用户名: 密码: 验证码:
鹿角盘提取物的体外抗骨质疏松作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
骨质疏松症是一种以骨量减少、骨组织显微结构退行性改变,骨的脆性增加,易于发生骨折为特征的全身代谢性骨骼疾病,多发于绝经后妇女及老年人。骨质疏松性骨折发病率高,严重威胁着人们的生命健康,并给社会和国家带来了沉重的经济负担。目前,用于治疗骨质疏松症的西药,如鲑鱼降钙素、双膦酸盐类和重组人甲状旁腺素等,具有明显的副作用且价格昂贵。因此,研究开发安全、高效、经济的抗骨质疏松症药物已成为目前的研究热点。据《神农本草经》记载,鹿角盘具有温补肝肾、强筋健骨、活血消肿等作用。
     经我们课题组前期的体内实验研究发现,鹿角盘微切助粉对去卵巢大鼠绝经后骨质疏松症模型有明显且良好的治疗效果。但是,关于鹿角盘防治骨质疏松症的作用机制至今仍未有报道。因此,本论文旨在系统地研究鹿角盘提取物对体外培养的成骨细胞骨形成功能和破骨细胞骨吸收活性的影响,并进一步探讨其防治骨质疏松症的作用机制。具体研究内容和结果如下:
     (1)采用微切变-助剂互作技术加工制备鹿角盘微切助粉。然后经粒径分析及扫描电镜观察分析细胞的破碎程度,并检测其中与骨质疏松症相关的活性物质的含量。
     粒径分析及扫描电镜观察结果显示,经微切变-助剂互作技术处理后,鹿角盘微切助粉在粒径1-30μm范围内的颗粒数占82.73%,且细胞已被充分破碎,细胞内有效成分被暴露出来,呈释放的状态。活性物质含量分析结果显示,鹿角盘微切助粉中含有328.79士34.21pmol/L雌二醇、25.38士4.48nmol/L睾酮、17.56士3.45nmol/L孕酮,0.750±0.033μg/g类胰岛素生长因子-1,16.17±0.52mg/L柠檬酸钙和133.6±13.55mg/L钙,而不含有延胡索酸钙。且这些活性物质的含量均高于其粗粉,说明微切变-助剂互作技术增加了目标活性物质的溶出量,有利于鹿角盘中活性成分的释放,体现了该技术的优越性。
     (2)以人类成骨样细胞MG-63为研究对象,系统地研究了鹿角盘提取物(水提物和醇提物)对成骨细胞生长、分化和矿化的影响及其防治骨质疏松症的可能作用机制。
     LDH活性检测和细胞形态观察结果表明,鹿角盘提取物对成骨细胞没有细胞毒性作用。采用结晶紫试验、中性红吸收试验、台盼蓝排斥试验、MTT法和ALP活性检测考察细胞的生长和分化情况。结果表明,鹿角盘提取物不仅刺激了成骨细胞的生长和增殖,而且还促进了成骨细胞的分化。此外,茜素红-S染色和4-羟脯氨酸含量的检测结果显示,鹿角盘提取物是通过促进钙的沉积和增加Ⅰ型胶原蛋白的合成和分泌,促进矿化骨基质的形成,从而发挥促进骨形成的作用。采用ELISA法和RT-PCR分别检测了OPG和RANKL的蛋白含量和mRNA的表达量,结果显示,鹿角盘提取物极显著地增加了成骨细胞中OPG蛋白含量和OPG mRNA的表达量,而降低了RANKL蛋白含量和RANKL mRNA的表达量,提高了成骨细胞中OPG/RANKL的比值,间接地抑制破骨细胞的分化和成熟,从而起防治骨质疏松症的作用。
     (3)以RAW264.7细胞作为一种破骨前体细胞模型,诱导其分化成破骨细胞,并研究鹿角盘提取物对破骨细胞的形成和骨吸收活性的影响。
     TRAP染色和破骨细胞计数结果显示,用50ng/mL RANKL成功地诱导RAW264.7细胞分化成为成熟的破骨细胞。而且鹿角盘提取物可剂量依赖性地减少破骨细胞的数量,降低破骨细胞中TRAP的活性,从而抑制了RANKL诱导RAW264.7细胞分化形成成熟的破骨细胞。LDH活性检验、PI染色和DNA碎片定量分析结果一致表明,鹿角盘提取物是通过诱导成熟的破骨细胞发生凋亡而抑制其活性。而且,RT-PCR检测结果表明鹿角盘提取物是通过下调破骨细胞表型基因TRAP mRNA和MMP-9mRNA的表达,来抑制成熟破骨细胞的骨吸收活性,从而起防治骨质疏松症的作用。
     (4)采用p38特异性抑制剂SB203580干预处理MG-63成骨细胞,进一步验证鹿角盘提取物的抗骨质疏松作用机制。
     用p38特异性抑制剂SB203580干预处理成骨细胞,然后采用MTT法、ALP法、茜素红-S染色和4-羟脯氨酸含量的检测分别评价SB203580对成骨细胞的增殖、分化和矿化的影响。结果表明,SB203580可以有效地阻断鹿角盘提取物对成骨细胞增殖、分化和矿化骨基质形成的促进作用。而且,用ELISA法和RT-PCR检测OPG和RANKL蛋白含量和基因的表达,结果显示鹿角盘提取物上调了OPG蛋白和mRNA的表达,下调了RANKL蛋白和mRNA的表达,且通过调控成骨细胞中OPG和RANKL的表达,间接地抑制破骨细胞的分化和成熟。而SB203580能有效地阻断鹿角盘提取物对破骨细胞的抑制作用,提示鹿角盘提取物是通过调控p38MAPK信号通路,双向影响成骨细胞和破骨细胞之间的动态平衡,从而起抗骨质疏松的作用。
     综上所述,本研究证实了鹿角盘提取物是通过调控p38MAPK信号通路来促进成骨细胞的骨形成和抑制破骨细胞的骨吸收,从而起抗骨质疏松的作用,为鹿角盘用于治疗骨质疏松症提供了理论依据。
Osteoporosis is a systematic skeleton disease characterized by low bone mineral density and structural deterioration of bone tissue leading to bone fragility and increased cases of fractures particularly of the hip, spine and wrist. It is a disease common in post-menopausal women and the elderly. The incidence of osteoporosis-related fractures is very high and has enormous impact on public health and on the quality of life of the patient. Nowadays, many medicines for osteoporosis have some disadvantages such as adverse side effects or a high cost, which including salmon calcitonin, bisphosphonates and human parathyroid hormone. Thus, alternative drugs of efficacy, safety and low cost, should be developed for the prevention and treatment of osteoporosis. Deer antler base (Cervus) has been recorded in the Chinese medical classics Shen Nong Ben Cao Jing2000years ago and is believed to tonify the kidney, invigorate the spleen, strengthen bones and muscles, and promote blood flow.
     Our previous study has showed that deer antler base has a good therapeutic effect on ovariectomy-induced osteoporosis in rats. But since now no studies have been carried out to evaluate the mechanisms by which deer antler base exerts its anti-osteoporotic effect. Therefore, the present study aimed to systematically investigate the effects of deer antler base extracts on the bone formation of osteoblasts and bone resorption of osteoclasts in vitro and its mechanisms of action. The main results are summarized as following.
     (1) The raw material of deer antler base was processed into PAI powders by the press-shear assisted interaction technology (PAI) in an energy-intensive vibrational mill. The particle size and the content of main functional ingredients related to osteoporosis were detected.
     To see what damage had been done to the cells, the PAI powders were examined using a laser diffraction particle analyzer and scanning electron microscopy. The results showed that the percentage of particle size ranged from1-30μm accounted for82.73%after PAI treatment, and the cells of deer antler base PAI powder were basically broken. The active ingredients were probably released upon mixing with cellular fragments. The tests for active ingredients showed that deer antler base contains328.79±34.21pmol/L estradiol,25.38±4.48nmol/L testosterone,17.56±3.45nmol/L progesterone,0.750±0.033μg/g IGF-1,16.17±0.52mg/L calcium citrate and133.61±3.55mg/L free calcium, but no calcium fumarate. Moreover, the contents of active ingredients were larger than those of coarse powder, indicating press-shear assisted interaction technology is not only conducive to the release of active ingredients, but also to raise the dissolution rate of active ingredients.
     (2) Influences of deer antler base extracts (aqueous extract and ethanolic extract) on the proliferation, osteogenic differentiation and mineralization of human osteoblast-like MG-63cells in vitro.
     The results of lactate dehydrogenase (LDH) activity and cell morphology indicated that deer antler base extracts did not show cytotoxicity. Cell growth and viability was assessed by crystal violet test, neutral red absorption test, trypan blue exclusion test and MTT test. And the cell differentiation was evaluated by alkaline phosphatase (ALP) activity. The results showed that deer antler base extracts not only stimulated the growth and proliferation of MG-63cells, but also promoted the differentiation of MG-63cells. The results of alizarin red-S staining and4-hydroxyproline test showed that deer antler base extracts promoted the bone matrix mineralization by stimulating the deposition of calcium and increasing the synthesis and secretion of type I collagen. In addition, the OPG and RANKL protein and mRNA levels were detected using an enzyme-linked immunosorbent assay (ELISA) and reverse transcriptase polymerase chain reaction (RT-PCR). The results indicated that deer antler base extracts can significantly increase the OPG protein and mRNA level, whereas decrease the RANKL protein and mRNA level, thereby increasing the ratio of OPG/RANKL and indirectly inhibit osteoclast differentiation and maturation. The findings suggest that deer antler base extracts promote bone formation of osteoblasts and play a role on prevention and treatment of osteoporosis.
     (3) The effects of deer antler base extracts on osteoclastogenesis and bone resorption activity were investigated using the macrophage cell line RAW264.7as a model of osteoclast precursors.
     The results of TRAP staining and cell counting showed that the RAW264.7cells can differentiate into osteoclast-like cells when stimulated by50ng/mL of recombinant mouse soluble RANKL. Moreover, deer antler base extracts could reduce the number of osteoclasts and the TRAP activity in a dose-dependent manner, indicating suppresses the RANKL-induced differentiation of RAW264.7cells. The results of LDH activity, PI staining and quantitative analysis of DNA fragmentation consistently indicated that deer antler base extracts could induce the apoptosis of mature osteoclasts. Furthermore, the RT-PCR results indicated that deer antler base extracts could down-regulate the osteoclastic phenotypic genes, TRAP and MMP-9mRNA expression levels. These results suggest that deer antler base extracts inhibit bone resorption of mature osteoclasts and play a role on prevention and treatment of osteoporosis.
     (4) The anti-osteoporotic mechanisms of deer antler base extracts were further investigated using MG-63cells treated with p38specific inhibitor SB203580.
     After treatment with p38specific inhibitor SB203580, MTT assay, ALP activity, alizarin red-S staining and4-hydroxyproline test were respectively used to evaluate the effects of SB203580on proliferation, differentiation and mineralization of MG-63cells. The results showed that deer antler base extracts can effectively promote the proliferation, differentiation and mineralization of osteoblasts, while the effects can be blocked by the p38specific inhibitor SB203580. Further, the up-regulation of OPG and down-regulation of RANKL at the protein and mRNA level were observed in deer antler base extracts treated MG-63cells using an enzyme-linked immunosorbent assay (ELISA) and reverse transcriptase polymerase chain reaction (RT-PCR). The results implied that deer antler base extracts can indirectly inhibit osteoclast differentiation and maturation by regulating the expression of OPG and RANKL in MG-63cells, while the inhibitory effect can be effectively blocked by the p38specific inhibitor SB203580. The findings suggest that deer antler base extracts could affect the dynamic balance of osteoblasts and osteoclasts, which may be mediated via the p38MAPK signal pathway.
     Taken together, our results confirmed that deer antler base extracts could promote bone formation of osteoblasts and inhibit bone resorption of mature osteoclasts through the p38MAPK signal pathway, which providing a theoretical basis for the prevention and treatment of osteoporosis.
引文
[1]Bassan J, Frame B, Frost H. Osteoporosis:A review of pathogenesis and treatment [J]. Annals of Internal Medicine,1963,58(3):539-550.
    [2]Albright F, Smith P H, Richardson A M. Postmenopausal osteoporosis [J]. Journal of the American Medical Association,1941,116(22):2465-2474.
    [3]Consensus development conference. Diagnosis, prophylaxis and treatment of osteoporosis [J]. American Journal of Medicine,1993,94:646-650.
    [4]Garnero P, Delmas P D. Biochemical markers of bone turnover:Applications for osteoporosis [J]. Endocrinology and Metabolism Clinics of North America,1998,27(2):303-323.
    [5]秦岭,张戈,译.关国国家卫生院有关骨质疏松症的预防、诊断和治疗的相关文件[J].中国骨质疏松杂志,2002,8(1):90-93.
    [6]Doren M. An assessment of hormone replacement therapy to prevent postmenopausal osteoporosis [J]. Osteoporosis International,1999,9(2):S53-S61.
    [7]Kanis J A. Assessment of fracture risk and its application to screening for postmenopausal osteoporosis:Synopsis of a WHO report [J]. Osteoporosis International,1994,4(6):368-381.
    [8]李晴晴,潘智敏.原发性骨质疏松症中医病变机制的研究进展[J].浙江中医杂志,2010,45(2):147-149.
    [9]王英殊,黄嫚.针灸治疗原发性骨质疏松症的研究近况[J].河北中医,2006,28(11):875-877.
    [10]Riggs B L, Melton Ⅲ L J. Involutional osteoporosis [J]. New England Journal of Medicine,1986, 314(26):1676-1686.
    [11]章秋.原发性骨质疏松症的病因和发病机制[J].安徽医学,2002,23(2):2-3.
    [12]丛芳,纪树荣.继发性骨质疏松的预防和治疗[J].中国康复理论与实践,2004,10(3):172-174.
    [13]刘忠厚主编.骨质疏松学[M].北京:科学出版社,1998.
    [14]张燕燕,卢春燕,刘斌,等.骨质疏松症的药物治疗[J].中国骨质疏松杂志,2007,13(11):809-813.
    [15]Gomes A, Haldar S, Giri B, et al. Experimental osteoporosis induced in female albino rats and its antagonism by Indian black scorpion (Heierometrus bengalensis C.L.Koch) venom [J]. Toxicon, 2009,53(1):60-68.
    [16]杨建虹.胰岛素和鹿茸血抗骨质疏松的生物效应和机制研究[D].安徽:中国科学技术大学.2009.
    [17]Randell A, Nguyen T V, Lapsley H. et al. Direct clinical and welfare costs of osteoporotic fractures in elderly men and women [J]. Osteoporosis International,1995,5(6):427-432.
    [18]卫小春,段王平.骨质疏松性骨折的治疗进展[J].继续医学教育,2006,12(3):16-19.
    [19]叶任高,陆再英.内科学[M].北京:人民卫生出版社,2002.
    [20]Cooper C, Campion G. Melton Ⅲ L J. Hip fractures in the elderly:a world-wide projection [J]. Osteoporosis International,1992,2(6):285-289.
    [21]Karris J A, Johnell O, Laet C D, et al. International variations in hip fracture probabilities: implications for risk assessment [J]. Journal of Bone and Mineral Research,2002,17(7):1237-1244.
    [22]赵翼.骨质疏松药物治疗概述[J].天津药学,2004,16(2):683.
    [23]Lindsay R, Silverman S L, Cooper C, et al. Risk of new vertebral fracture in the year following a fracture [J]. Journal of the American Medical Association,2001,285(3):320-323.
    [24]Seeman E. Pathogenesis of bone fragility in women and men [J]. Lancet,2002,359(9320): 1841-1850.
    [25]Marx J. Coming to grips with bone loss [J]. Science,2004,305(5689):1420-1422.
    [26]廖二元,谭利华.代谢性骨病学[M].北京:人民卫生出版社,2003.
    [27]王平芳,彭六保.骨质疏松防治200问[M].湖南:中南大学出版社,2006.
    [28]Raisz L G. Pathogenesis of osteoporosis:concepts, conflicts, and prospects [J]. Journal of Clinical Investigation,2005,115(12):3318-3325.
    [29]Canalis E, Giustina A, Bilezikian J P. Mechanisms of anabolic therapies for osteoporosis [J]. New England Journal of Medicine,2007,357(9):905-916.
    [30]Sims N A, Gooi J H. Bone remodeling:Multiple cellular interactions required for coupling of bone formation and resorption [J]. Seminars in Cell and Developmental Biology,2008,19(5):444-451.
    [31]Raggatt L J, Partridge N C. Cellular and molecular mechanisms of bone remodeling [J]. Journal of Biological Chemistry,2010,285(33):25103-25108.
    [32]Stein G S, Lian J B. Molecular mechanisms mediating proliferation/differentiation interrelationships during progressive development of the osteoblast phenotype [J]. Endocrine Reviews,1993,14(4): 424-442.
    [33]Atkins G J, Findlay D M. Osteocyte regulation of bone mineral:a little give and take [J]. Osteoporosis International,2012,23(8):2067-2079.
    [34]Caplan A I, Bruder S P. Mesenchymal stem cells:building blocks for molecular medicine in the 21st century [J]. Trends in Molecular Medicine,2001,7(6):259-264.
    [35]McCormick R K. Osteoporosis:Integrating biomarkers and other diagnostic correlates into the management of bone fragility [J]. Alternative Medicine Review,2007,12(2):113-145.
    [36]Deng Z L, Sharff K A, Tang N I, et al. Regulation of osteogenic differentiation during skeletal development [J]. Frontiers in Bioscience,2008,13(1):2001-2021.
    [37]Ecarot-Charrier B, Shepard N, Charette G, et al. Mineralization in osteoblast cultures:A light and electron microscopic study [J]. Bone,1988,9(3):147-154.
    [38]Manolagas S C, Jilka R L. Bone marrow, cytokines, and bone remodeling. Emerging insights into the pathophysiology of osteoporosis [J]. New England Journal of Medicine,1995,332(5):305-311.
    [39]McCabe L R, Last T J, Lynch M, et al. Expression of cell growth and bone phenotypic genes during the cell cycle of normal diploid osteoblasts and osteosarcoma cells [J]. Journal of Cellular Biochemistry,1994,56(2):274-282.
    [40]Aubin J E, Liu F. The osteoblast lineage. In:Bilezikian JP, Raisz LG, Rodan GA (eds) Principles of bone biology. Academic Press, San Diego,1996, pp 51-67.
    [41]Cheng S L, Yang J W, Rifas L, et al. Differentiation of human bone marrow osteogenic stromal cells in vitro:induction of the osteoblast phenotype by dexamethasone [J]. Endocrinology,1994,134(1): 277-286.
    [42]McCabe L R, Banerjee C, Kundu R, et al. Developmental expression and activities of specific fos and jun proteins are functionally related to osteoblast maturation:role of Fra-2 and Jun D during differentiation [J]. Endocrinology,1996,137(10):4398-4408.
    [43]Owen T A, Aronow M, Shalhoub V, et al. Progressive development of the rat osteoblast phenotype in vitro:Reciprocal relationships in expression of genes associated with osteoblast proliferation and differentiation during formation of the bone extracellular matrix [J]. Journal of Cellular Physiology, 1990,143(3):420-430.
    [44]Ogawa E, Inuzuka M, Maruyama M, et al. Molecular cloning and characterization of PEBP2β,the heterodimeric partner of a novel drosophila runt-related DNA binding protein PEBP2α [J]. Virology, 1993,194(1):314-331.
    [45]Ducy P, Zhang R, Geoffroy V, et al. Osf2/Cbfal:a transcriptional activator of osteoblast differentiation [J]. Cell,1997,89(5):747-754.
    [46]Lynch M P, Stein J S, Stein G S, et al. Apoptosis during in vitro bone formation [J]. Journal of Bone and Mineral Research,1994,9:S352.
    [47]Franz-Odendaal T A, Hall B K, Witten P E. Buried alive:How osteoblasts become osteocytes [J]. Developmental Dynamics,2006,235(1):176-190.
    [48]Neve A, Corrado A, Cantatore F P. Osteoblast physiology in normal and pathological conditions [J]. Cell and Tissue Research,2011,343(2):289-302.
    [49]Watts N B. Clinical utility of biochemical markes of bone remodeling [J]. Clinical Chemistry.1999, 45(8):1359-1368.
    [50]Baroncelli G I, Bertelloni S, Ceccarelli C, et al. Bone turnover in children with vitamin D deficiency rickets before and during treatment [J]. Acta Paediatr,2000,89(5):513-518.
    [51]Franceschi R T, Iyer B S. Relationship between collagen synthesis and expression of the osteoblast phenotype in MC3T3-Ε1 cells [J]. Journal of Bone and Mineral Research,1992,7(2):235-246.
    [52]Wagner E F, Karsenty G. Genetic control of skeletal development [J]. Current Opinion in Genetics & Development,2001,11(5):527-532.
    [53]Huh J E, Yang H R, Park D S, et al. Puerariae radix promotes differentiation and mineralization in human osteoblast-like SaOS-2 cells [J]. Journal of Ethnopharmacology,2006,104(3):345-350.
    [54]Cantatore F P, Corrado A, Grano M, et al. Osteocalcin synthesis by human osteoblasts from normal and osteoarthritic bone after vitamin D3 stimulation [J]. Clinical Rheumatology,2004,23(6): 490-495.
    [55]Alexandrakis M G, Passam F H, Malliaraki N, et al. Evaluation of bone disease in multiple myeloma: a correlation between biochemical markers of bone metabolism and other clinical parameters in untreated multiple myeloma patients [J]. Clinica Chimica Acta.2002,325(1-2):51-57.
    [56]Chenu C, Colucci S, Grano M, et al. Osteocalcin induces chemotaxis, secretion of matrix proteins, and calcium-mediated intracellular signaling in human osteoclast-like cells [J]. Journal of Cell Biology,1994,127(4):1149-1158.
    [57]Liggett W H, Lian J B, Greenberger J S, et al. Osteocalcin promotes differentiation of putative osteoclast progenitors from murine long-term bone marrow cultures [J]. Journal of Cellular Biochemistry,1994,55(2):190-199.
    [58]Lian J B, Stein G S. Development of the osteoblast phenotype:molecular mechanisms mediating osteoblast growth and differentiation [J]. The Iowa Orthopaedic Journal,1995,15:118-140.
    [59]Oldberg A, Franzen A, Heinegard D. Cloning and sequence analysis of rat bone sialoprotein (osteopontin) cDNA reveals an Arg-Gly-Asp cell-binding sequence [J]. Proceedings of the National Academy of Sciences of the USA,1986,83(23):8819-8823.
    [60]Fujihara S, Yokozeki M, Oba Y, et al. Function and regulation of osteopontin in response to mechanical stress [J]. Journal of Bone and Mineral Research,2006,21(6):956-964.
    [61]Ishijima M, Tsuji K, Rittling S R, et al. Osteopontin is required for mechanical stress-dependent signals to bone marrow cells [J]. Journal of Endocrinology,2007,193(1):235-243.
    [62]Gordon J A, Tye C E, Sampaio A V, et al. Bone sialoprotein expression enhances osteoblast differentiation and matrix mineralization in vitro [J]. Bone,2007,41(3):462-473.
    [63]Malaval L, Wade-Gueye N M, Boudiffa M, et al. Bone sialoprotein plays a functional role in bone formation and osteoclastogenesis [J]. Journal of Experimental Medicine,2008,205(5):1145-1153.
    [64]Carvalho R S, Bumann A, Schaffer J L, et al. Predominant integrin ligands expressed by osteoblasts show preferential regulation in response to both cell adhesion and mechanical perturbation [J]. Journal of Cellular Biochemistry,2002,84(3):497-508.
    [65]Plebani M, Bernardi D, Zaninotto M, et al. New and traditional serum markers of bone metabolism in the detection of skeletal metastases [J]. Clinical Biochemistry,1996,29(1):67-72.
    [66]Nakasaki M, Yoshioka K, Miyamoto Y, et al. IGF-I secreted by osteoblasts acts as a potent chemotactic factor for osteoblasts [J]. Bone,2008,43(5):869-879.
    [67]Niu T, Rosen C J. The insulin-like growth factor-1 gene and osteoporosis:a critical appraisal [J]. Gene,2005,361(21):38-56.
    [68]Kim C H, Kang B S, Lee T K, et al. IL-1β regulates cellular proliferation, prostaglandin E2 synthesis, plasminogen activator activity, osteocalcin production, and bone resorptive activity of the mouse calvarial bone cells [J]. Immunopharmacology and Immunotoxicology,2002,24(3):395-407.
    [69]Lacey D L, Grosso L E, Moser S A, et al. IL-1-induced murine osteoblast IL-6 production is mediated by the type 1 IL-1 receptor and is increased by 1,25 dihydroxyvitamin D3[J]. Journal of Clinical Investigation,1993,91(4):1731-1742.
    [70]Li Y, Backesjo C M, Haldosen L A, et al. IL-6 receptor expression and IL-6 effects change during osteoblast differentiation [J]. Cytokine,2008,43(2):165-173.
    [71]Erices A, Conget P, Rojas C, et al. Gp130 activation by soluble interleukin-6 receptor/interleukin-6 enhances osteoblastic differentiation of human bone marrow-derived mesenchymal stem cells [J]. Experimental Cell Research,2002,280(1):24-32.
    [72]Silvestris F, Cafforio P, Calvani N, et al. Impaired osteoblastogenesis in myeloma bone disease:role of upregulated apoptosis by cytokines and malignant plasma cells [J]. British Journal of Haematology,2004,126(4):475-486.
    [73]Wognum A W, van Gils F C, Wagemaker G. Flow cytometric detection of receptors for interleukin-6 on bone marrow and peripheral blood cells of humans and rhesus monkeys [J]. Blood,1993,81(8): 2036-2043.
    [74]Bellido T. O'Brien C A, Roberson P K, et al. Transcriptional activation of the p21WAFI、CIOI、SDH gene by interleukin-6 type cytokines. A prerequisite for their pro-differentiating and anti-apoptotic effects on human osteoblastic cells [J]. Journal of Biological Chemistry,1998,273(33):21137-21144.
    [75]Roberto P. Editorial:Cytokines, estrogen, and postmenopausal osteoporosis-the second decade [J]. Endocrinology,1998,139(6):2659-2661.
    [76]Lacey D L, Timms E, Tan H L, et al. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation [J]. Cell,1998,93(2):165-176.
    [77]Mostov K, Werb Z. Journey across the osteoclast [J]. Science,1997,276(5310):219-220.
    [78]Zhao Q, Shao J, Chen W, et al. Osteoclast differentiation and gene regulation [J]. Frontiers in bioscience:a journal and virtual library,2007,12(1):2519-2529.
    [79]Salo J, Lehenkari P, Mulari M, et al. Removal of osteoclast bone resorption products by transcytosis [J]. Science,1997,276(5310):270-273.
    [80]Nesbitt S A, Horton M A. Trafficking of matrix collagens through bone-resorbing osteoclasts [J]. Science,1997,276(5310):266-269.
    [81]Umeda S, Takahkshi K, Naito M, et al. Neonatal changes of osteoclasts in osteopetrosis mice defective in production of functional macrophage colony-stimulating factor (M-CSF) protein and effects of M-CSF on osteoclast development and differentiation [J]. Journal of Submicroscopic Cytology and Pathology,1996,28(1):13-26.
    [82]Jimi E, Nakamura I, Ikebe T, et al. Activation of NF-κB is involved in the survival of osteoclasts promoted by interleukin-1 [J]. Journal of Biological Chemistry,1998,273(15):8799-8805.
    [83]Ozaki K, Takeda H, Iwahashi H, et al. NF-κB inhibitors stimulate apoptosis of rabbit mature osteoclasts and inhibit bone resorption by these cells [J]. FEBS Letters,1997,410(2-3):297-300.
    [84]Kameda T, Miyazawa K, Mori Y, et al. Vitamin K.2 inhibits osteoclastic bone resorption by inducing osteoclast apoptosis [J]. Biochemical and Biophysical Research Communications,1996,220(3): 515-519.
    [85]Kameda T, Mano H, Yuasa T, et al. Estrogen inhibits bone resorption by directly inducing apoptosis of the bone-resorbing osteoclasts [J]. Journal of Expermental Medicine,1997,186(4):489-495.
    [86]Sunyer T, Lewis J, Collin-Osdoby P, et al. Estrogen's bone-protective effects may involve differential 1L-1 receptor regulation in human osteoclast-like cells [J]. Journal of Clinical Investigation,1999,103(10):1409-1418.
    [87]于世风.破骨细胞及其骨吸收调控研究进展[J].中国骨质疏松杂志,2000,6(1):78-83.
    [88]Alatato S L, Ivaska K K, Waguespack S G, et al. Osteoclast-derived serum tartratere-sistant acid phosphatsse 5b in Albers-Schonberg disease (type Ⅱ autosomal dominant osteopetrosis) [J]. Clinical Chemistry,2004,50(5):883-890.
    [89]Takahara M, Naruse T, Takagi M, et al. Matrix metalloproteinase-9 expression, tartrate-resistant acid phosphatase activity, and DNA fragmentation in vascular and cellular invasion into cartilage preceding primary endochondral ossification in long bones [J]. Journal of Orthopaedic Research, 2004,22(5):1050-1057.
    [90]Funayama H, Ishikawa S E, Kubo N, et al. Increases in interleukin-6 and matrix metalloproteinase-9 in the infarct-related coronary artery of acute myocardial infarction [J]. Circulation Journal,2004, 68(5):451-454.
    [91]Hulkkonen J, Pertovaara M, Antonen J, et al. Matrix metalloproteinase-9 (MMP-9) gene polymorphism and MMP-9 plasma levels in primary Sjogren's syndrome [J]. Rheumatology,2004, 43(12):1476-1479.
    [92]Okada Y, Naka K, Kawamura K, et al. Localization of matrix metalloproteinase 9 (92-kD gelatinase/ type Ⅳ Collagenase= gelatinase B) in osteoclasts:implications for bone resorption [J]. Laboratory Investigation,1995,72(3):311-322.
    [93]Blavier L, Delaisse J M. Matrix metalloproteinases are obligatory for the migration of presoteoclasts to the developing marrow cavity of primitive long bones [J]. Journal of Cell Science,1995, 108(Pt12):3649-3659.
    [94]Lee E R, Murphy G, El-Alfy M, et al. Active gelatinase B is identified by histozymography in the cartilage resorption sites of developing long bones [J]. Developmental Dynamics,1999,215(3): 190-205.
    [95]Ishibashi O, Niwa S, Kadoyama K, et al. MMP-9 antisense oligodeoxynucleotide exerts an inhibitory effect on osteoclastic bone resorption by suppressing cell migration [J]. Life Sciences,2006,79(17): 1657-1660.
    [96]刑学武.骨转换生化标志物及其应用研究进展[J].中国骨质疏松杂志,2009,15(8):610-617.
    [97]Apone S, Lee M Y, Eyre D R. Osteoclasts generate cross-linked collagen N-telopeptides (NTX) but not free pyridinolines when cultured on human bone [J]. Bone,1997,21(2):129-136.
    [98]李剑,魏启幼.PTH/PTHrP对骨代谢调节机制的研究进展[J].国外医学(生理、病理科学与临床分册),2004,24(1):54-57.
    [99]Onyia J E, Miles R R, Yang X, et al. In vivo demonstration that human parathyroid hormone 1-38 inhibits the expression of osteoprotegerin in bone with the kinetics of an immediate early gene [J]. Journal of Bone and Mineral Research,2000,15(5):863-871.
    [100]Ma Y L, Cain R L, Halladay D L, et al. Catabolic effects of continuous human PTH (1-38) in vivo is associated with sustained stimulation of RANKL and inhibition of osteoprotegerin and gene-associated bone formation [J]. Endocrinology,2001,142(9):4047-4054.
    [101]Takahashi N, Udagawa N, Suda T. A new member of tumor necrosis factor ligand family, ODF/OPGL/TRANCE/RANKL, regulates osteoclast differentiation and function [J]. Biochemical and Biophysical Research Communications,1999,256(3):449-455.
    [102]Nagai M, Sato N. Reciprocal gene expression of osteoclastogenesis inhibitory factor and osteoclast differentiation factor regulates osteoclast formation [J]. Biochemical and Biophysical Research Communications,1999,257(3):719-723.
    [103]Yasuda H. Bone and bone related biochemical examinations. Bone and collagen related metabolites. Receptor activator of NF-kappaB ligand (RANKL) [J]. Clinical Calcium,2006,16(6):964-970.
    [104]Kostenuik P J. Osteoprotegerin and RANKL regulate bone rsorption, density, geometry and strength [J]. Current Opinion in Pharmacology,2005,5(6):618-625.
    [105]Burgess T L, Qian Y, Kaufman S, et al. The ligand for osteoprotegerin (OPGL) directly activates mature osteoclasts [J]. Journal of Cell Biology,1999,145(3):527-538.
    [106]叶超群,纪树荣,钟兴明.RANKL-RANK-OPG骨调节轴[J].首都体育学院学报,2006,18(6):61-64.
    [107]刘继中,纪宗玲,陈苏民.OPG/RANKL/RANK系统与骨破坏性疾病[J].生物工程学报,2003,19(6):655-659.
    [108]Hsu H, Lacey D L, Dunstan C R, et al. Tumor necrosis factor receptor family member RANK mediates osteoclast differentiation and activation induced by osteoprotegerin ligand [J]. Proceedings of the National Academy of Sciences of the USA,1999,96(7):3540-3545.
    [109]刘忠厚主编.骨矿与临床6版[M].北京:中国科学技术出版社,2006,182.
    [110]Wauquier F, Leotoing L, Coxam V, et al. Oxidative stress in bone remodeling and disease [J]. Trends in Molecular Medicine,2009,15(10):468-477.
    [111]高延征,高坤,钟楚楠,等.RANKL、OPG在去卵巢大鼠骨组织中蛋白表达动态变化[J].医药论坛杂志,2009,30(5):4-6.
    [112]张仕兵.健骨片对去卵巢骨质疏松模型大鼠骨代谢影响的实验研究[D].南京:南京中医药大学,2009.
    [113]赵广高.运动与骨质疏松[J].中国实用医药,2007,36(2):171-173.
    [114]傅葵.钙营养与骨质疏松症[J].中国药物与临床,2003,3(6):522-523.
    [115]李旋,石建,朱秀英,等.骨质疏松症重在早期预防教育[J].中国骨质疏松杂志,2004,10(3):374-376.
    [116]李平生.骨质疏松症治疗用药的最新进展[J].人民军医,2005,48(7):411-413.
    [117]Somekawa Y, Wakabayashi A. Relationship between apolipoprotein E polymorphism, menopausal symptoms, and serum lipids during hormone replacement therapy [J]. European Journal of Obstetrics, Gynecology, and Reproductive Biology,1998,79(2):185-191.
    [118]Nelson H D, Humphrey L L, Nygren P, et al. Postmenopausal hormone replacement therapy [J]. Journal of the American Medical Association,2002,288(7):872-881.
    [119]Ohmichi M, Tasaka K, Kurachi H, et al. Molecular mechanism of action of selective estrogen receptor modulator in target tissues [J]. Endocrine Journal,2005,52(2):161-167.
    [120]Cranney A. Tugwell P, Zytaruk N, et al. Meta-analysis of raloxifene for the prevention and treatment of postmenopausal osteoporosis [J]. Endocrine Reviews,2002.23(4):524-528.
    [121]Cummings S R, Eckert S, Krueger K A, et al. The effect of raloxifene on risk of breast cancer in postmenopausal women [J]. Journal of American Medical Association,1999,281(23):2189-2197.
    [122]Komm B S, Kharode Y P, Bodine P V, et al. Bazedoxifene acetate:a selective estrogen receptor modulator with improved selectivity [J]. Endocrinology,2005,146(9):3999-4008.
    [123]McClung M R, Siris E, Cummings S, et al. Prevention of bone loss in postmenopausal women treated with lasofoxifene compared with raloxifene [J]. Menopause,2006,13(3):377-386.
    [124]朱静芬,谢庆文.杨永彬.绝经后骨质疏松症药物预防和治疗方案分析[J].中国临床康复,2005,9(11):148-149.
    [125]Inzerillo A M, Zaidi M, Huang C L H. Calcitonin:physiological actions and clinical applications [J]. Journal of Pediatric Endocrinology and Metabolism,2004,17(7):931-940.
    [126]McCloskey E, Selby P, De Takats D, et al. Effects of clodronate on vertebral fracture risk in osteoporosis:A 1-year interim analysis [J]. Bone,2001,28(3):310-315.
    [127]Pols H A P, Felsenberg D, Hanley D A, et al. Multinational placebo-controlled, randomized trial of the effects of alendronate on bone density and fracture risk in postmenopausal women with low bone mass:Results of the FOSIT study [J]. Osteoporosis International,1999,9(5):461-486.
    [128]Orwoll E, Ettinger M, Weiss S, et al. Alendronate for the treatment of osteoporosis in men [J]. New England Journal of Medicine,2000,343(9):604-610.
    [129]Cranney A, Tugwell P, Adachi J, et al. Meta-analyses of therapies for postmenopausal osteoporosis. III. Meta-analysis of risedronate for the treatment of postmenopausal osteoporosis [J]. Endocrine Reviews,2002,23(4):517-523.
    [130]Tanko L B, Felsenberg D, Czerwinski E, et al. Oral weekly ibandronate prevents bone loss in postmenopausal women [J]. Journal of Internal Medicine,2003,254(2):159-167.
    [131]王红,吴红菱.他汀类药物刺激骨形成的作用[J].医药导报,2002,21(10):665-666.
    [132]Liote F, Bardin C, Liou A, et al. Biovailability of fluoride in postmenopausal women:comparative study between sodium fluoride and disodium monofluorophosphate-calcium carbonate [J]. Calcified Tissue International,1992,50(3):209-213.
    [133]Cranney A, Papaioannou A, Zytaruk N, et al. Parathyroid hormone for the treatment of osteoporosis: a systematic review [J]. Canadian Medical Association Journal,2006,175(1):52-59.
    [134]Shea B, Wells G, Cranney A, et al. Meta-analyses of therapies for postmenopausal osteoporosis. Ⅶ. Meta-analysis of calcium supplementation for the prevention of postmenopausal osteoporosis [J]. Endocrine Reviews,2002,23(4):552-559.
    [135]Papadimitropoulos E, Wells G, Shea B, et al. Meta-analyses of therapies for postmenopausal osteoporosis.Ⅷ:Meta-analyses of the efficacy of vitamin D treatment in preventing osteoporosis in postmenopausal women [J]. Endocrine Reviews,2002,23(4):560-569.
    [136]Bischoff-Ferrari H A, Willett W C, Wong J B, et al. Fracture prevention with vitamin D supplementation:a meta-analysis of randomized controlled trials [J]. Journal of the American Medical Association,2005,293(18):2257-2264.
    [137]Johnson M A, Kimlin M G. Vitamin D, aging, and the 2005 dietary guidelines for Americans [J]. Nutrition Reviews,2006,64(9):410-421.
    [138]Blake G M, Fogelman 1. Long-term effect of strontium ranelate treatment on BMD [J]. Journal of Bone and Mineral Research,2005,20(11):1901-1904.
    [139]Meunier P J, Roux C, Seeman E, et al. The effects of strontium ranelate on the risk of vertebral fracture in women with postmenopausal osteoporosis [J]. England Journal of Medicine,2004,350(5): 459-468.
    [140]Reginster J Y, Seeman E, De Vernejoul M C, et al. Strontium ranelate reduces the risk of nonvertebral fractures in postmenopausal women with osteoporosis:Treatment of Peripheral Osteoporosis (TROPOS) study [J]. Journal of Clinical Endocrinology and Metabolism,2005,90(5): 2816-2822.
    [141]李朝阳,吴铁,黄连芳,等.黄芪水提液与己烯雌酚对去卵巢大鼠骨代谢的影响[J].中草药,1998,29(1):27-30.
    [142]胡金家,王曼莹.杜仲叶提取物对体外培养的成骨细胞代谢功能调节研究[J].中国中医基础医学杂志,2001,7(4):48-51.
    [143]郑高利,张信岳.葛根异黄酮对去卵巢大鼠骨矿密度和骨密度的影响[J].中草药,2001,32(5):422-425.
    [144]谢雁鸣,许勇钢,赵晋宁等.骨碎补总黄酮对去卵巢大鼠骨密度和细胞因子IL-6、IL-4、TNF-α水平的影响[J].中国中医基础医学杂志,2004,10(1):34-37.
    [145]解芳.接骨木提取物抗骨质疏松作用及作用机理研究[D].沈阳:沈阳药科大学,2005.
    [146]Nian H, Xu L L, Ma M H, et al. Prevention of bone loss by aqueous extract of Epimedii sagitta turn in an ovariectomized rat model of osteoporosis [J]. Journal of Chinese integrative medicine,2006, 4(6):628-633.
    [147]盛丽,刑国胜,王毅.熟地对去卵巢大鼠骨代谢生化指标及骨密度的影响[J].中国骨质疏松杂志,2006,12(5):496-498.
    [148]蒙海燕,曲晓波,李娜,等.鹿茸及鹿角胶对去卵巢大鼠骨质疏松症的影响[J].中药材,2009,32(2):179-182.
    [149]廖进民,李忠华,钟世镇,等.延藿骨宝对类固醇性大鼠骨骼的骨密度和生物力学影响[J].中药材,2002,25(11):808-811.
    [150]蒋珍藕,龙杰超,骆同,等.骨松康剂防治骨质疏松的实验研究[J].湖南中医药导报,2004,10(1):53-55.
    [151]操良玉.骨活素胶囊对原发性骨质疏松症腰椎骨密度的影响[J].中国骨质疏松杂志,2005,11(1):94-97.
    [152]Li C Y, Suttie J M. Deer antlerogenic periosteum:a piece of postnatally retained embryonic tissue [J]. Anatomy and Embryology,2001,204(5):375-388.
    [153]Li C Y, Suttie J M. Tissue collection methods for antler research [J]. European Journal of Morphology,2003,41(1):23-30.
    [154]Li C Y, Yang F H, Sheppard A. Adult stem cells and mammalian epimorphic regeneration-insights from studying annual renewal of deer antlers [J]. Current Stem Cell Research and Therapy,2009, 4(15):237-251.
    [155]Li C Y, Yang F H, Haines S, et al. Stem cells responsible for deer antler regeneration are unable to recapitulate the process of first antler development-revealed through intradermal and subcutaneous tissue transplantation [J]. Journal of Experimental Zoology Part B:Molecular and Developmental Evolution,2010,314(7):552-570.
    [156]Wu F F, Li H Q, Jin L J, et al. Deer antler base as a traditional Chinese medicine:A review of its traditional uses, chemistry and pharmacology [J]. Journal of Ethnopharmacology.2013.145(2): 403-415.
    [157]张宝香,金春爱,赵延平.鹿角盘的化学成分与开发利用[J].特种经济动植物,2005.8(12):7-9.
    [158]邱芳萍,马波,王志兵,等.鹿角盘蛋白的分离纯化与活性研究[J].长春工业大学学报.2007,28(2):144-147.
    [159]田玉华.梅花鹿角脱盘蛋白多肽的分离纯化及活性研究[D].长春:吉林农业大学,2011.
    [160]姚玉霞,杜锐,王艳梅,等.梅花鹿三权茸、二杠茸、角盘中钙、磷含量比较[J].经济动物学报,2002,6(2):6.
    [161]王振玉.鹿花盘注射液研究[J].中国生化药物杂志,1987,(2):10-12.
    [162]苏凤艳,李慧萍,王艳梅,等.鹿花盘蛋白质的提取与生物活性测定[J].动物科学与动物医学,2001,18(2):18-20.
    [163]唐任能,赵雨,孙晓迪,等.梅花鹿鹿茸、鹿托盘及鹿骨水溶性总蛋白比较研究[J].吉林中医药,2008,28(4):295.
    [164]李泽鸿,武丽敏,姚玉霞,等.梅花鹿鹿茸不同产品中氨基酸含量的比较[J].氨基酸和生物资源,2007,29(3):16-18.
    [165]王芳,赵余庆.鹿花盘中胆固醇的HPLC测定[J].中草药,2009,40(1):286-287.
    [166]Cardiff R D, Wellings S R. The comparative pathology of human and mouse mammary glands [J]. Journal of Mammary Gland Biology and Neoplasia,1999,4(1):105-122.
    [167]宋跃进.中药治疗乳腺增生症及对激素变化的影响[J].浙江中西医结合杂志,2003,13(7):421-422.
    []68]陈玉山,王淑贤,王本祥.鹿花盘注射液的药理实验[J].特产研究,1989,(4):9-12.
    [169]王志兵,邱芳萍,李治民,等.鹿角盘活性成分对小鼠吞噬功能及对大鼠乳腺增生激素水平的影响[J].食品科技,2007,32(11):225-226.
    [170]赵向上.复方鹿花盘胶囊对实验性乳腺增生的治疗研究[D].哈尔滨:黑龙江中医药大学,2008.
    [171]赵文静,赵向上,旺建伟,等.复方鹿花盘胶囊对乳腺增生小鼠子宫、卵巢重量影响及作用机制的研究[J].中医药信息,2010,27(3):41-43.
    [172]王志兵,邱芳萍,解耸林.鹿角盘蛋白多肽的制备与活性研究[J].中国食品学报,2008,8(3):28-32.
    [173]Wu F F, Jin L J, Wang N, et al. The effect of deer products on immune function in mice. The 5th World Deer Congress,2010,27-28 July, Changchun, China, pp 265-266.
    [174]王丽虹,高志光.鹿花盘水溶性成分的药理活性与临床应用[J].经济动物学报,1999,3(3):18-22.
    [175]杨晓杰,付学鹏,刘泽东.蒲公英多糖抗疲劳作用研究[J].时珍国医国药,2008,19(11):2686-2687.
    [176]牛放,赵雨,杨菲,等.梅花鹿鹿角脱盘提取物抗疲劳作用研究[J].食品科技,2011,36(11):218-220.
    [177]史小青,刘金哲,姚艳飞,等.梅花鹿鹿花盘对小鼠抗疲劳作用的研究[J].吉林农业大学学报,2011,33(4):408-410.
    [178]王艳梅.东北梅花鹿茸主要成分系统性比较研究[D].哈尔滨:东北林业大学,2004.
    [179]王莘,苏玉春,董浩,等.9种中药提取物对乙型溶血性链球菌的抑菌作用比较[J].中草药,2004,35(3):309-310.
    [180]黄金凤,王维,王莘.鹿茸及鹿花盘蛋白提取物的抑菌比较[J].吉林农业,2010,247(9):43,55.
    [181]肖宇奇.梅花鹿角盘粉体外抑菌实验初报[J].西部中医药,2012,25(2):18-19.
    [182]郜玉钢,于文影,李然,等.鹿角盘多糖抗病毒的研究[J].安徽农业科学,2010,38(22):11857-11858.
    [183]牛放,赵雨,杨菲,等.梅花鹿鹿角托盘提取物的抗炎镇痛作用[J].中国医院药学杂志,2011,(10):789-791.
    [184]于文影,郜玉钢,郝建勋,等.鹿角盘蛋白酶解工艺优化及其水解物抗氧化活性研究[J].时珍国医国药,2011,22(11):2699-2700.
    [185]牛放,赵雨,徐云凤,等.鹿角脱盘胶原蛋白对去卵巢所致骨质疏松大鼠的治疗作用[J].中国现代应用药学,2012,29(2):93-97.
    [186]孔庆芝,张玉敏,王薛君,等.增免升白冲剂的提升白细胞的作用研究[J].中国现代应用药学,]998,15(6):12-15.
    [187]黄凤杰,吉静娴,钱璟,等.鹿角脱盘多肽的分离纯化及其降糖活性的研究[J].药物生物技术,2010,17(2):151-156.
    [188]陈玉山,王振玉,王本祥.鹿花盘注射液治疗乳腺增生的药理实验研究[J].中国生化药物杂志,1987,(2):12-15.
    [189]马广丽,王莘.鹿茸/鹿花盘蛋白提取物对小鼠相关指标的影响[J].安徽农业科学,2010,38(35):20128-20129.
    [190]张维滋,王振玉.鹿花盘注射液治疗乳腺增生病146例临床观察[J].中国生化药物杂志,1987,(7):16-18.
    [191]张雷,林艳.鹿角盘胶囊治疗乳腺增生症120例分析[J].中国误诊学杂志,2010,10(4):900-901.
    [192]周宾,谭苏萍,蒋振芳.等.鹿角霜治疗急性乳腺炎56例[J].南京中医药大学学报,2000,16(4):251.
    [193]高青,高红.鹿角霜治疗乳头皲裂38例分析[J].山西医药杂志,2004,33(11):989.
    [194]韩泉.试用鹿角盘治疗胃癌一例[J].特产研究,1987,(12):33.
    [195]张金宝.试用鹿角盘治疗胃癌一例[J].畜牧兽医科技信息,2006,(4):21.
    [196]Rodan G A, Martin T J. Therapeutic approaches to bone diseases [J]. Science,2000,289(5484): 1508-1514.
    [197]陆燕.鹿角帽对大鼠骨质疏松症治疗作用的研究[D].大连:大连理工大学,2010.
    [198]Liu Y, Jin L J, Li X Y, et al. Application of Mechanochemical Pretreatment (MCPT) to Aqueous Extraction of lsofraxidin from Eleutherococcus senticosus [J]. Industrial & Engineering Chemistry Research,2007,46(20):6584-6589.
    [199]Jin L J, Li H Q, Wu F F, et al. Application of mechanochemical pretreatment prior to aqueous extraction of eleutheroside B from Eleutherococcus senticosus [J]. Industrial & Engineering Chemistry Research,2012,51 (32):10695-10701.
    [200]Li H Q, Jin L J, Wu F F, et al. Effect of red pepper (Capsicum frutescens) powder or red pepper pigment on the performance and egg yolk color of laying hens [J]. Asian-Australasian Journal of Animal Sciences,2012,25(11):1605-1610.
    [201]Farmakis L, Koliadima A, Karaiskakis G, et al. Study of the influence of surfactants on the size distribution and mass ratio of wheat starch granules by sedimentation/steric field-flow fractionation [J]. Food Hydrocolloids,2008,22(6):961-972.
    [202]Kail N, Marquardt W, Briesen H. Process Analysis by Means of Focused Beam Reflectance Measurements [J]. Industrial & Engineering Chemistry Research,2009,48(6):2936-2946.
    [203]陈福泉,卢海凤,袁立军,等.FBRM测定淀粉颗粒粒径大小的研究初探[J].食品工业科技,2010,31(3):134-136.
    [204]张本山,陈福泉,赵永青,等.聚焦光束反射分析仪测定淀粉颗粒粒径分布[J].华南理工大学学报,2010,38(4):55-60.
    [205]Wang S J, Yu J L, Yu J G. Conformation and location of amorphous and semi-crystalline regions in C-type starch granules revealed by SEM, NMR and XRD [J]. Food Chemistry,2008,110(1):39-46.
    [206]王绍清,王琳琳,范文浩,等.扫描电镜法分析常见可食用淀粉颗粒的超微形貌[J].食品科学,2011,32(15):74-79.
    [207]李银清,毕胜男,韩烨,等.醇提法制备鹿茸胶原的初步研究[J].特产研究,2007,(1):9-11.
    [208]Liu C J, Zhang S Q, Li D S, et al. Detection and quantitation of insulin-like growth factor-1 in velvet antler by an enzyme-linked immunosorbent assay [J]. Consumer Electronics, Communications and Networks (CECNet),2011,1162-1168.
    [209]黄萍,赵雨,牛放,等.鹿角托盘总蛋白的提取工艺研究[J].安徽农业科学,2010,38(14):7305-7307.
    [210]Rodrigues C I, Marta L, Maia R, et al. Application of solid-phase extraction to brewed coffee caffeine and organic acid determination by UV/HPLC [J]. Journal of Food Composition and Analysis, 2007,20(5):440-448.
    [211]Kelebek H, Selli S, Canbas A, et al. HPLC determination of organic acids, sugars, phenolic compositions and antioxidant capacity of orange juice and orange wine made from a Turkish cv. Kozan [J]. Microchemical Journal,2009,91(2):187-192.
    [212]孙亚莉,孙敏.等离子体质谱法测定珊瑚锶和钙[J].分析化学,2000,28(8):941-944.
    [213]李秀萍,李丽华,张金生.MPT-AES测定乳胶手套中的铁、镍、镁、钙、锌[J].分析测试学报,2007,26(5):754-756.
    [214]樊明德,谢巧勤,陈天虎,等.化学计量学方法用于多组分的分光光度分析—合成样品中钡锶钙的同时测定[J].分析测试学报,2006,25(6):39-42.
    [215]段文军,万新祥.返滴定法测定牛磺酸钙中的钙[J].分析试验室,2000,19(6):98.
    [216]胡娟,朱俊杰,郑建斌,等.倒数示波计时电位滴定法测定环境样品中的Cr、Ca、Mg和S[J].分析试验室,1994,13(4):30-32.
    [217]Chen J R, Teo K C. Determination of cadmium, copper, lead and zinc in water samples by flame atomic absorption spectrometry after cloud point extraction [J]. Analytica Chimica Acta,2001, 450(1-2):215-222.
    [218]陈艳梅,程素敏,李长青.原子吸收光谱法测定人体血清中的微量元素锌、铜、铁、钙和镁[J].光谱实验室,2008,25(5):974-976.
    [219]Boldyrev V V, Tkacova K. Mechanochemistry of solids:past, present, and prospects [J], Journal of Materials Synthesis and Processing,2000,8(3-4):121-132.
    [220]刘莹,金礼吉,宋春娜,等.机械化学法辅助提取剌五加总黄酮的工艺研究[J].时珍国医国药,2007,18(12):2889-2891.
    [221]宋春娜,王洋,金礼吉,等.微切助互作技术辅助提取穿心莲内酯的工艺研究[J].时珍国医国药,2008,19(11):8362-8365.
    [222]Korolev K G, Lomovskii O I, Rozhanskaya O A, et al. Mechanochemical preparation of water-soluble forms of triterpene acids [J]. Chemistry of Natural Compounds,2003,39(4):366-372.
    [223]Lomovsky O, Korolyov K, Kwon Y S. Mechanochemical solubilization and mechanochemically assisted extraction of plant bioactive substances [J]. Science and Technology,2003,1(1):7-20.
    [224]Rolf H J and Fischer K. Serum testosterone,5-a-dihydrotestosterone and different sex characteristics in male fallow deer(Cervus dama):a long-term experiment with accelerated photoperiods [J]. Comparative Biochemistry and Physiology,1996.115(3):207-221.
    [225]Min J, Lee Y J, Kim Y A, et al. Lysophosphatidylcholine derived from deer antler extract suppresses hyphal transition in Candida albicans through MAP kinase pathway [J]. BBA-Molecular and Cell Biology of Lipids,2001,1531(1-2):77-89.
    [226]Ivankina N F, Isay S V, Busarova N G, et al. Prostaglandin-like activity, fatty acid and phospholipid composition of sika deer (Cervus nippon) antlers at different growth stages [J]. Comparative Biochemistry and Physiolog,1993,106(1):159-162.
    [227]Suttie J M, Gluckman P D, Butler J H, et al. Insulin-like growth factor-1 (1GF-1) antler-stimulating hormone [J]. Endocrinology,1985,116(2):846-848.
    [228]Huo Y, Schirf V R, Winters W D. The differential expression of NGFS-like substance from fresh pilose antler of Cervus nippon temminck [J]. Biomedical Sciences Instrumentation,1997,33: 541-543.
    [229]Garcia R L, Sadighi M, Francis S M. Expression of neurotrophin-3 in the growing velvet antler of the red deer Cerus elaphus [J]. Journal of Molecular Endocrinology,1997,19(2):173-182.
    [230]Barling P M, Lai A K W, Nicholson L F B. Distribution of EGF and its receptor in growing red deer antler [J]. Cell Biology International.2005,29(3):229-236.
    [231]Notelovitz M. Androgen effects on bone and muscle [J]. Fertility and Sterility,2002,77(4): S34-S41.
    [232]Riggs B L, Khosla S, Melton L J. Sex steroids and the construction and conservation of the adult skeleton [J]. Endocrine reviews,2002,23(3):279-302.
    [233]Druckmann R, Rohr U D. IGF-1 in gynaecology and obstetrics:update 2002 [J]. Maturitas,2002, 41 (S1):65-83.
    [234]Lu K, Campisi J. Ras proteins are essential and selective for the action of insulin-like growth factor 1 late in the G1 phase of the cell cycle in BALB/c murine fibroblasts [J]. Proceedings of National Academy of Sciences of the USA,1992,89(9):3889-3893.
    [235]Parrizas M, Saltiel A R, LeRoith D. Insulin-like growth factor I inhibits apoptosis using the phosphatidylinositol 3'-kinase and mitogen-activated protein kinase pathways [J]. Journal of Biological Chemistry,1997,272(1):154-161.
    [236]Stewart C E, Rotwein P. Growth, differentiation, and survival-multiple physiological functions for insulin-like growth factors [J]. Physiological Reviews,1996,76(4):1005-1026.
    [237]Daughaday W H, Rotwein P. Insulin-like growth factors Ⅰ and Ⅱ. Peptide, messenger ribonucleic acid and gene structures, serum, and tissue concentrations [J]. Endocrine Reviews,1989,10(1):68-91.
    [238]Heemskerk V H, Daemen M A R C, Buurman W A. Insulin-like growth factor-1 (IGF-1) and growth hormone (GH) in immunity and inflammation [J]. Cytokine & Growth Factor Reviews,1999,10(1): 5-14.
    [239]施文正,汪之和,应苗苗,等.贝壳制备柠檬酸钙的研究[J].科学研究,2008,29(10):7-10.
    [240]顾清.钙的生理功能及代谢的研究进展[J].中国食品卫生杂志.2002,14(6):29-33.
    [241]Boyce B F, Hughes D E, Wright K R, et al. Recent advances in bone biology provide insight into the pathogenesis of bone diseases [J]. Laboratory Investigation,1999,79(2):83-94.
    [242]Teitelbaum S L. Bone resorption by osteoclasts [J]. Science,2000,289(5484):1504-1508.
    [243]王大为.促进成骨细胞骨形成的中药及其活性成分的研究[D].沈阳:沈阳药科大学,2001.
    [244]Shi B, Li G, Wang P, et al. Effect of antler extract on corticosteroid-induced avascular necrosis of the femoral head in rats [J]. Journal of Ethnopharmacology,2010,127(1):124-129.
    [245]Kim J H, Yang Y I, Ahn J H, et al. Deer (Cervus elaphus) antler extract suppresses adhesion and migration of endometriotic cells and regulates MMP-2 and MMP-9 expression [J]. Journal of Ethnopharmacology,2012,140(2):391-397.
    [246]Wang W Z, Olson D, Cheng B, et al. Sanguis Draconis resin stimulates osteoblast alkaline phosphatase activity and mineralization in MC3T3-Ε1 cells [J]. Journal of Ethnopharmacology,2012, 142(1):168-174.
    [247]Prouillet C, Maziere J C, Maziere C, et al. Stimulatory effect of naturally occurring flavonols quercetin and kaempferol on alkaline phosphatase activity in MG-63 human osteoblasts through ERK and estrogen receptor pathway [J]. Biochemical Pharmacology,2004,67(7):1307-1313.
    [248]Ling L J, Ho F C, Chen Y T, et al. Areca nut extracts modulated expression of alkaline phosphatase and receptor activator of nuclear factor kB ligand in osteoblasts [J]. Journal of Clinical Periodontology,2005,32(4):353-359.
    [249]Yang J H, Zhang X L, Wang W W, et al. Insulin stimulates osteoblast proliferation and differentiation through ERK and P13K in MG-63 cells [J]. Cell Biochemistry and Function,2010, 28(4):334-341.
    [250]Abiramasundari G, Sumalatha K R, Sreepriya M. Effects of Tinospora cordifolia (Menispermaceae) on the proliferation, osteogenic differentiation and mineralization of osteoblast model systems in vitro [J]. Journal of Ethnopharmacology,2012,141(1):474-480.
    [251]Lena A, Rechichi M, Salvetti A, et al. Drugs targeting the mitochondrial pore act as cytotoxic and cytostatic agents in temozolomide-resistant glioma cells [J]. Journal of Translational Medicine,2009, 7:1-13.
    [252]Parish C R, Mullbacher A. Automated colorimetric assay for T cell cytotoxicity [J]. Journal of Immunological Methods,1983,58(1-2):225-237.
    [253]Vasiliev A V, Kiseliov I V, Ivanov A A, et al. Preservation of human skin:viability criteria [J]. Annals of Burns and Fire Disasters,2002,15(3):1-9.
    [254]Mosmann T. Rapid colorimetric assay for cellular growth and survivals:application to proliferation and cytotoxicity assays [J]. Journal of Immunological Methods,1983,65(1-2):55-63.
    [255]Vian L, Vincent J, Maurin J, et al. Comparison of three in vitro cytotoxicity assays for estimating surfactant ocular irritation [J]. Toxicology In Vitro,1995.9(2):185-190.
    [256]Aubin J E, Liu F, Malaval L, et al. Osteoblast and chondroblast differentiation [J]. Bone,1995,17(2): S77-S83.
    [257]Kind P R N, King E J. Estimation of plasma phosphatase by determination of hydrolysed phenol with amino-antipyrine [J]. Journal of Clinical Pathology,1954.7(4):322-326.
    [258]Reinholz G G, Getz B, Pederson L, et al. Bisphosphonates directly regulate cell proliferation, differentiation, and gene expression in human osteoblasts [J]. Cancer Research,2000,60(21): 6001-6007.
    [259]Kwun I S, Cho Y E, Lomeda R A, et al. Zinc deficiency suppresses matrix mineralization and retards osteogenesis transiently with catch-up possibly through Runx 2 modulation [J]. Bone,2010,46(3): 732-741.
    [260]Alcantara E H, Shin M Y, Sohn H Y, et al. Diosgenin stimulates osteogenic activity by increasing bone matrix protein synthesis and bone-specific transcription factor Runx2 in osteoblastic MC3T3-E1 cells [J]. Journal of Nutritional Biochemistry,2011,22(11):1055-1063.
    [261]Chen C H, Ho M L, Chang J K, et al. Green tea catechin enhances osteogenesis in a bone marrow mesenchymal stem cell line [J]. Osteoporosis International,2005,16(12):2039-2045.
    [262]Bodine P V N, Trailamith M, Komm B S. Development and characterization of a conditionally transformed human osteoblastic cell line [J]. Journal of Bone and Mineral Research,1996,11(6): 806-819.
    [263]Gregory C A, Gunn W G, Peister A, et al. An alizarin red-based assay of mineralization by adherent cells in culture:comparison with cetylpyridinium chloride extraction [J]. Analytical Biochemistry, 2004,329(1):77-84.
    [264]Zou L, Zou X, Chen L, et al. Effect of hyaluronan on osteogenic differentiation of porcine bone marrow stromal cells in vitro [J]. Journal of Orthopaedic Research,2008,26(5):713-720.
    [265]Cho Y E, Alcantara E H, Kumaran S, et al. Red yeast rice stimulates osteoblast proliferation and increases alkaline phosphatase activity in MC3T3-E1 cells [J]. Nutrition Research,2010,30(7): 501-510.
    [266]Yang R S, Lin W L, Chen Y Z, et al. Regulation by ultrasound treatment on the integrin expression and differentiation of osteoblasts [J]. Bone,2005,36(2):276-283.
    [267]Suzuki A, Guicheux J, Palmer G, et al. Evidence for a role of p38 MAP kinase in expression of alkaline phosphatase during osteoblastic cell differentiation [J]. Bone,2002,30(1):91-98.
    [268]Ryu B M, Qian Z J, Kim S K. SHP-1, a novel peptide isolated from seahorse inhibits collagen release through the suppression of collagenases 1 and 3, nitric oxide products regulated by NF-KB/p38 kinase [J]. Peptides,2010,31 (1):79-87.
    [269]Suzuki A, Ammann P, Nishiwaki-Yasuda K, et al. Effects of transgenic Pit-1 overexpression on calcium phosphate and bone metabolism [J]. Journal of Bone and Mineral Metabolism,2010, 28(2):139-148.
    [270]Tang C H, Huang T H, Chang C S, et al. Water solution of onion crude powder inhibits RANKL-induced osteoclastogenesis through ERK, p38 and NF-κB pathways [J]. Osteoporosis International,2009,20(1):93-103.
    [271]Tang C H, Chang C S, Tan T W, et al. The novel isoflavone derivatives inhibit RANKL-induced osteoclast formation [J]. European Journal of Pharmacology,2010,648(1-3):59-66.
    [272]Yasuda H, Shima N, Nakagawa N, et al. Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL [J]. Proceedings of the National Academy of Sciences of the United States of America,1998,95(7): 3597-3602.
    [273]Khosla S. Minireview:the OPG/RANKL/RANK system [J]. Endocrinology,2001,142(12): 5050-5055.
    [274]Zhao Y, Li J, Liu Y, et al. Gu Ling Pian, a traditional Chinese medicine, regulates function and OPG/RANKL synthesis of osteoblasts via the p38 MAPK pathway [J]. Journal of Pharmacy and Pharmacology,2007,59(8):1167-1173.
    [275]Granchi D, Cenni E, Savarino L, et al. Bone cement extracts modulate the osteoprotegerin/ osteoprotegerinligand expression in MG63 osteoblast-like cells [J]. Biomaterials,2002,23(11): 2359-2365.
    [276]Xie F, Wu C F, Lai W P, et al. The osteoprotective effect of Herba epimedii (HEP) extract in vivo and in vitro [J]. Evidence-Based Complementary and Alternative Medicine,2005,2(3):353-361.
    [277]Mulder J E, Kolatkar N S, LeBoff M S. Drug insight:existing and emerging therapies for osteoporosis [J]. Nature Clinical Practice Endocrinology & Metabolism,2006,2(12):670-680.
    [278]Hessle L, Johnson K A, Anderson H C, et al. Tissue-nonspecific alkaline phosphatase and plasma cell membrane glycoprotein-1 are central antagonistic regulators of bone mineralization [J]. Proceedings of the NationalAcademyof Science United States of America,2002,99(14):9445-9449.
    [279]Anderson H C, Sipe J B, Hessle L, et al. Impaired calcification around matrix vesicles of growth plate and bone in alkaline phosphatase-deficient mice [J]. American Journal of Pathology,2004, 164(3):841-847.
    [280]Golub E E, Boesze-Battaglia K. The role of alkaline phosphatase in mineralization [J]. Current Opinion in Orthopedics,2007,18(5):444-448.
    [281]Yin X X, Chen Z Q, Liu Z J, et al. Icariine stimulates proliferation and differentiation of human osteoblasts by increasing production of bone morphogenetic protein 2 [J]. Chinese Medical Journal (English),2007,120(3):204-210.
    [282]Boskey A L. Matrix Proteins and Mineralization:An Overview [J]. Connective Tissue Research, 1996,35(1-4):357-363.
    [283]Vanderrest M, Garrone R. Collagen family of proteins [J]. The FASEB Journal,1991,5(13): 2814-2823.
    [284]Badylak S F. Xenogeneic extracellular matrix as a scaffold for tissue reconstruction [J]. Transplant Immunology,2004,12(3-4):367-377.
    [285]Hofbauer L C, Heufelder A E. Role of receptor activator of nuclear factor-kB ligand and osteoprotegerin in bone cell biology [J]. Journal of Molecular Medicine,2001,79(5-6):243-253.
    [286]Tran Q K, Ohashi K, Watanabe H. Calcium signaling in endothelial cells [J]. Cardiovascular Research,2000,48(1):113-122.
    [287]Parfitt A M. Bone remodeling and bone loss:understanding the pathophysiology of osteoporosis [J]. Clinical Obstetrics and Gynecology,1987,30(4):789-811.
    [288]Udagawa N, Takahashi N, Akatsu T, et al. The bone marrow-derived stromal cell lines MC3T3-G2/PA6 and ST2 support osteoclast-like cell differentiation in cocultures with mouse spleen cells [J]. Endocrinology,1989,125(4):1805-1813.
    [289]Bucay N, Sarosi I, Dunstan C R, et al. Osteoprotegerin-deficient mice develop early onset osteoporosis and arterial calcification [J]. Genes & Development,1998,12(9):1260-1268.
    [290]Boyle W J, Simonet W S, Lacey D L. Osteoclast differentiation and activation [J]. Nature.2003, 423(6937):337-342.
    [291]Blair H C, Athanasou N A. Recent advances in osteoclast biology and pathological bone resorption [J]. Histology and histopathology,2004,19(1):189-199.
    [292]潘懿,张伟,张克勤.不同代数RAW264.7细胞分化为破骨细胞样细胞的能力研究[J].南京医科大学学报,2011,31(5):616-619.
    [293]肖新华,周后德,王运林,等.RANKL诱导小鼠单核细胞RAW264.7分化成成熟破骨细胞[J].中国骨质疏松杂志,2005,11(2):151-155.
    [294]Miyamoto A, Kunisada T, Hemmi H et al. Establishment and characterization of an immortal macrophage-like cell line inducible to differentiate to osteoclasts [J]. Biochemical and Biophysical Research Communications,1998,242(3):703-709.
    [295]Tsubaki M, Kato C, Manno M, et al. Macrophage inflammatory protein-1α (MIP-1α) enhances a receptor activator of nuclear factor κB ligand (RANKL) expression in mouse bone marrow stromal cells and osteoblasts through MAPK and PI3K/Akt pathways [J]. Molecular and Cellular Biochemistry,2007,304(1-2):53-60.
    [296]Takeshita S, Kaji K, Kudo A. Identification and characterization of the new osteoclast progenitor with macrophage phenotypes being able to differentiate into mature osteoclasts [J]. Journal of Bone and Mineral Research,2000,15(8):1477-1488.
    [297]Monici M, Fusi F, Paglierani M, et al. Modeled gravitational unloading triggers differentiation and apoptosis in preosteoclastic cells [J]. Journal of Cellular Biochemistry,2006,98(1):65-80.
    [298]Ishizuka S, Kurihara N, Hiruma Y, et al. 1α,25-Dihydroxyvitamin D3-26,23-lactam analogues function as vitamin D receptor antagonists in human and rodent cells [J]. The Journal of Steroid Biochemistry and Molecular Biology,2008,110(3-5):269-277.
    [299]Kobayashi Y, Mizoguchi T, Take I, et al. Prostaglandin E2 enhances osteoclastic differentiation of precursor cells through protein kinase A-dependent phosphorylation of TAK1 [J]. Journal of Biological Chemistry,2005,280(12):11395-11403.
    [300]Roodman G D. Advances in bone biology:the osteoclast [J]. Endocrine Reviews.1996,17(4): 308-332.
    [301]Yamaguchi M, Hayashi M, Fujita S, et al. Low-energy laser irradiation facilitates the velocity of tooth movement and the expressions of matrix metall oproteinase-9, cathepsin K, and alpha (v) beta (3) integrin in rats [J]. European Journal of Orthodontics,2010,32(2):131-139.
    [302]肖新华,廖二元,董源嫒.小鼠单核细胞RAW264.7的细胞生物学特征[J].南华大学学报(医学版),2008,36(3):282-285.
    [303]Yao W, Li K, Liao K. Macropinocytosis contributes to the macrophage foam cell formation in RA W264.7 cells [J]. Acta Biochimica et Biophysica Sinica,2009,41(9):773-780.
    [304]Zou W, Amcheslavsky A, Takeshita S, et al. TNF-a expression is transcriptionally regulated by RANK ligand [J]. Journal of Cell Physiology,2005,202(2):371-378.
    [305]Rieman D J, McClung H A, Dodds R A, et al. Biosynthesis and processing of cathepsin K in cultured human osteoclasts [J]. Bone,2001,28(3):280-289.
    [306]Geng D C, Xu Y Z, Yang H L, et al. Cannabinoid receptor-2 selective antagonist negatively regulates receptor activator of nuclear factor kappa B ligand mediated osteoclastogenesis [J]. Chinese Medical Journal,2011,124(4):586-590.
    [307]Liu C, Walter T S, Huang P, et al. Structural and functional insights of RANKL-RANK interaction and signaling [J]. Journal of Immunology,2010,184(12):6910-6919.
    [308]Takahashi N, Udagawa N, Kobayashi Y, et al. Generation of osteoclasts in vitro, and assay of osteoclast activity [J]. Methods in Molecular Medicine,2007,135(1):285-301.
    [309]Kim M H, Ryu S Y, Bae M A, et al. Baicalein inhibits osteoclast differentiation and induces mature osteoclast apoptosis [J]. Food and Chemical Toxicology,2008,46(11):3375-3382.
    [310]He X, Andersson G, Lindgren U, et al. Resveratrol prevents RANKL-induced osteoclast differentiation of murine osteoclast progenitor RAW264.7 cells through inhibition of ROS production [J]. Biochemical and Biophysical Research Communications,2010,401(3):356-362.
    [311]Hu L, Lind T, Sundqvist A, et al. Retinoic acid increases proliferation of human osteoclast progenitors and inhibits RANKL-stimulated osteoclast differentiation by suppressing RANK [J]. PLoS One,2010,5(10):e13305.
    [312]Das S K, Ren R, Hashimoto T, et al. Fucoxanthin induces apoptosis in osteoclast-Iike cells differentiated from RAW264.7 cells [J]. Journal of Agricultural and Food Chemistry,2010,58(10), 6090-6095.
    [313]Palacios V G, Robinson L J, Borysenko C W, et al. Negative regulation of RANKL-induced osteoclastic differentiation in RAW264.7 cells by estrogen and phytoestrogens [J]. Journal of Biological Chemistry,2005,280(14):13720-13727.
    [314]Ko C H, Lau K M, Choy W Y, et al. Effects of tea catechins, epigallocatechin, gallocatechin, and gallocatechin gallate, on bone metabolism [J].2Journal of Agricultural and Food Chemistry,2009, 57(16):7293-7297.
    [315]Bharti A C, Takada Y, Aggarwal B B. Curcumin (diferuloylmethane) inhibits receptor activator of NF-κB ligand-induced NF-κB activation in osteoclast precursors and suppresses osteoclastogenesis [J]. Journal of Immunology,2004,172(10):5940-5947.
    [316]Tang C H, Hsu T L, Lin W W, et al. Attenuation of bone mass and increase of osteoclast formation in decoy receptor 3 transgenic mice [J]. Journal of Biological Chemistry,2007,282(4):2346-2354.
    [317]Tsai H Y, Lin H Y, Fong Y C, et al. Paeonol inhibits RANKL-induced osteoclastogenesis by inhibiting ERK, p38 and NF-κB pathway [J]. European Journal of Pharmacology,2008,588(1): 124-133.
    [318]Wyllie A H; Kerr J F:Currie A R. Cell death:the significance of apoptosis [J]. International Review of Cytology-a survey of cell biology,1980,68:251-306.
    [319]Hashimoto T, Ashida H. Sano T, et al.3-Amino-],4-dimethyl-5H-pyrido[4,3-b]indole (Trp-P-1) induces caspase-dependent apoptosis in mononuclear cells [J]. Biochimica et Biophysica Acta,2001, 1539(1-2):44-57.
    [320]Brunk C F, Jones K C, James T W. Assay for nanogram quantities of DNA in cellular homogenates [J]. Analytical Biochemistry,1979,92(2):497-500.
    [321]Koh J Y, Choi D W. Quantitative determination of glutamate mediated cortical neuronal injury in cell culture by lactate dehydrogenase efflux assay [J]. Journal of Neuroscience Methods,1987,20(1): 83-90.
    [322]Martini N D, Katerere D R P, Eloff J N. Biological activity of five antibacterial flavonoids from Combretum erythrophyllum (Combretaceae) [J]. Journal of Ethnopharmacology,2004,93(2-3): 207-212.
    [323]叶玲玲,刘红,刘兴茂,等.一种基于荧光强度分析的高通量定量检测细胞凋亡方法[J].中国生物工程杂志,2006,26(6):66-70.
    [324]张峻梅,岑石强,杨志明,等.流式细胞仪碘化丙啶染色法测定类胰岛素生长因子Ⅰ对人胚胎原代及传代成肌细胞生长周期的作用[J].中国组织工程研究与临床康复,2008,12(16):3110-3114.
    [325]殷蔚慧,邵莉楣,赵军,等.DNA的荧光染料DAPI的特性及其应用[J].生物化学与生物物理进展,1985,(4):69-71.
    [326]Kapuscinski J. DAPI:a DNA-specific fluorescent probe [J]. Biotechnic & Histochemistry,1995, 70(5):220-233.
    [327]Engsig M T, Chen Q J. Vu T H, et al. Matrix metalloproteinase 9 and vascular endothelial growth factor are essential for osteoclast recruitment into developing long bones [J]. Journal of Cell Biology, 2000,151(4):877-879.
    [328]滕晓英,王连唐.破骨细胞功能调控与骨质疏松症[J].中国病理生理杂志,2002,18(8):1012-1015.
    [329]刘文佳,干晓庚,周洪,等.高纯度破骨样细胞体外培养及功能表达的研究[J].华西口腔医学杂志,2008,26(6):599-603.
    [330]Yamamoto A, Miyazaki T, Kadono Y, et al. Possible involvement of IκB kinase 2 and MKK7 in osteoclastogenesis induced by receptor activator of nuclear factor κB ligand [J]. Journal of Bone and Mineral Research,2002,17(4):612-621.
    [331]Ozaki K, Kawata Y, Amano S, et al. Stimulatory effect of curcumin on osteoclast apoptosis [J]. Biochemical Pharmacology,2000,59(12):1577-1581.
    [332]Chen X Y, Yang H X, Qu S F, et al. Involvement of p38 and c-Jun N-terminal protein kinase in cardiotoxin Ⅲ-induced apoptosis of K.562 cells [J]. Biological and Pharmaceutical Bulletin,2009, 32(4):583-588.
    [333]Krishan A, Dandekar P D. DAPI fluorescence in nuclei isolated from tumors [J]. Journal of Histochemistry & Cytochemistry,2005,53(8):1033-1036.
    [334]Roodman G D. Cell biology of the osteoclast [J]. Experimental Hematology,1999,27(8): 1229-1241.
    [335]Igarashi Y, Lee M Y, Matsuzaki S. Acid phosphatases as markers of bone metabolism [J]. Journal of Chromatography B,2002,781(1-2):345-358.
    [336]Sheu J R, Fong T H, Liu C M, et al. Expression of matrix metalloproteinase-9 in human platelets: regulation of platelet activation in in vitro and in vivo studies [J]. British Journal of Pharmacology, 2004,143(1):193-201.
    [337]Wilson S R, Gallagher S, Warpeha K, et al. Amplification of MMP-2 and MMP-9 production by prostate cancer cell lines via activation of protease-activated receptors [J]. Prostate,2004,60(2): 168-174.
    [338]Hipskind R A, Bilbe G. MAP kinase signaling cascades and gene expression in osteoblasts [J]. Frontiers in Bioscience,1998,3:d804-d816.
    [339]Lovicu F J, McAvoy J W. FGF-induced lens cell proliferation and differentiation is dependent on MAPK (ERK1/2) signaling [J]. Development,2001,128(24):5075-5084.
    [340]Kanno Y, Tokuda H, Nakajima K, et al. Involvement of SAPK/JNK in prostaglandin E(1)-induced VEGF synthesis in osteoblast-like cells [J]. Molecular and Cellular Endocrinology,2004,220(1-2): 89-95.
    [341]Pantouli E, Boehm M M, Koka S. Inflammatory cytokines activate p38 MAPK to induce osteoprotegerin synthesis by MG-63 cells [J]. Biochemical and Biophysical Research Communications,2005,329(1):224-229.
    [342]Luo X H, Guo L J, Xie H, et al. Adiponectin stimulates RANKL and inhibits OPG expression in human osteoblasts through the MAPK signaling pathway [J]. Journal of Bone Mineral Research, 2006,21(10):1648-1656.
    [343]Matsumoto M, Sudo T, Saito T, et al. Involvement of p38 mitogen-activated protein kinase signaling pathway in osteoclastogenesis mediated by receptor activator of NF-kB ligand (RANKL) [J]. Journal of Biological Chemistry,2000,275(40):31 155-31161.
    [344]Huang H, Chang E J, Ryu J, et al. Induction of c-Fos and NFATcl during RANKL-stimulated osteoclast differentiation is mediated by the p38 signaling pathway [J]. Biochemical and Biophysical Research Communications,2006,351(1):99-105.
    [345]Chen Y J, Kuo Y R, Yang K D, et al. Activation of extracellular signal-regulated kinase (ERK) and p38 kinase in shock wave-promoted bone formation of segmental defect in rats [J]. Bone,2004, 34(3):466-477.
    [346]Kusumi A, Sakaki H, Kusumi T, et al. Regulation of synthesis of osteoprotegerin and soluble receptor activator of nuclear factor-KB ligand in normal human osteoblasts via the p38 mitogen-activated protein kinase pathway by the application of cyclic tensile strain [J]. Journal of Bone and Mineral Metabolism,2005,23(5):373-381.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700