puig A.2007. PPAR gamma 2 prevents lipotoxicity by controlling adipose tissue expandability and peripheral lipid metabolism. PLoS Genet,3:e64
    Mele CG, Chessa M.2010. Diacylglycerol acyltransferase, stearoyl-CoA desaturase, and sterol regulatory element binding protein gene polymorphisms and milk fatty acid composition in Italian brown cattle. J Dairy Sci,93:753-763
    Melkman-Zehavi T, Oren R, Kredo-Russo S, Shapira T, Mandelbaum AD.2011. MiRNAs control insulin content in pancreatic β-cells via downregulation of transcriptional repressors. EMBO J,30:835-845
    Miska EA, Alvarez-Saavedra E, Townsend M, Yoshii A, Sestan N, Rakic P, Constantine-Paton M, Horvitz HR.2004. Microarray analysis of microRNAs expression in the developing mammalian brain. Genome Biol,5:R68
    Moioli B, D'Andrea M, Pilla F.2010. Candidate genes affecting sheep and goat milk quality. Small Rumin Res,68(1-2):179-192
    Nakanishi N, Nakagawa Y, Tokushige N, Aoki N, Matsuzaka T. Ishii K, Yahagi N, Kobayashi K, Yatoh S, Takahashi A.2009. The up-regulation of microRNA-335 is associated with lipid metabolism in liver and white adipose tissue of genetically obese mice. BBRC,385:492-496
    Nanbu-Wakao R, Fujitani Y, Masuho Y, Muramatu M, Wakao H.2000. Prolactin enhances CCAAT enhancer-binding protein-b (C/EBPb) and peroxisome proliferator-activated receptor g (PPARg) messenger RNA expression and stimulates adipogenic conversion of NIH-3T3 cells. Mol Endocrinol, 14:307-316
    Niwa R, Slack FJ.2007. The evolution of animal microRNAs function. Curr Opin Genet Dev,17:145-150
    Noguchi S, Yasui Y, Iwasaki J, Kumazaki M, Yamada N, Naito S, Akao Y.2013. Replacement treatment with microRNA-143 and-145 induces synergistic inhibition of the growth of human bladder cancer cells by regulating P13K/Akt and MAPK signaling pathways. Cancer L,328(2):353-361
    Ntambi JM.1995. The regulation of stearoyl-CoA desaturase (SCD). Prog Lipid Res,34:139-50
    Ohba T, Yamauch T, Higashiyama K, Takahashi N.2007. Potent anticancer activities of novel aminophenol analogues against various cancer cell lines. Bioorg Med Chem,15(2):847-853
    Okamura K, Ishizuka A, Siomi H, Siomi MC.2004. Distinct roles for Argonaut proteins in small RNA-directed RNA cleavage pathways. Genes Dev,18:1655-1666
    O'Rourke JR, Georges SA, Seay HR, Tapscott SJ, McManus MT, Goldhamer DJ, Swanson MS, Harfe BD. 2007. Essential role for Dicer during skeletal muscle development. Dev Bio,311:359-368
    Otto TC, Lane MD.2005. Adipose development:from stem cell to adipocyte. Crit Rev Biochem Mol Biol, 40(4):229-242
    Palmquist DL.2006. Milk fat:Origin of fatty acids and influence of nutritional factors thereon. In Advanced Dairy Chemistry:Lipids. Volume 2. New York:Springer:43-92
    Pasquinelli AE, Reinhart BJ, Slack F, Martindale MQ, Kuroda MI, Mailer B, Hayward DC, Ball EE, Degnan B, Muller P, Spring J, Srinivasan A, Fishman M, Spring J, Srinivasan A, Fishman M, Finnerty J, Corbo J, Levine M, Leahy P, Davidson E, Ruvkun G. 2000. Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature,408:86-91
    Pawlosky RJ, Hibbeln JR, Novotny JA, Salem N.2001. Physiological compartmental analysis of a-Linolenic acid metabolism in adult humans. J Lipid Res,42:1257-1265
    Petersen CP, Bordeleau ME, Pelletier J, Sharp PA.2006. Short RNAs repress translation after initiation in mammalian cells. Mol Cell,21(4):533-542
    Petrocca F, Vecchione A, Croce CM.2008. Emerging role of miR-106b-25/miR-17-92 clusters in the control of transforming growth factor β signaling. Cancer Res,68:8191
    Pietro P, Maria F, GianFranco G, Giuseppe E.2003. The complete nucleotide sequence of goat (capra hircus) mitochondrial genome goat mitochondrial genome. Mitochondrial DNA,14:199-203
    Qun L, Zhan GG, Alarcon RM, Ye JP, Yun Z.2008. A role of miR-27 in the regulation of adipogenesis. FEBS J,276:2348-2358
    Ramachandran D, Roy U, Garg S, Ghosh S, Pathak S, Kolthur-Seetharam U.2011. Sirtl and mir-9 expression is regulated during glucose-stimulated insulin secretion pancreatic β-islets. FEBS J,278: 1167-1174
    Ramirez CM, Davalos A, Goedeke L, Salerno AG, Warrier N, Cirera-Salinas D, Suarez Y, Fernandez-Hernando C.2011. MicroRNA-758 regulates cholesterol efflux through posttranscriptional repression of ATP-binding cassette transporter A1. Arterioscler Thromb Vasc Biol,31:2707-2714
    Ramsay TG.2003. Porcine leptin inhibits lipogenesis in porcine adipocytes. J Anim Sci,81:3008-3017
    Rasmussen BB.1999. Regution of fatty acid oxidation in skeletal muscle. Anuual Rev Nutrition,19: 463-484
    Rayner KJ, Suarez Y, Davalos A, Parathath S, Fitzgerald ML, Tamehiro N, Fisher EA, Moore KJ, Fernandez-Hernando C.2010. MiR-33 contributes to the regulation of cholesterol homeostasis. Science,328:1570-1573
    Rebuffe-Scrive R, Enk L, Crona N, Lonnroth P, Abrabamsson, Smith U, Bjorntorp P.1985. Fat cell metabolism in different regions in women. Effect of menstrual cycle, pregnancy, and lactation. J Clin Invest,75:1973-1976
    Robins H, Li Y, Padgett RW.2004. Incorporating structure to predict microRNA targets. PNAS,102(11): 4006-4009
    Robishaw JD, Neely JR.1985. Coenzyme A metabolism. Am J Physiol,248:E1-E9
    Rock CO, Calder RB, Karim MA, Jackowski S.2000. Pantothenate kinase regulation of the intracellular concentration of coenzyme A. J Biol Chem,275:1377-1383
    Rosenfeld MA, Siegfried W, Yoshimura K, Yoneyama K, Fukayama M, Stier LE, Paakko PK, Gilardi P, Stratford-Perricaudet LD, Perricaudet M.1991. Adenovirus-mediated transfer of a recombinant alpha 1-antitrypsin gene to the lung epithelium in vivo. Science,252:431-434
    Roy A, Meisterernst M, Pognonec P, Roeder RG.1991. Cooperative interaction of an initiator-binding transcription initiation factor and the helix-loop-helix activator USF. Nature,354:245-248
    Samkova E, Spicka J, Pesek M, Pelikanova T, Hanus O.2012. Animal factors affecting fatty acid composition of cow milk fat:A review. S Afr J Anim Sci,42:83-100
    Schadinger SE, Bucher NLR, Schreiber BM, Farmer SR.2005. PPAR2 regulates lipogenesis and lipid accumulation in steatotic hepatocytes. Am J Physiol Endocrinol Metab,288:1195-1205
    Schratt GM, Tuebing F, Nigh EA, Kane CG, Sabtini ME, Kiebler M, Greenberg ME.2006. A brain-specific microRNA regulates dendritic spine development. Nature,439:283-289
    Serment A, Schmidely P, Giger-Reverdin S, Chapoutot P, Sauvant D.2011. Effects of the percentage of concentrate on rumen fermentation, nutrient digestibility, plasma metabolites, and milk composition in mid-lactation goats. J Dairy Sci,94:3960-3972
    Shimono Y, Zabala M, Cho RW, Lobo N, Dalerba P, Qian DL, Diehn M, Liu HP, Panula SP, Chiao E, Dirbas FM, Somlo G, Pera AR, Lao KQ, Clarke MF.2009. Downregulation of miR-200 links breast cancer stem cells with normal stem cells. Cell,138(3):423-424
    Shipley JM, Waxman DJ.2004. Simultaneous, bidirectional inhibitory crosstalk between PPARs and STAT5b. Toxicol Appl Pharmacol,199:275-284
    Shorten PR, Pleasants TB, Upreti G.C. 2004. A mathematical model for mammary fatty acid synthesis and triglyceride assembly:the role of stearoyl CoA desaturase (SCD). J Dairy Res,71:385-397
    Shultz TD, Chew BP, Seaman WR.1992. Differential stimulatory and inhibitory responses of human MCF-7 breast cancer cells to linoleic acid and conjugated linoleic acid in culture. Anticancer Res, 12(6B):2143-2145
    Silveri L, Tilly G, Vilotte JL, de Provost FL.2006. MicroRNA involvement in mammary gland development and breast cancer. Reprod Nutr Dev,46:549-556
    Simopoulos AP.2002. Omega-3 fatty acids in inflammation and autoimmune diseases. J American college of nutrition.21(6):495-505
    Sonkoly E, Stahle M, Pivarcsi A.2008. MicroRNAs and immunity:novel players in the regulation of normal immune function and inflammation. Semin Cancer Biol,18:131-140
    Song KH, Li T, Owsley E, Chiang JYL.2010. A putative role of microRNA in regulation of cholesterol alpha-hydroxylase expression in human hepatocytes. J Lipid Res,51:2223-2233
    Sonnenberg A, Daams H, Valk MA, Hilkens J, Hilgers J.1986. Development of mouse mammary gland: identification of stages in differentiation of luminal and myoepithelial cells using monoclonal antibodies and polyvalent antiserum against keratin. J Histochem Cytochem,34 (8):1037-1046
    Stefano Volinia, George A Calin, Chang-Gong Liu.2006. A microRNA expression signature of human solid tumors defines cancer gene targets. PNAS,103(7):2257-2261
    Sun DD, Lee YS, Malhotra A, Kim HK, Matecic M.2011. MiR-99 family of microRNAs suppresses the expression of prostate-specific antigen and prostate cancer cell proliferation. Cancer Res,71:1313
    Takahashi N, Ohba T, Yamauchi T, Higashiyama K.2006. Antioxidant and anticancer activities of novel p-alkylaminophenols and p-acylaminophenols (aminophenol analogues). Bioorg Med Chem,14(17): 6089-6096
    Takanabe R, Ono K, Abe Y, Takaya T, Hore T, Wada H, Kita T, Satoh N, Shimatsu A, Hasegawa K. 2008. Up-regulated expression of microRNA-143 in association with obesity in adipose tissue of mice fed high-fat diet. BBRC,376(4):728-732
    Tanaka T, Haneda S, Imakawa K, Sakai S, Nagaoka K.2009. A microRNA, miR-101a, controls mammary gland development by regulating cyclooxygenase-2 expression. Differentiation,77:181-187
    Tang XQ, Tang GL, Ozcan S.2008. Role of microRNAs in diabetes. BBA,1779:697-701
    Tariq MR.2007. Illuminating the silence:understanding the structure and function of small RNAs. Mol Cell Bio,8:23-32
    Febbey PW, Buttke TM.1992. Arachidonic acid regulates unsaturated fatty acid synthesis in lymphocytes by inhibiting stearoyl-CoA desaturase gene expression. Biochem Biophys Acta,1171:27-34
    Teleman AA.2010. MiR-200 De-FOGs insulin signaling. Cell Metab,11:8-9
    Teleman AA, Cohen SM.2006. Drosophila lacking microRNA miR-278 are defective in energy homeostasis. Genes Dev,20:417-422
    Ting Y, Medina DJ, Strair RK, Schaar DG.2010. Differentiation-associated miR-22 represses Max expression and inhibits cell cycle progression. BBRC,394:606-611
    Tong HL, Li QZ, Gao XJ, Yin DY.2012. Estabishing and characterization of a lactating dairy goat mammary gland epithelial cell line. In Vitro Cell Dev Biol,48:149-155
    Townley-Tilson WHD, Callis TE, Wang DZ.2010. MicroRNAs 1,133, and 206:critical factors of skeletal and cardiac muscle development, function, and disease. Biochem & Cell Bio,8(42):1252-1255
    Frajkovski M, Hausser J, Soutschek J, Bhat B, Akin A, Zavolan M, Heim MH, Stoffel M.2011. MicroRNAs 103 and 107 regulate insulin sensitivity. Nature,474:649-654
    Fraurig HH.1967. Cell proliferation in the mammary gland during late pregnancy and lactation. Anatom Rec,157:489-503
    Fsang J, Zhu J, Oudenaarden A.2007. MicroRNA-mediated feedback and feedforward loops are recurrent network motifs in mammals. Mol Cell,26:753-767
    Fuccoli A, Poliseno L, Rainaldi G.2006. MiRNAs regulate miRNAs. Cell Cycle,5:2473-2476
    Furcatel G, Rubin N, El-Hashash A, Warburton D.2012. MiR-99a and miR-99b modulate TGF-βinduced epithelial to mesenchymal plasticity in normal murine mammary gland cells. Plos One,23:234e.
    Jcar A, Vafaizadeh V, Jarry H, Fiedler J, Klemmt PA, Thum T,Groner B, Chowdhury K.2010. MiR-212 and miR-132 are required for epithelial stromal interactions necessary for mouse mammary gland development. Nat Genet,42:1101-1108
    Jnger RH.1995. Lipotoxicity in the pathogenesis of obesity-dependent NIDDM. Diabetes,44:863-870
    Wakil SJ, Abu-Elheiga LA.2008. Fatty acid metabolism:target for metabolic syndrome. J Lipid Res,50: S138-S143
    Wang JY, Hou XL, Yang XD, Gustafson P.2011. Identification of conserved microRNAs and their targets in Chinese cabbage (Brassica rapa subsp. pekinensis). Genome,54:1029-1040
    Wang W, Luo J, Zhong Y, Lin XZ, Shi HB, Zhu JJ, Li J, Sun YT, Zhao WS.2012. Goat liver X receptor a, molecular cloing, functional characterization and regulating fatty acid synthesis in epithelial cells of goat mammary glands. Gene,1(505):114-120
    Wei C, Li QZ, Ding W.2011. MiR-126-3p regulates progesterone receptors and involves development and lactation of mouse mammary gland. Mol Cell Biochem,355(1-2):17-25
    Wei Y, Chen S, Yang P, Ma Z, Kang L.2009. Characterization and comparative profiling of the small RNA transcriptomes in two phases of locust. Genome Biol,10:R6
    Wei ZL, Liu XL, Feng TT, Chang YQ.2011. Novel and conserved micrornas in Dalian Purple Urchin (Strongylocen-trotus Nudus) identified by next generation sequencing. Inter J Biochem Sci, 7:180-192
    Wightman B, Ha I, Ruvkun G. 1993. Posttranscriptional regulation of the heterachranic gene lin-4 by lin 4 mediates temporal pattern form in C. elegans. Cell,75(5):855-862
    Williams AH, Liu N, Rooij EV, Loson EN.2009. MicroRNA control of muscle development and disease. Curr Opin Cell Biol,21:461-469
    Wu HL, Zhu SM, Mo YY.2009. Suppression of cell growth and invasion by miR-205 in breast cancer. Cell Res,19:439-448
    Wu L, Fan J, Belasco JG.2006. MicroRNAs direct rapid deadenylation of mRNA. PNAS,103(11): 4034-4039
    Xia HF, He TZ, Liu CM, Cui Y, Song PP.2009. MiR-125b expression affects the proliferation and apoptosis of human glioma cells by targeting BMF. Cell Physiol Biochem,23:347-358
    Xie HM, Lim B, Lodish HF.2009. MicroRNAs induced during adipogenesis that accelerate fat cell development are down regulated in obesity. Diabetes,58:1050-1057
    Xu J, Li CX, Li YS, Lv JY, Ma Y, Shao TT, Xu LD, Wang YY, Du L, Zhang YP, Jiang W, Li CQ, Xiao Y, Li X.2011. MiRNA-miRNA synergistic network:construction via co-regulating functional modules and disease miRNA topological features. Nucleic Acids Res,39:825-836
    Xu P, Vernny SY, Guo M, Hay BA.2003. The Drosophila microRNA Mir-14 suppresses cell death and is required for normal fat metabolism. Curr Biol,13:790-795
    Yamazaki T, Shiraishi S, Kishimoto K, Miura SJ, Ezaki O.2011. An increase in liver PPARy2 is an initial event to induce fatty liver in response to a diet high in butter:PPARy2 knockdown improves fatty liver induced by high-saturated fat. J Nutr Biochem,22:543-553
    Yang ZH, Wang L.2011. Regulation of microRNA expression and function by nuclear receptor signaling. Cell Biosci,1:31
    Yao YX, Zhao YG, Smith LP, Watson Mm Nair V.2009. Novel microRNAs (miRNAs) encoded by herpesvirus of turkeys:evidence of miRNA evolution by duplication. Virology,83:6969-6973
    Yu FY, Yao HR, Zhu PC, Zhang QQ, Pan QH.2007. Let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell,131:1109-1123
    Zamore PD, Haley B.2005. Ribo-genome:The big world of small RNAs. Science,309(5740):1519-1524
    Zhang N, Li QZ, Gao XJ, Yan HB.2011. Potential role of adenosine monophosphate-activated protein kinase in regulation of energy metabolism in dairy goat mammary epithelial cells. J Dairy Sci,94: 218-222
    Zhang Y, Qian Q, Ge D, Li YH, Wang XR, Chen Q, Gao XM, Wang T.2011. Identification of benzophenone C-Gluc osides from Mango tree leaves and their inhibitory effect on triglyceride accumulation in 3T3-L1 Adipocytes. ACS,59:11526-11533
    Zhao Y, Ransom JF, Li AK, Vedantham V, Drehle MV, Muth AN, Tsuchihashi T, McManus MT, Schwartz TJ, Srivastava D.2007. Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1-2. Cell,129:303-317
    Zhong L, Granelli-Piperno A, Choi YW, Steinman RM.1999. Recombinant adenovirus is an efficient and non-perturbing genetic vector for human dendritic cells. Eur J Immunol,29:964-972
    Zidi A, Fernandez-Cabanas VM, Carrizosa J, Polvillo O, Gonzalez-Redondo P, Jordana J, Gallardo D, Amills M, Serradilla.2012. Short Communication:An association analysis between one missense polymorphism at the SREBF1 gene and milk yield and composition traits in goats. J Dairy Sci,93(9): 4332-4339

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700