用户名: 密码: 验证码:
吸入甲醛致BALB/c小鼠的骨髓损伤及其它器官的毒性作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
甲醛,是一种主要的化工产品,广泛的存在于环境中,是…种常见的空气污染物。近年来甲醛已经被WHO (World Health Organization)组织划分为人类A1级别致癌物,已经明确指出甲醛可以导致鼻咽癌,引起哮喘等。并且美国NTP (National Toxicology Program)组织也已经将其划分为导致白血病的元凶,但是其导致远距离器官产生的毒性机理仍然不清楚,特别是其如何导致骨髓细胞中产生毒性机理的研究还值得去解决。本研究通过氧化应激反应平衡的变化来揭示这个问题。
     一、内环境甲醛浓度变化对BALB/c小鼠的毒性影响
     将不同浓度的甲醛溶液依据小鼠体重(6,12,18,30和60μg/g)通过尾静脉注射入小鼠体内,实验发现当BALB/c小鼠内的甲醛浓度平衡受到影响时,将会引起组织器官发生一系列的氧化应激反应,在肺、肝、脑、肾脏和骨髓细胞等器官都检测到氧化损伤情况的发生。其中活性氧自由基(Reactive oxygen species, ROS),除了肺组织外,在其他组织器官中均随着注射甲醛浓度的上升ROS值在不断增大。肺组织中没有检测到ROS增加,可能与其是呼吸的重要器官,组织结构有所不同,对ROS耐受性较强有关:对于膜脂过氧化重要的产物丙二醛(Malondialdehyde, MDA),发现组织器官随着注射甲醛浓度的上升MDA值在不断增大,并且在注射甲醛浓度为12μg/g时候,除脑组织以外肝,肺,肾和骨髓细胞中MDA值都是最大值;并且在反应细胞中DNA-蛋白质交联(DNA protein crosslinks, DPC)指标中,肝,肺,脑,肾和骨髓细胞,在浓度6~18μg/g时(在12μg/g时DPC值最高),DPC系数都随之增大,但在注射高浓度组30-60μg/g时反而减少。这些结果说明:1)微量的甲醛就能够导致机体内产生氧化应激反应从而导致机体器官的损伤,这是一个新发现。2)而且在微量甲醛的影响下,体内应该存在一个甲醛应答的阈值;从本实验来看,体内甲醛浓度达到12μg/g时似乎达到了这个闽值,引发连锁反应改变体内甲醛浓度的平衡。当注入体内甲醛浓度增大时,机体通过缓冲反应又可以清除氧化应激分子,使体内甲醛重新达到平衡。3)进而推测,短时间急性甲醛染毒应该能导致相关毒理反应。
     二、甲醛口鼻式气态染毒对小鼠和大鼠的影响
     对与甲醛的气态染毒而言,无论啮齿类动物如大小鼠,或灵长类动物恒河猴等等,都是可以用来做实验对象的,目前还没有论断到底那种动物是最好的动物模型,而且也没有专门的用于甲醛气态染毒的模式实验动物。目前国际上研究气态甲醛暴露问题的实验动物,大多数都选择的是大鼠(如Wistar大鼠)来进行实验的,用小鼠来做为动物模型进行甲醛毒性研究还比较少。本实验研究显示,在气态甲醛浓度为3.0mg/m3条件下,Wistar大鼠的体内多个器官特别是鼻腔和骨髓中明显可以检测出(与实验对照组相比)生物标志物的改变。活性氧自由基(ROS)水平上升,并且与之对应的DNA-蛋白质交联水平(DPC)也显著上升;并且抗氧化性化合物还原性谷胱甘肽(Glutathione, GSH)水平在骨髓,肺和脾脏组织中都发生显著下降。这些结果说明大鼠在3.0mg/m3浓度下组织器官还是受到了氧化损伤的影响,其中在骨髓和鼻腔中比较明显。在肺和脾脏中没有直接检测到ROS,DPC产生变化,但仍然能够发现在抗氧化系统中发现GSH水平产生了变化。在气态甲醛3.0mg/m3的暴露条件下,同样的状况也可以在BALB/c小鼠的试验中发现:在鼻腔和骨髓组织中(与对照组相比),ROS和DPC指标显著上升而抗氧化损伤指标GSH也与之对应的显著下降;在肺和脾脏组织中,ROS和DPC未检测出明显变化,但也仍然检测出GSH指标出现下降趋势。
     通过对比Wistar大鼠和BALB/c小鼠的ROS, GSH和DPC,我们可以推断在甲醛气态染毒实验中,大鼠和小鼠产生的由甲醛刺激造成氧化损伤情况大致相同。虽然以前甲醛气态染毒所用的实验对象大部分是在鼠,但本实验证明用BALB/c小鼠所获得的毒理特征儿乎与大鼠一致,可以很好的替代大鼠用于染毒实验。
     三、甲醛口鼻式气态染毒致小鼠的骨髓及远距离毒性影响
     本实验通过甲醛对BALB/c鼠在短期且模拟职业暴露条件(8h/d,7day)吸入染毒,检测了甲醛对小鼠骨髓细胞的毒性。通过ROS, MDA,GSH,DPC和甲醛浓度(FA)等指标检测了甲醛对小鼠骨髓细胞的氧化损伤,通过给小鼠依据100mg/kg体重灌胃注入GSH溶液,建立了甲醛毒性抑制组;利用RT-PCR检测了其对在骨髓细胞中的造血细胞生长分化起重要作用的转化生长因子(TGF-p)和造血生长因子(GM-Csf)的表达的影响;然后义检测了骨髓细胞周期变化,并且做了骨髓病理切片验证实验结果。
     发现随甲醛染毒浓度升高(0,0.5,1.0,3.0mg/m3),肺、肝和骨髓细胞中的ROS,MDA和DPC值极显著升高(P<0.01),并致GSH值下降(P<0.01);肝和骨髓组织中FA值也随之升高,肺组织中FA值没有变化。而外周血淋巴单核细胞中这些指标儿乎都没有变化。而且加入GSH抑制组后,能显著的降低甲醛暴露导致的机体氧化损伤。
     通过RT-PCR结果也显示随吸入甲醛浓度的升高,TGF-P和GM-Csf的表达量也随之升高。并且我们通过对骨髓细胞周期的检测,骨髓病理切片的检测也印证了吸入甲醛确实能导致骨髓细胞损伤。
     总体来说以上结果可以证明甲醛能致使小鼠骨髓细胞产生损伤,以及其能致使远距离器官产生毒性作用。从基因以及细胞周期等方面向我们提示,高浓度的甲醛暴露有增加患白血病的风险。当然我们需要更多更充分的证据来证明甲醛暴露和白血病的关系。
Formaldehyde is a major chemical product, widely existence in the environment, and is a common air pollutant. In recent years, formaldehyde has been classified by WHO as carcinogen (A1level), and has made clear conclusion that formaldehyde can cause nasopharyngeal cancer, asthma and other diseases. US NTP organization has also considered formaldehyde leads to leukemia, but the mechanism how it causes toxicity of non-respiratory organs remains is unclear, particularly how it causes the toxicity of bone marrow cell is also worth to mark clear. In this study, the change of oxidative stress balance has been found related to the problem.
     1. The formaldehyde concentration in body influenced the toxicity of the Balb/c mice.
     Different concentrations formaldehyde solution which based the mouse body weight (6,12,18,30and60μg/g) was injected into the tail vein of mice, and then it was found that along with the formaldehyde concentration in the Balb/c mice is increased, the cells of organs can be found with a series of oxidative stress, while the oxidative injury was detected in the lung, liver, brain, kidneys, and bone marrow. The ROS (reactive oxygen species, ROS) level and oxidative damage were found increasing along with the rising in the concentration of formaldehyde in these organs except the lung. This phenomenon may relate to the fact that lung is a vital organ of the respiratory, organizational structure is different from others, so it has stronger tolerance against ROS. The malondialdehyde (malondialdehyde, MDA), is an important peroxidation product for membrane lipid, was found increased in the tissues and organs of the mice along with the injection of formaldehyde. When the injection concentration of formaldehyde reached at12μg/g, the MDA values of liver, lung, kidney and bone marrow cells reached to maximum. The DNA-protein cross-linking (DPC) in liver, lung, brain, kidney and bone marrow cells was also found increased at the formaldehyde levels of6~18μg/g (the highest DPC was at12μg/g), but decreased in the higher concentrations at30~60μg/g.
     These results indicate that:1) the trace quantities of formaldehyde generated in the body can lead to oxidative stress in body organs, which is a new discovery.2) Under the influence of trace formaldehyde, the body should have a formaldehyde response threshold. From our experimental results, the concentration of formaldehyde at12μg/g of the body may close to the threshold, triggering a chain reaction to change the balance of formaldehyde concentration in body. When injected formaldehyde concentration is increasing, the body can clear the adverse effects through the buffer and oxidative stress response elements, and then the body keeps formaldehyde rebalance.3) Further speculated that acute formaldehyde exposure can cause acute toxicity related reactions.
     2. The affect between Mice to Rats under the nose-mouth formaldehyde exposed.
     Exposed to the gaseous formaldehyde, whether rodents such as rats and mice, or primate rhesus monkey, etc., are all used to do the experiment, there is no confirmed which is the best kind of animal in toxicological experiments, and then no special model animals for gaseous formaldehyde exposured. The current international studies for gaseous formaldehyde exposure experiments, are most chosing the rat (for example Wistar rats) to carry out experiments, whereas use mice as animal models of formaldehyde toxicity studies is still relatively less. This study showed that using rats as animal model we have found the toxicity effects under exposure of3.0mg/m3gaseous formaldehyde. The biomarks in various organs of Wistar rats, particularly evident in the nasal cavity and the bone marrow can be positive detected compared with the control groups. The levels of reactive oxygen species (ROS) significantly increased, and the DPC also increased. As one of the biomarker of the antioxidant system, the reduced of glutathione (GSH) levels in the bone marrow, lung and spleen tissues were significantly decreased. These results indicated that3.0mg/m3formaldehyde exposure could induce oxidative damage on rat tissues and organs. Comparing to the nasal cavity, the bone marrow, lungs and spleen were not very sensitive (for example ROS, DPC changes did not obvious), but the changes of GSH could still be found. The same situations could be also found when Balb/c mice exposed to gaseous formaldehyde3.0mg/m3:in the nasal tissue and bone marrow (compared with the control group), the ROS and DPC index increased significantly and oxidative damage indicators corresponding GSH also decreased significantly; in lung and spleen tissues, the changes of ROS and DPC did not detected, but the GSH could still be detected a downward trend.
     By comparation of Wistar rats with Balb/c mice's ROS, GSH and DPC, we can infer that, for gaseous formaldehyde exposure experiments, the rats and mice may have similar oxdative effects. During previous gaseous formaldehyde exposure experiments the rats were wildly used as subjects, with the present experiment that Balb/c mice had similar oxdative effects with rats'toxicological studies, we think mice can be a good alternative to rats for exposure experiments.
     3. Mouse bone marrow and other organ toxicity induced by formaldehyde exposure via nose-mouth inhalation
     In this study, the experimental BALB/c mice were undertaken a short term and simulated occupational formaldehyde inhalation exposure (8h/d,7day), formaldehyde toxicity effects were detected on mouse bone marrow cells. ROS, MDA, GSH, DPC and other biomarkers have been used for testing formaldehyde induced oxidative damage on mouse bone marrow cells, according to100mg/kg body weight via gavage to mice injected, GSH was used for the establishment of formaldehyde toxicity suppression group. By RT-PCR detection, the formalydehy exposure to hematopoietic cells in the bone marrow had been found to play an important role in growth and differentiation of transforming growth factor (TGF-β) and hematopoietic growth factors (GM-Csf) during transcription; then the cell cycle changes were detected for bone marrow cells, and then bone marrow biopsy was undertaken to verify the pathological changes.
     Along with formaldehyde exposure concentration (0,0.5,1.0,3.0mg/m3) incresing, the biomarkers ROS, MDA and DPC values in lung, liver and bone marrow cells were significantly increased (P<0.01), and the value of GSH decreased (P<0.01); while the formaldehyde values of liver and bone marrow tissue were also increased (but lung tissue FA value does not change). The peripheral blood mononuclear cells in lymphoid almost no change for these biomakers. In GSH suppression group, the formaldehyde induced oxidative effects significantly reduced.
     The RT-PCR results also showed that, along with the formaldehyde concentration increasing, TGF-β and GM-Csf transcription also increased. The cell cycle detection of bone marrow cells and bone marrow biopsy also confirmed that the inhaled formaldehyde can really cause damage to bone marrow cells.
     Overall, these results suggst that formaldehyde can cause damage of bone marrow cells, as well as other organs cells. It can produce toxic effects via gene and cell cycle negative changes, suggesting high concentrations of formaldehyde exposure may increase the risk of leukemia. Of course, we still need more evidences to prove the relationship between formaldehyde and leukemia.
引文
1. WHO.2002. Formaldehyde:Concise International Chemical Assessment Document 40. World Health Organization. http://www.inchem.org/documents/cicads/cicads/cicad40.htm.
    2. 鲁志松,杨旭.室内空气甲醛对人体健康的危害.中国环境卫生,2003,6:22-30.
    3. Fu B, Song R. Effect of temperature and humidity from artificial wood-based board on formaldehyde emission. Journal of environment and health,2006,23:436-437.
    4. IARC.2006. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. Formaldehyde,2-Butoxyethanol and 1-tert-Butoxypropan-2-ol, vol.88, Lyon, France: International Agenc for Research on Cancer, p.39-325.
    5. Bizzari SN.2007. Formaldehyde. In Chemical Economics Handbook. Menlo Park, CA:SRI Consulting. Online edition.106 pp.
    6. EPA.2008.Registration Eligibility Decision for Formaldehyde and Paraformaldehyde.U.S. Environmental.ProtectionAgency:http://www.epa.gov/oppsrrd1/reregistration/REDs/formaldehy de-red.pdf.
    7. Salas LJ, Singh HB. Measurements of formaldehyde and acetaldehyde in the urban ambient air. Atmos Environ,1986.20:1301-1304
    8. O'Neil MJ, Heckelman PE, Koch CB, Roman KJ, Kenny CM, D'Arecca MR, eds. The Merck Index:An Encyclopedia of Chemicals, Drugs and Biologicals,14th ed. Whitehouse Station, NJ: Merck.2006. pp.726,1211,1672.
    9. HSDB.Hazardous Substances Data Bank. Formaldehyde. National Library of Medicine. http://toxnet.nlm.nih.gov/cgi-bin/sis/htmlgen?HSDB and search " formaldehyde".2009.Accessed on 5/18/09.
    10. HSDB. Hazardous Substances Data Bank. Formaldehyde. National Library of Medicine. http://toxnet.nlm.nih.gov/cgi-bin/sis/htmlgen?HSDB and search "formaldehyde".2007. Accessed on 6/28/07.
    11. Imhus H R. Clinical evaluation of patients with complaints related to formaldehy-de exposure. J Allergy Clin Immunol,1985,76:831.
    12. Priority substances list assessment Report formaldehyde. Canadian Environmental Protection Art 1999.
    13. Hong Z, Tong Z, Shi J. Effects of maldehyde on respiratory system and pulmonary function of workers. Chinese Journal of Public Health,2007,23:849-850
    14. Akron.Formaldehyde, Anhydrous. Department of Chemistry, University of Akron. http://ull.chemistry.uakron.edu/erd/Chemicals/8000/6514.html.2009.
    15. Feron VJ, Arts JH, Kuper CF, et al. Health risks associated with inhaled nasal toxicants. Crit Rev Toxicol,2002,31:313-347
    16. Kilburn KH. Neurobehavioral impairment and seizures from formaldehyde. Arch Environ Health,1994,49:37-44.
    17. Kilbum KH. Indoor air effects after building renovation and in manufactured homes. Am JMed Sci,2000,320:249-254.
    18.施健,童智敏,姜荣明.职业接触甲醛对工人神经行为功能的影响.环境与职业医学,2007,24:608-610.
    19.吴建国.甲醛对相关工作人员危害性调查及分析.中国高新技术企业,2009,3:142-143.
    20. Heck HD, Casanova-Schmitz M, Dodd PB, Schachter EN, Witek TJ, Tosun T. Formaldehyde (CH2O) concentrations in the blood of humans and Fischer-344 rats exposed to CH2O under controlled conditions. Am Ind Hyg Assoc J.2009,46(1):1-3.
    21. Casanova M, Heck HD, Everitt JI, Harrington WW Jr, Popp JA. Formaldehyde concentrations in the blood of rhesus monkeys after inhalation exposure. Food Chem Toxicol 1988,26(8).
    22.王小玲,原福胜,张志红,等.甲醛吸入对小鼠学习记忆能力的影响.环境与健康杂志,2008,25:400-402.
    23. Cassidy SL, Dix KM, Jenkins T. Evaluation of a testicular sperm head counting technique using rats exposed to dimethoxyethyl phthalate(DMEP), glycerolalpha-monochlorohydrin (GMS), epichlorohydrin(ECH), formaldehyde, or methyl methanesulphonate (MMS). Arch Toxicol,1983, 53:71-78.
    24. Majumder PK, Kumar VL. Inhibitory effects of formaldehyde on the reproductive system of male rats. Indian JPhysiol Pharmacol,1995,39:80-82
    25. Zhang L, Steinmaus C, Eastmond DA, Xin XK, Smith MT. Formaldehyde exposure and leukemia:a new meta-analysis and potential mechanisms. MutatRes.2009,681(2-3):150-168.
    26. Zhang L, Freeman LE, Nakamura J, Hecht SS, Vandenberg JJ, Smith MT, Sonawane BR. Formaldehyde and leukemia:Epidemiology, potential mechanisms, and implications for risk assessment. Environ Mol Mutagen.2010,51(3):181-191.
    27. Collins JI, Ness R, Tyl RW, et al. A Review of Adverse Pregnancy Outcomes and formaldehyde Exposure in Human and Animal Studies. Regul Toxicol Pharmacol,2001,34:17-34.
    28. Dulskiene V, Grazuleviciene R. Environmental risk factors and outdoor formaldehyde and risk of congenital heart malformations. Medieina,2005,41:787-795.
    29. Natarajan AT, Darroudi FC, Bussman JM, et al. Evaluation of the mutagenicity of formaldehyde in mammalian cytogenetic assays in vivo and in vitro. Mutation Res,1983,122:355-360.
    30.刘丹丹,王博.气态甲醛致雌性小鼠生殖细胞DNA-蛋白质交联的研究.生态毒理学报,2006,1:249-254.
    31.王伟,唐明德,易义珍,等.甲醛对雌性小鼠动情周期及卵巢的影响.实用预防医学,2002,9:641-643.
    32. Dallas CE, scott MJ, ward JB, et al. Cytogenetic analysis of pulmonary lavage and bone marrow cells of rats after repeated formaldehyde inhalation[J]. Appl Toxicol,1992,12:199-203
    33. Fishbein L.1992. Exposure from occupational versus other sources. Scan J Work Environ Health 18:5-16.
    34. OSHA.1990. Enforcement Procedure for Occupational Exposure to U. S. Labor.
    35. Organ KT, Gross EA, et al. DNA-protein cross-links and cell replication at specific sites in the nose of F344 rats exposed subchronically to formaldehyde. Fundam Appl Toxicol.1990, 23:525-536
    36. Shaham J, Bomstein Y, Melzer A, et al. DNA-protein crosslinks and sister chromatid exchanges as biomarkers of exposure to formaldehyde.Int J. Occup Environ Health.1997,3:95-104.
    37.吴凯,杨光涛,娄小华,等.甲醛致小鼠肺DNA蛋白质交联和DNA断裂效应的研究.公共卫生与预防医学,2006,17:15-18.
    38. Kovacic P. Role of oxidative metabolites of cocaine in toxicity and addiction:Oxidative stress and electron transfer. Med Hypotheses,2005,64:350-356.
    39.乔琰,何胡军,牛丹丹,等.甲醛吸入对小鼠不同组织器官谷胱苷肽水平的影响.公共卫生与预防医学,2004,15:12-14
    40.段丽菊,甘耀坤,李岩,等.气态甲醛对小鼠血清超氧化物歧化酶的影响.中国公共卫生,2005,21:708-709
    41. De Groot AC, Veenstra M.2010. Formaldehyde-releasers in cosmetics in the USA and in Europe. Contact Dermatitis 62(4):221-224.
    42. Lavoue J, Vincent R, Gerin M. Formaldehyde exposure in U.S. industries from OSHA air sampling data. J Occup Environ Hyg,2008.5(9):575-587..
    43. Tang X, Bai Y, Duong A, Smith MT, Li L, Zhang L. Formaldehyde in China:Production, consumption, exposure levels, and health effects. Environ Int. 2009,35(8):1210-1224.
    44. Lavoue J, Vincent R, Gerin M. Statistical modelling of formaldehyde occupational exposure levels in French industries,1986-2003. Ann Occup Hyg,2006.50(3):305-321.
    45. Tang LX, Zhang YS. Health investigation on workers exposed to formaldehyde. Occup Health, 2003.19(7):34-35
    46. Persoz C, Achard S, Leleu C, et al. An in vitro model to evaluate the inflammatory response after gaseous formaldehyde exposure of lung epithelial cells. Toxicol Lett,2010,195:99-105.
    47. Yin L, Jin XP, Yu XZ, et al. Flow cytometric analysis of the toxicity of nitrofen in cultured keratinocytes. Biomed Environ Sci,1999,12:88-94.
    48. Thrasher JD. Kilbum KH. Embryo toxicity and teratogenicity of formaldehyde. Arch Environ Health,2001,56:300-311.
    49. Kita T, Fujimura M, Myou S, et al. Potentiation of allergic bronchoconstricfion by repeated exposure to formaldehyde in guinea-pigs in vivo. Chin Exp Allergy,2003,33:1747-175
    50. Murphy DM, O'Byrne PM. Recent advances in the pathophysiology of asthma. Chest,2010,137: 1417-1426.
    51. Bateman ED, Hurd SS, Barnes PJ, et al. Global strategy for asthma management and prevention: GINA executive summary. Eur Respir J,2008,31:143-178.
    52. Global status report on noncommunicable diseases. World Health Organization,2011.
    53. Guerl A, Coskun O. Vitamin E against oxidative damage caused by formaldehyde in frontal cortex and hippocampus:biochemical and histological studies. Chem. Neuroant,2005, 29:173-178.
    54. ATSDR.1999. Toxicological Profile for Formaldehyde. U.S. Department of Health and Human Services, Agency for Toxic Substances and Disease Registry. http://www.atsdr.cdc.gov/toxprofiles/tp111.pdf.
    55. National Institutes of Health. Expert panel report 3:guidelines for the diagnosis and management of asthma full report 2007. National Asthma Education and Prevention Program,2007.
    56. Joos GF. Do measures of bronchial responsiveness add information in diagnosis and monitoring of patients with asthma? Eur Respir J,2001,18:439-441.
    57. Shaham J, Gurvich R, Kaufman Z. Sister chromatid exchange in pathology staff occupationally exposed to formaldehyde. Mutat Res,2002.514(1-2):115-123.
    58. Schafer D, Brommer C, Riechelmann H, Mann JW.In vivo and in vitro effect of ozone and formaldehyde on human nasal mucociliary transport system. Rhinology,1999.37(2):56-60.
    59. Cohn L, Elias JA, and Chupp GL. Asthma:mechanisms of disease persistence and progression. Annu Rev Immunol,2004,22:789-815.
    60. Shaham J, Bomstein Y, Meltzer A, Kaufman Z, Palma E, Ribak J. DNA--protein crosslinks, a biomarker of exposure to formaldehyde--in vitro and in vivo studies. Carcinogenesis,1996.17(1): 121-125.
    61. Shaham J, Bomstein Y, Melzer A, Ribak J. DNA-Protein Crosslinks and Sister Chromatid Exchanges as Biomarkers of Exposure to Formaldehyde. Int J Occup Environ Health,1997.3(2): 95-104.
    62. Shaham J, Bomstein Y, Gurvich R, Rashkovsky M, Kaufman Z. DNA-protein crosslinks and p53 protein expression in relation to occupational exposure to formaldehyde. Occup Environ Med, 2003.60(6):403-409.
    63. Hamid Q, Tulic M. Immunobiology of asthma. Annu Rev Physi,2009,71:489-507.
    64. Shaham J, Bomstein Y, Gurvich R, Rashkovsky M, Kaufman Z. DNA-protein crosslinks and p53 protein expression in relation to occupational exposure to formaldehyde. Occup En. Clinical publishing,2007:1-9
    65. Casanova M, Morgan KT, Gross EA, Moss OR, Heck HA. DNA-protein cross-links and cell replication at specific sites in the nose of F344 rats exposed subchronically to formaldehyde. Fundam Appl Toxicol,1994.23(4):525-536.
    66. Ye X, Yan W, Xie H, Zhao M, Ying C.Cytogenetic analysis of nasal mucosa cells and lymphocytes from high-level long-term formaldehyde exposed workers and low-level short-term exposed waiters. Mutat Res,2005.588(1):22-27.
    67. Pala M, Ugolini D, Ceppi M, Rizzo F, Maiorana L, Bolognesi C, et al.2008. Occupational exposure to formaldehyde and biological monitoring of Research Institute workers. Cancer Detect Prev 32(2):121-126.
    68. Monticello TM, Miller FJ, Morgan KT.1991. Regional increases in rat nasal epithelial cell proliferation following acute and subchronic inhalation of formaldehyde. Toxicol Appl Pharmacol 111(3):409-421.
    69. Carraro E, Gasparini S, Gilli G. 1999. Identification of a chemical marker of environmental exposure to formaldehyde. Environ Res 80(2 Pt 1):132-137.
    70. Bono R, Vincenti M, Schiliro T, Scursatone E, Pignata C, Gilli G. 2006. N-Methylenvaline in a group of subjects occupationally exposed to formaldehyde. Toxicol Lett 161(1):10-17.
    71. Li WY, Li AQ.2007. Indoor formaldehyde concentration in four Beijing hospitals' pathology departments. Occup Health 23(3):214.
    72. Foster PS, Hogan SP, Ramsay AJ, Matthaei I, Young IG. Interleukin 5 deficiency abolishes osinophilia, airways hyperreactivity, and lung damage in a mouse asthma model. J Exp Med, 1996,183:195-201.
    73. Wills KM. Interleukin-13 in asthma pathogenesis. Immunol Rev,2004,202:175-190.
    74. Grunig G. Warnock M, Wakil AE, et al. Requirement for IL-13 independently of IL-4 in experimental asthma. Science,1998,282:2261-2263
    75. Chang JC, Gross EA, Swenberg JA, Barrow CS. Nasal cavity deposition, histopathology, and cell proliferation after single or repeated formaldehyde exposures in B6C3F1 mice and F-344 rats. Toxicol Appl Pharmacol,1983.68(2):161-176.
    76. Heck HD, Chin TY, Schmitz MC. Distribution of [14C] formaldehyde in rats after inhalation exposure. In Formaldehyde Toxicity. Gibson JE, ed. Washington, DC:Hemisphere Publishing.1983.pp.26-36.
    77. Casanova M, Morgan KT, Steinhagen WH, Everitt JI, Popp JA, Heck HD. Covalent binding of inhaled formaldehyde to DNA in the respiratory tract of rhesus monkeys:pharmacokinetics, rat-to-monkey interspecies scaling, and extrapolation to man. FundamAppl Toxicol,1991.17(2): 409-428.
    78. Kay AB, Klion AD. Anti-interleukin-5 therapy for asthma and hypereosinophili syndrome. Immunol Allergy Clin North Am,2004,24:645-666.
    79. Thompson CM, Sonawane B, Grafstrom RC. The ontogeny, distribution, and regulation of alcohol dehydrogenase 3:implications for pulmonary physiology. Drug Metab Dispos,2009. 37(8):1565-1571.
    80. Neuberger, A.,1981. The metabolism of glycine and serine. In:Neuberger, A., van Deenen, L.L.M. (Eds.), Comprehensive Biochemistry, vol.19A. Elsevier, Amsterdam, pp.257-303.
    81. Rosenwasser LJ. New immunopharmacologic approaches to asthma:role of cytokine antagonism. JAllergy Clin Immunol,2000,105:S586-592.
    82. Thepen T, Van Rooijen N, Kraal G. Alveolar macrophage elimination in vivo is associated with an increase in pulmonary immune response in mice. J Exp Med,1989,170:499-509.
    83. Conaway CC, Whysner J, Verna L K, et al. Formaldehyde mechanistic data and risk assessment: endogenous protections from DNA adduct formation. Phramacol Ther,1996,71:29-55.
    84. Teng, S., Beard, K., Pourahmad, J., Moridani, M., Easson, E., Poon,R., O'Brien, P.J. The formaldehyde metabolic detoxification enzyme systems and molecular cytotoxic mechanism in isolated rat hepatocytes. Chem. BioL Interact.,2001.130-132,285-296.
    85. Richardson JD, Vasko MR. Cellular mechanisms of neurogenic inflammation. J Pharmacol Exp Ther,2002,302:839-845
    86. Geppetti P, Nassini R, Materazzi S, et al. The concept of neurogenic inflammation. BJU Int, 2008,101:2-6.
    87. Bogdanffy, M.S., Randall, H.W., Morgan, K.T. Histochemical localization of aldehyde dehydrogenase in the respiratory tract of the Fischer-344 rat. ToxicoL AppL PharmacoL 1986.82, 560-567.
    88. Keller DA, Heck Hd'A, Randall HW, Morgan KT. Histochemical localization of formaldehyde dehydrogenase in the rat. ToxicolAppl Pharmacol,1990.106(2):311-326.PJ.
    89. Casanova M, Heck Hd'A, Everitt JI, Harrington WW, Jr., Popp JA. Formaldehyde concentrations in the blood of rhesus monkeys after inhalation exposure. Food Chem Toxicol,1988.26(8): 715-716.
    90. Morgan K, Walker C. p53 mutations in formaldehyde-induced nasal squamous cell carcinomas in rats. Cancer Res.1992.52(21):6113-6116.
    91. Dunyaporn Trachootham, Jerome Alexandre and Peng Huang. Targeting cancer cells by ROS-mediated mechanisms:a radical therapeutic approach? NATURE REVIEWS,2009.8, 579-591..
    92. Perry, G. et al. How important is oxidative damage? Lessons from Alzheimer's disease. Free Radic Biol. Med.2000.28,831-834.
    93. Schafer, F. Q. & Buettner, G. R. Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radic BioL Med.2001.30,1191-1212.
    94. Otmish P, Gordon J, El-oshar S, et al. Neuroimmune interaction in inflammatory diseases. Clinical Medicine:Circulatory, Respiratory and Pulmonary Medicine,2008,2:35-44.
    95. Rosenfeld MG, Mermod JJ, Amara SG,et al. Production of a novel neuropeptide encoded by the calcitonin gene via tissue-specific RNA processing. Nature,1983,304:129-135.
    96. Breimer LH, Macintyre I, Zaidi M, et al. Peptides from the calcitonin genes:molecular genetics> structure and function. Biochem J,1988,255:377-390.
    97. Tsukiji J, Sango K, Udaka N, et al. Long-term induction of beta-CGRP mRNA in rat lungs by allergic inflammation. Life Sci,2004,76:163-177.
    98. Ichinose M, Miura M, Yamauchi H, et al. A neurokinin 1-receptor antagonist improves exercise-induced airway narrowing in asthmatic patients. Am JRespir Crit Care Med,1996,153: 936-941.
    99. Cosens DJ, Manning A. Abnormal electroretinogram from a Drosophila mutant. Nature,1969, 224:285-287.
    100. Minke B, Wu CF, Pak WL. Induction of photoreceptor voltage noise in the dark in Drosophila mutant. Nature,1975,258:84-87.
    101. Minke B. Drosophila mutant with a transducer defect. Biophys Struct Mech,1977,3:59-64.
    102. Minke B. Light-induced reduction in excitation efficiency in the trp mutant of Drosophila./Gen Physiol,1982,79:361-385.
    103. Montell C, Rubina GM. Molecular characterization of the Drosophila trp locus:A putative integral membrane protein required for phototransduction. Neuron,1989,2:1313-1323
    104. Suss-Toby E, Selinger Z, Minke B. Lanthanum reduces the excitation efficiency in fly photoreceptors. J Gen Physiol,1991,98:849-868.
    105. Hardie RC. Whole-cell recordings of the light-inducedcurrent in Drosophila photoreceptors: evidence for feedback by calcium permeating the light sensitive channels. Proc Roy Soc Lond B, 1991,245:203-210.
    106. Hardie DC, Minke B. The trp gene is essential for a light-activated Ca2+ channel in Drosophila photoreceptors. Neuron,1992,8:643-651.
    107. Phillips AM, Bull A, Kelly LE. Identification of a Drosophila gene encoding a calmodulin-binding protein with homology to the trp phototransduction gene. Neuron,1992, 8:631-642.
    108. Shaham J, Bomstein Y, Gurvich R, Rashkovsky M, Kaufman Z. DNA-protein crosslinks and p53 protein expression in relation to occupational exposure to formaldehyde. Occup Environ Med. 2003,60(6):403-409.
    109. Wes PD, Chevesich J, Jeromin A, et al. (1995). TRPC1, a human homolog of a Drosophila store-operated channel. Proc. Natl.Acad. ScL USA,1995,92:9652-9656.
    110. Montell C, Birnbaumer L, Flockerzi V. The TRP channels, a remarkably functional family. Cell, 2002,108:595-598.
    111. Clapham DE. TRP channels as cellular sensors. Nature,2003,426:517-524.
    112. Ramsey IS, Delling M, Clapham DE. An introduction to TRP channels. Annu Rev Physiolo 2006, 68:619-647.
    113. Bell VM and Theodore GW. Functional and structural studies of TRP channels heterologously expressed in budding yeast. Adv Exp Med Biol,2011,704:25-40
    114. Clapham DE, Runnels LW, Strubing C. The TRP ion channel family. Nat Rev Neurosci,2001,2: 387-396.
    115. Voets T, Owsianik G. TRP channels. Biological Membrane Ion Channels,2007:400-423
    116. Vennekens R, Voets T, Bindels R G, et al. Current understanding of mammalian TRP homologues. Cell Calcium,2007,31:252-264
    117. Owsianik G, Talavera Voets T, Nilius B. Permeation and selectivity of TRP channels. Annu Rev Physio 2008,68:685-717
    118. Sten O, Boris Z, Pierluigi N. Regulation of cell death:the calcium-apoptosis link. Nat rev mol cell biol,2003,4:552-565
    119. Venkatachalam K, Montell C. TRP channels. Annu Rev Biochem,2007,76:387-417
    120. Beane Freeman LE, Blair A, Lubin JH, Stewart PA, Hayes RB, Hoover RN, Hauptmann M. Mortality from lymphohematopoietic malignancies among workers in formaldehyde industries: the National Cancer Institute Cohort. JNatl Cancer Inst.2009.101(10):751-761.
    121. Caterina MJ, Schumacher MA, Tominaga M, et al. The capsaicin receptor:a heat-activated ion channel in the pain pathway. Nature,1997,389:816-824.
    122. Luce D, Leclerc A, Begin D, Demers PA, Gerin M, Orlowski E, et al. Sinonasal cancer and occupational exposures:a pooled analysis of 12 case-control studies. Cancer Causes Control. 2002.13(2):147-157.
    123. Vaughan TL, Shapiro JA, Burt RD, Swanson GM, Berwick M, Lynch CF, Lyon JL. Nasopharyngeal cancer in a low-risk population:defining risk factors by histological type. Cancer Epidemiol Biomarkers Prev.1996.5(8):587-593.
    124. Zhang L, Steinmaus C, Eastmond DA, Xin XK, Smith MT. Formaldehyde exposure and leukemia:a new meta-analysis and potential mechanisms. Mutat Res.2009.681(2-3):150-168.
    125. Zhang L, Freeman LE, Nakamura J, Hecht SS, Vandenberg JJ, Smith MT, Sonawane BR. Formaldehyde and leukemia:Epidemiology, potential mechanisms, and implications for risk assessment. Environ Mol Mutagen.2010.51 (3):181-191.
    126. Antonio FM, Carolina GM, Cruz MP, et al. Molecular architecture of the vanilloid receptor. Eur J Biochem 2004,271:1820-1826.
    127. Biro T, Maurer M, Modarres S, Lewin NE, Brodie C, et al. Characterization of functional vanilloid receptors expressed by mast cell. Blood,1998,91:1332-1340.
    128. NIOSH.1980a. Walk-Through Survey Report of Georgia-Pacific Chemical and Resin Division. Cincinnati, OH:National Institute for Occupational Safety and Health (as cited in WHO 1989).
    129. Hauptmann M, Lubin JH, Stewart PA, Hayes RB, Blair A. Mortality from solid cancers among workers in formaldehyde industries. Am J Epidemio. 2004.159(12):1117-1130.
    130. Nakagawa H, Hiura A. Capsaicin, transient receptor potential protein subfamilies and the particular relationship between capsaicin receptors and small primary sensory neurons. Anat Sci Int,2006,81:135-155.
    131. Cortright DN, Szallasi A. TRP channels and pain. Curr Pharm Des,2009,15:1736-1749.
    132. Vaughan TL, Stewart PA, Teschke K, Lynch CF, Swanson GM, Lyon JL, Berwick M. Occupational exposure to formaldehyde and wood dust and nasopharyngeal carcinoma. Occup Environ Med.2000.57(6):376-384.
    133. Szallasi A, Cruz F, Geppetti P. TRPV1:a therapeutic target for novel analgesic drμgs? Trends Mol Med 2006,12:545-554.
    134. Neelima KJ, Szallasi A. TRPV1 antagonists:the challenges for therapeutic targeting.Trends Mol Med,2009,15:14-22.
    135. Armstrong RW, Imrey PB, Lye MS, Armstrong MJ, Yu MC, Sani S. Nasopharyngeal carcinoma in Malaysian Chinese:occupational exposures to particles, formaldehyde and heat. Int J Epidemiol. 2000.29(6):991-998.
    136. Li W, Ray RM, Gao DL, Fitzgibbons ED, Seixas NS, Camp JE, et al. Occupational risk factors for nasopharyngeal cancer among female textile workers in Shanghai, China. Occup Environ Med.2006.63(1):39-44.
    137.NIOSH Contract No.210-78-0081. Cincinnati, OH:National Institute for Occupational Safety and Health (as cited in WHO 1989).
    138. Liteplo RG, Meek ME. Inhaled formaldehyde:exposure estimation, hazard characterization, and exposure-response analysis. J Toxicol Environ Health B Crit Rev.2003.6(1):85-114.
    139. Jia Y, McLeod RL and Hey JA. TRPV1 receptor:A target for the treatment of pain, coμgh, airway disease and urinary incontinence. Drμg News Perspect,2005,18:165-171.
    140. Cantero RG, Gonzalez JR, Fandos C, et al. Loss of function of transient receptor potential vanilloid 1(TRPV1) genetic variant is associated with lower risk of active childhood asthma.J Biol Chem,2010,285:27532-27535.
    141.McAlexander MA, Thomas TC. The role of transient receptor potential channels in respiratory symptoms and pathophysiology. Adv Exp Med Biol,2011,704:969-986.
    142. Jaquemar, Daniel, and Thomas Schenker. An ankyrin-like protein with transmembrane domains is specifically lost after oncogenic transformation of human fibroblasts. JBiol Chem,1999,274: 7325-7333.
    143. Story GM, Peier AM, Reeve AJ, et al. ANKTM1, a TRP-like channel expressed in nociceptive neurons, is activated by cold temperatures. Cell,2003,112:819-829.
    144. NIOSH.1980c. Health Hazard Evaluation Determination, St. Regis Paper Company, Buckport, Maine. HE 80-126-777. Washington, D.C.:National Institute for Occupational Safety and Health (as cited in WHO 1989).
    145. Hendrick DJ, Lane DJ. Occupational formalin asthma. Br J Ind Med.1977,34(1):11-18.
    146. Burge PS, Harries MG, Lam WK, O'Brien IM, Patchett PA. Occupational asthma due to formaldehyde. Thorax.1985,40(4):255-260.
    147. Gorski P, Krakowiak A. Formaldehyde-induced bronchial asthma-does it really exist? Pol J Occup Med Environ Health,1991,4:317-320.
    148. Rumchev KB, Spickett JT, Bulsara MK, et al. Domestic exposure to formaldehyde significantly increases the risk of asthma in young children. Eur Respir J,2002,20:403-408.
    149. Stokes A, Wakano C, Murielle KH, et al. TRPA1 is a substrate for de-ubiquitination by the tumor suppressor CYLD. Cell Signal,2006,18:1584-1594.
    150. Nassenstein C, Kwong K, Taylor-Clark T, et al. Expression and function of the ion channel TRPA1 in vagal afferent nerves innervating mouse lungs. J Physiol,2008,586:1595-1604.
    151.Kramps JA, Peltenburg LT, Kerklaan PR, et al. Measurement of specific IgE antibodies in individuals exposed to formaldehyde. Clin Exp Allergy,1989,19:509-514.
    152. Liden S, Scheynius A, Fischer T. Absence of specific IgE antibodies in allergic contact sensitivity to formaldehyde. Allergy,1993,48:525-529.
    153. Mendell MJ. Indoor residential chemical emissions as risk factors for respiratory and allergic effects in children:a review. Indoor air,2007,17:259-277.
    154.童志前,刘宏亮,严彦,等.气态甲醛染毒致小鼠气道神经源性炎症的神经受体机制.环境与健康杂志,2004,21:215-217.
    155. Hildesheim A, Dosemeci M, Chan CC, Chen CJ, Cheng YJ, Hsu MM, et al. Occupational exposure to wood, formaldehyde, and solvents and risk of nasopharyngeal carcinoma. Cancer Epidemiol Biomarkers Prev,2001.10(11):1145-1153..
    156. Hauptmann M, Lubin JH, Stewart PA, Hayes RB, Blair A. Mortality from solid cancers among workers in formaldehyde industries. Am JEpidemioL2004,159(12):1117-1130.
    157. Tatham L, Tolbert P, Kjeldsberg C. Occupational risk factors for subgroups of non-Hodgkin's lymphoma. Epidemiology,1997.8(5):551-558.
    158.NIOSH.1981. Health Hazard Evaluation Determination, Rock Hill Printing and Finishing Company, Rock Hill, North Carolina. Report 80-126-777. Cincinnati,OH:National Institute for Occupational Safety and Health (as cited in WHO 1989).
    159. Macpherson LJ, Dubin AE. Evans MJ, et al. Noxious compounds activate TRPA1 ion channels throμgh covalent modificationof cysteines. Nature,2007,445:541-545.
    160. Zhang L, Tang X, Rothman N, Vermeulen R, Ji Z, Shen M, et al. Occupational exposure to formaldehyde, hematoxicity and leukemia-specific chromosome changes in cultured myeloid progenitor cells. Cancer Epidem Bio Prev.2010.9(l):80-88.
    161. Bautista, DM, Pellegrino M. TRPA1:A gatekeeper for inflammation. Annu Rev Physiol,2013, 75:181-200.
    162. Andrade EL, Meotti FC, and Calixto JB. TRPA1 antagonists as potential analgesic drμgs. Pharma Ther,2012,133:189-204.
    163. Eid SR, Crown ED, Moore EL, et al. HC-030031, a TRPA1 selective antagonist, attenuates inflammatory- and neuropathy-induced mechanical hypersensitivity. Mol Pain,2008,4:48.
    164. Petrus M, Peier AM, Bandell M, et al-A role of TRPA1 in mechanical hyperalgesia is revealed by pharmacological inhibition. Mol Pain,2007,3:40.
    165. Zhang L, Freeman LE, Nakamura J, Hecht SS, Vandenberg JJ, Smith MT, Sonawane BR. Formaldehyde and leukemia:Epidemiology, potential mechanisms, and implications for risk assessment. Environ Mol Mutagen,2010.51(3):181-191.
    166. Ragan DL, Boreiko CJ. Initiation of C3H/10T1/2 cell transformation by formaldehyde. Cancer Lett,1981.13(4):325-331.
    167. Caceres AI, Brackmann M, Elia MD, et al. A sensory neuronal ion channel essential for airway inflammation and hyperreactivity in asthma. Proc Nail Acad Sci USA,2009,106:9099-9104
    168. Hendrick DJ, Lane DJ. Occupational formalin asthma. Br J Ind Med,1977,34:111-118
    169. NIOSH. Health Hazard Evaluation Determination, Rock Hill Printing and Finishing Company, Rock Hill, North Carolina. Report 80-126-777.Cincinnati,OH:National Institute for Occupational Safety and Health,1981.
    170. Gorski P, Krakowiak A. Formaldehyde-induced bronchial asthma-does it really exist? Pol J Occup Med Environ Health,1991,4:317-320.
    171.Taskinen H, Kyyronen P, Hemminki K, Hoikkala M, Lajunen K, Lindbohm ML. Laboratory work and pregnancy outcome.J Occup Med,1994.36(3):311-319
    172. NIOSH.Metal Working Fluids:Recommendation for Chronic Inhalation Studies. Cincinnati, OH: National Institute for Occupational Safety and Health.90 pp.2001.
    173. Bonassi S, Norppa H, Ceppi M, Stromberg U, Vermeulen R, Znaor A, et al. Chromosomal aberration frequency in lymphocytes predicts the risk of cancer:results from a pooled cohort study of 22 358 subjects in 11 countries. Carcinogenesis,2008.29(6):1178-1183.
    174. Golden R, Pyatt D, Shields PG. Formaldehyde as a potential human leukemogen:an assessment of biological plausibility. Crit Rev Toxicol,2006.36(2):135-153.
    175. Fritsch G, Stimpfl M, Kurz M, Printz D, Buchinger P, Fischmeister G, Hoecker P, Gadner H. The composition of CD34 subpopulations differs between bone marrow, blood and cord blood. Bone Marrow Transplant,1996.17(2):169-178.
    176. Bosetti C, McLaughlin JK, Tarone RE, Pira E, La Vecchia C.Formaldehyde and cancer risk:a quantitative review of cohort studies through 2006. Ann Oncol,2008.19(1):29-43.
    177. Murgia E, Ballardin M, Bonassi S, Rossi AM, Barale R. Validation of micronuclei frequency in peripheral blood lymphocytes as early cancer risk biomarker in a nested case-control study. Mutat Res,2008.639(1-2):27-34.
    178. Murrell W, Feron F, Wetzig A, Cameron N, Splatt K, Bellette B, et al. Multipotent stem cells from adult olfactory mucosa. Dev Dyn.2005,233(2):496-515.
    179. Martyn T. Smith.The Mechanism of Benzene-induced Leukemia:A Hypothesis and Speculations on the Causes of Leukemia. Environmental Health Perspectives.1996,104,11(6):1219-1225
    180. Cliona M.McHale, Luoping Zhang and Martyn T.Smith.Current understanding of the mechanism of benzene-induced leukemia in humans:implications for risk assessment. Carcinogenesis.2012, 33(2):240-252
    181. Stephen M. Rappaport and Martyn T. Smith. Environment and Disease Risks.SCIENCE.2010, 330(22):460-461
    182. Kimbell JS, Gross EA, Richardson RB, Conolly RB, Morgan KT. Correlation of regional formaldehyde flux predictions with the distribution of formaldehyde-induced squamous metaplasia in F344 rat nasal passages. Mutat Res,1997.380(1-2):143-154.
    183. NTP. Reporton Carcinogens Background Document for Formaldehyde. National Toxicology. http://ntp.niehs.nih.gov/ntp/roc/twelfth/2009/November/Formaldehyde_BD_Final.pdf.2010
    184. Guyton KZ, Kyle AD, Aubrecht J, Cogliano VJ, Eastmond DA, Jackson M, et al. Improving prediction of chemical carcinogenicity by considering multiple mechanisms and applying toxicogenomic approaches. Mutat Res.2009,681(2-3):230-240.
    185. Kitaeva LV, Mikheeva EA, Shelomova LF, Shvartsman PY. Genotoxic effects of formaldehyde in somatic human cells in vivo. Genetika.1996,32:1287-1290.
    186. Ivan V Rosado, Frederic Langevin,et al. Formaldehyde catabolism is essential in cells deficient for the Fanconi anemia DNA-repair pathway. Nature Structural & Molecular Biology,2011, 12(18):1432-1434
    187. Ridpath JR, Nakamura A, Tano K, Luke AM, Sonoda E, Arakawa H, et al. Cells deficient in the FANC/BRCA pathway are hypersensitive to plasma levels of formaldehyde. Cancer Res,2007, 67(23):11117-11122.
    188. Speit G, Schutz P, Merk O. Induction and repair of formaldehyde-induced DNA-protein crosslinks in repair-deficient human cell lines. Mutagenesis.2000,15(1):85-90.
    189. Soffritti M, Maltoni C, Maffei F, Biagi R. Formaldehyde:an experimental multipotential carcinogen. Toxicol Ind Health,1989.5(5):699-730.
    190. Monticello TM, Morgan KT, Everitt JI, Popp JA. Effects of formaldehyde gas on the respiratory tract of rhesus monkeys. Pathology and cell proliferation. Am JPathol,1989.134(3):515-527.
    191.Pauluhn J. Overview of testing methods used in inhalation toxicity:from facts to artifacts. Toxicol Lett,2003,8:183-93.
    192. MOH. ChineseNational Standard:hygienic standards for thedesign of industrial enterprises (TJ36-79). Ministry of Health:1979.
    193. Kips JC, Anderson GP, Fredberg JJ, et al. Murine models of asthma. Eur Respir J,2003,22: 374-382.
    194. Kerns WD, Pavkov KL, Donofrio DJ, Gralla EJ, Swenberg JA. Carcinogenicity of formaldehyde in rats and mice after long-term inhalation exposure. Cancer Res,1983.43(9):4382-4392.
    195. Monticello TM, Miller FJ, Morgan KT. Regional increases in rat nasal epithelial cell proliferation following acute and subchronic inhalation of formaldehyde. Toxicol Appl Pharmacol,1991.111(3):409-421.
    196. Kamata E, Nakadate M, Uchida O, Ogawa Y, Suzuki S, Kaneko T, Saito M, Kurokawa Y. Results of a 28-month chronic inhalation toxicity study of formaldehyde in male Fisher-344 rats. J Toxicol Sci,1997.22(3):239-254.
    197. Sellakumar AR, Snyder CA, Solomon JJ, Albert RE. Carcinogenicity of formaldehyde and hydrogen chloride in rats. Toxicol Appl Pharmacol,1985.81(3 Pt 1):401-406.
    198. Feron VJ, Bruyntjes JP, Woutersen RA, Immel HR, Appelman LM. Nasal tumours in rats after short-term exposure to a cytotoxic concentration of formaldehyde. Cancer Lett,1988.39(1): 101-111.
    199. Takahashi M, Hasegawa R, Furukawa F, Toyoda K, Sato H, Hayashi Y. Effects of ethanol, potassium metabisulfite, formaldehyde and hydrogen peroxide on gastric carcinogenesis in rats after initiation with N-methyl-N'-nitro-N-nitrosoguanidine. Jpn J Cancer Res,1986.77(2): 118-124.
    200. Soffritti M, Belpoggi F, Lambertin L, Lauriola M, Padovani M, Maltoni C. Results of long-term experimental studies on the carcinogenicity of formaldehyde and acetaldehyde in rats. Ann N Y Acad Sci. 2002.982:87-105.
    201. Heck H, Casanova M. The implausibility of leukemia induction by formaldehyde:a critical review of the biological evidence on distant-site toxicity. Regul Toxicol Pharmacol,2004.40 (2): 92-106.
    202. EPA.2008. Registration Eligibility Decision for Formaldehyde and Paraformaldehyde. U.S. EnvironmentalProtectionAgency.http://www.epa.gov/oppsrrd1/reregistration/REDs/formaldehyd e-red.pdf.
    203. W. Drog e. Free radicalsin the physiological control of cell function[J]. Physiol Rev,2002,82(1): 47-95.
    204. Hsin YH, Chen CF, Huang S, Shi TS, Lai PS, Chueh PJ. The apoptotic effect of nano silver is mediated by a ROS-and JNK-dependent mechanism involving the mitochondrial pathway in NIH3T3 cells. Toxicol Lett. 2008; 179:130-9.
    205. Draper HH, Hadley M.1990. Malondialdehyde determination as index of lipid peroxidation. Methods Enzymol 186:421-431.
    206.蒋硕健,丁有骏,李明谦.有机化学[M].北京大学出版社,2001:369-381.
    207. Anatoly Zhitkovich and Max Costa. A simple, sensitive assay to detect DNA—protein crosslinks in intact cells and in vivo.Cardnogenesis,1992.13(8)1485-1489
    208. Anatoly Zhitkovich, Victoria Voitkun, Tomasz KIuz, and Max Costa. Utilization of DNA-Protein Cross-Links as a Biomarker of Chromium Exposure.Environmental Health Perspectives, 1998.106-4:969-974
    209. Natarajan, A.T., Darroudi, F., Bussman, C.J.M., van Kesteren-van Leeuwen, A.C. Evaluation of the mutagenicity of formaldehyde in mammalian cytogenetic assays in vivo and vitro. Mutat, 1983.122,355-360.
    210. Yingshuai Liu, Chang M Li, Zhisong Lu,Xu Yang, and Jianwei Mo. Studies on formation and repair of formaldehyde-damaged DNA by detection of DNA-protein crosslinks and DNA breaks.Frontiers in Bioscience,2006.11(1),991-997
    211. Anderson ME. Determination of glutathione and glutathione disulfide in biological samples. Methods EnzymoL 1985.113:548-555.
    212. Qiong LI, Piyanete SRITHARATHIKHUN, and Shoji MOTOMIZU. Development of Novel Reagent for Hantzsch Reaction for the Determination of Formaldehyde by Spectrophotometry and Fluorometry. ANALYTICAL SCIENCES.2007.4(23):413-417
    213. Buske C, Beeker D., Feuring-Buske M. et al. TGF-β1 inhibits growth and induces apoptosis in leukemie B cell precursors [J]. Leukemia.1997,11(3):86-392.
    214. Matsμguchi T,Lilly MB,Kraft AS.Cytoplasmic domains of the human GM-CSF receptor β responsible for human GM-CSF induced myeloid cell differentiation[J].J Biol Chem,1998, 273(31):19411-194118.
    215. JH Beckstead, PE Stenberg, RP McEver, MA Shuman, and DF Bainton. Immunohistochemical localization of membrane and alpha-granule proteins in human megakaryocytes:application to plastic-embedded bone marrow biopsy specimens. Blood,1986.67(2) 285-293
    216. Apgar JM, Juarranz A, Espada J, et al. Fluorescence microscopy of rat embryo sections stained with haematoxylin-eosin and Masson's trichrome method. J Microsc,1998,191:20-27
    217. Bangle R, Alford WC. The chemical basis of the periodic acid-Schiff reaction of collagen fibers with reference to periodate consumption by collagen and by insulin. J Histochem Cytochem, 1954,2:62-7

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700