用户名: 密码: 验证码:
ADAM10在长骨发育障碍和骨肉瘤进展中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
不同类型细胞在骨骺区动态相互作用,通过软骨内骨化的方式促进长骨生长,骨骺区还是骨肉瘤好发部位。其中最常见的细胞类型为骨骺区一侧的肥大软骨细胞以及另一侧的侵入破骨细胞、成骨细胞、及血管内皮细胞。目前对于软骨细胞、成骨细胞、及破骨细胞之间的相互调节在软骨内骨化中的作用了解较多,但对血管内皮细胞在其中的作用了解甚少。我们此前发现内皮细胞敲除ADAM10会导致小鼠长骨生长缺陷,但此生长缺陷的潜在原因并不清楚,此外对于细胞表面金属蛋白酶ADAM10是否在骨肉瘤中起作用仍不明确。ADAM10是Notch信号的主要调节因子,内皮细胞缺乏ADAM10(ADAM10△EC)小鼠视网膜血管结构显示出特征性的血管分支增加,也是Notch信号缺陷所特有的现象。大多数ADAM10△EC小鼠可以存活数月,该动物模型因此提供了研究内皮细胞缺乏ADAM10如何影响长骨生长的独特机会。另一方面,近期研究表明Notch信号通路促进骨肉瘤的形成和肿瘤侵袭,提示作为Notch受体主要脱落酶的ADAM10在骨肉瘤的进展中可能通过影响肿瘤血管生成起作用。本课题旨在比较ADAM10△EC小鼠和对照小鼠不同发育阶段的长骨生长情况,重点研究骨骺区血管内皮细胞、软骨细胞、及破骨细胞可能的形态及分布异常,此外还研究了ADAM10与骨肉瘤进展及血管生成的相关性。
     第一部分:ADAM10在小鼠长骨发育障碍中的作用
     材料与方法
     1.内皮细胞ADAM10敲除(ADAM10△EC)模型小鼠的建立及鉴定。通过将ADAM10lox/lox小鼠与表达内皮细胞特异性Tie2-Cre转基因小鼠杂交,建立ADAM10内皮细胞敲除小鼠(ADAM10△EC,基因型为ADAM10lox/loxTie2-Cre+/-)及正常对照小鼠(Control,基因型为ADAM10lox/loxTie2-Cre-/-);提取小鼠尾部DNA,PCR法通过检测loxP及Tie2产物鉴定小鼠型别(ADAM10△EC小鼠或对照小鼠)。
     2. ADAM10△EC小鼠长骨发育缺陷的动态改变。采用Faxitron X射线仪监测ADAM10△EC/对照小鼠不同发育时间点多种长骨发育缺陷的动态变化,并计算松质骨密度改变;茜素红-阿辛蓝大体骨-软骨染色确定敲除ADAM10对长骨的骨及软骨的大体影响;小鼠膝关节骨组织切片HE染色、番红精-固绿软骨染色,确定股骨及胫骨生长板区软骨代谢及软骨细胞改变,并计算内皮细胞敲除ADAM10后对生长板内软骨细胞增生的影响。
     3.内皮细胞敲除ADAM10对小鼠长骨骨骺区血管发育的影响。利用小鼠内皮细胞特异性endomucin抗体行膝关节骨组织切片免疫荧光染色,对比检测内皮细胞敲除ADAM10后对股骨骨骺区血管形态的改变;通过甲基丙烯酸酯血管铸型构建股骨骨骺区血管三维模型,研究内皮细胞敲除ADAM10对小鼠长骨骨骺区血管发育的三维改变。
     4. ADAM10在小鼠内皮细胞缺失后对骨骺区破骨细胞的影响及与血管异常的联系。小鼠膝关节骨组织切片TRAP染色,确定内皮细胞缺失ADAM10后骨骺区破骨细胞数目的改变;endomucin-TRAP双重染色,研究ADAM10内皮细胞敲除后血管发育异常与破骨细胞改变的相关性。
     5.敲除小鼠内皮细胞ADAM10对破骨细胞分化的影响。分离ADAM10△EC/对照小鼠股骨及胫骨骨髓细胞,体外用巨噬细胞-击落刺激因子(M-CSF)分化培养为巨噬细胞,加入/不加入RANKL继续分化为破骨细胞,TRAP染色确定破骨细胞数目及形态改变。
     6.小鼠内皮细胞敲除ADAM10对骨骺区RANKL/OPG信号通路的影响。分离ADAM10△EC/对照小鼠上下肢骨骺区软骨并提取RNA,实时定量逆转录PCR(real timequantitative RT-PCR)mRNA水平检测RANKL/OPG比值改变,以确定RANKL/OPG信号通路对ADAM10内皮细胞敲除引起的破骨细胞改变的影响。
     结果
     1. ADAM10内皮细胞敲除导致小鼠多个长骨发育障碍。Faxitron X线摄片长度测量分析显示,小鼠内皮细胞缺失ADAM10导致股骨及胫骨最早于生后7天明显短缩(P7),其中股骨短缩随时间进展明显加重,肱骨、尺骨、桡骨于生后14天开始明显短缩,而上肢掌骨在所有监测时间点(P7-P183)均无明显短缩;骨密度分析显示ADAM10△EC小鼠股骨及胫骨生长板下骨松质密度均显著增高,分别始于P28及P21。
     2. ADAM10敲除导致长骨生长板结构异常。小鼠膝关节骨组织切片HE染色显示,与对照小鼠相比ADAM10△EC小鼠股骨生长板生后7天及14天未见明显异常,生长板后方在生后21天则开始出现不连续,至生后28天生长板后方进展为局部中断,而生长板前方肥大软骨细胞层则表现为不规则增厚,此外HE染色还显示骨松质密度增加导致ADAM10△EC小鼠股骨髓腔较对照小鼠明显变窄,生后42天出现整个生长板区多个部位显著中断;ADAM10△EC小鼠胫骨生长板于生后14天开始出现不同于股骨生长板改变的中央型肥大软骨细胞层明显增厚,一直持续至监测到的生后42天,并导致生长板下骨缺损。番红精-固绿软骨染色显示生后21天ADAM10△EC小鼠股骨及胫骨生长板增生软骨细胞层开始出现软骨合成减少。茜素红-阿辛蓝全组织染色显示ADAM10△EC小鼠生后42天股骨远端骨骺线出现早闭。
     3.小鼠内皮细胞中缺失ADAM10导致骨骺区血管发育紊乱。免疫荧光染色显示ADAM10△EC小鼠股骨骨骺区于生后14天出现endomucin荧光抗体显著增强,分析显示骨骺区血管密度显著增加,生后21天生长板中断处证实有血管侵入,至28天生长板被贯穿处上下侧均发现有血管侵入,胫骨骨骺区则出现襻样血管团,或于增厚的生长板下方出现血管缺失;相较ADAM10△EC小鼠而言,对照小鼠骨骺区血管分布规则、均匀,且endomucin荧光染色较浅;甲基丙烯酸酯血管铸型解剖显微镜下显示对照小鼠股骨血管为单个大的中央动脉延伸至骨骺区分支为逐渐增多的规则、平行、细小的血管环,而ADAM10△EC小鼠股骨血管铸型则显示骨骺区血管分布杂乱、交错,以及多处小的血管球样扩张。
     4. ADAM10△EC小鼠长骨发育障碍由骨骺区破骨细胞数目明显减少引起。TRAP染色显示在ADAM10△EC小鼠股骨骨骺区,生后7天及14天破骨细胞数目及分布较对照小鼠无明显改变,生后21天破骨细胞数目开始出现显著减少直至28天,胫骨骨骺区破骨细胞变化与股骨类似。
     5. ADAM10内皮细胞缺失引起的骨骺区破骨细胞数目减少与血管发育紊乱密切相关。Endomucin-TRAP双重染色显示,生后14天及28天股骨骨骺区TRAP+破骨细胞与endomucin+内皮细胞在空间位置上紧密联系,14天血管密度明显增加而破骨细胞数目未见明显减少;28天同样可见相似的血管密度增加,但股骨骨骺区破骨细胞数目则显著减少。
     6.内皮细胞缺失ADAM10导致小鼠体外破骨细胞分化能力下降,但RANKL/OPG信号通路未受影响。体外破骨细胞细胞分化实验表明ADAM10△EC小鼠来源于股骨及胫骨的骨髓细胞破骨细胞生成较对照小鼠稍延迟,导致TRAP+破骨细胞数目出现少量但统计学显著的减少,而来源于小鼠上下肢骨骺区组织的定量PCR结果显示ADAM10△EC小鼠与对照小鼠RANKL/OPG比值无显著性差异。
     第二部分:ADAM10在骨肉瘤进展中的作用
     材料与方法
     1.骨肉瘤样本。主要样本来源于购买的组织芯片,每张包含40例人骨肉瘤组织块(多聚甲醛处理,石蜡包埋)病理分期从IA至IIB期,组织类型包括:骨母细胞型骨肉瘤、软骨母细胞型骨肉瘤、纤维母细胞型骨肉瘤、以及富含巨细胞骨肉瘤;部分石蜡包埋组织来源于本院病理科。
     2.常规HE染色。确定肿瘤组织来源、形态、及病理类型。
     3.免疫荧光染色。抗CD31、抗胞内ADAM10、抗胞内段/活化Notch1(Notch1intracellular domain, NICD),DAPI(胞核染色),免疫荧光染色骨肉瘤组织切片,并计算CD31、NICD表达强度,血管分支数目及ADAM10阳性细胞数目与肿瘤分期及组织类型的相关性;双重免疫荧光染色(CD31/ADAM10, CD31/NICD)研究ADAM10/Notch1表达与肿瘤血管内皮细胞之间的关系。
     4. TRAP染色。确定破骨细胞在骨肉瘤组织中的表达情况,并明确富含巨细胞骨肉瘤中的破骨细胞样多核巨细胞是否为破骨细胞。
     结果
     1. ADAM10在肿瘤细胞中的表达与骨肉瘤的进展呈正相关。在所有骨肉瘤分期及病例中均发现有ADAM10局部聚集表达于骨肉瘤细胞中,随着骨肉瘤从IA期进展为IIB期,ADAM10+肿瘤细胞数目也显著增加,IIA和IIB期的ADAM10+肿瘤细胞数目平均值较IA期显著升高;此外骨母细胞型骨肉瘤中ADAM10+肿瘤细胞也显著多于软骨母细胞型骨肉瘤及纤维母细胞型骨肉瘤。
     2. IA/IB期骨肉瘤存在一类血管原性肿瘤细胞,可能通过“胞质内陷”方式形成血管管腔。HE染色发现IA/IB期骨肉瘤中存在一类嗜碱性圆形肿瘤细胞,CD31染色呈阳性,证明其为血管原性,其中部分肿瘤细胞出现不同阶段的“胞质内陷”,可能为形成血管管腔的一种机制,同时ADAM10也均一表达于这类细胞胞质中。
     3.富含巨细胞骨肉瘤中的破骨细胞样多核巨细胞并非破骨细胞,而是血管原性肿瘤细胞,涉及ADAM10/Notch1信号活化。TRAP/DAPI双重染色证明富含巨细胞骨肉瘤中的多核巨细胞TRAP染色阴性,而骨母细胞型骨肉瘤、软骨母细胞型骨肉瘤及纤维母细胞型骨肉瘤中均含TRAP+肿瘤细胞。CD31以中度水平均一表达于巨细胞胞质中,ADAM10和活化的Notch1也共同表达于巨细胞中,其表达模式与CD31类似。
     4.部分骨肉瘤血管结构内皮缺失。CD31染色发现IA期-IIB期部分骨肉瘤血管结构中红细胞未被血管内皮包绕,但血管内皮CD31染色阳性,证明其中并非由于血管内皮不表达CD31而是因为血管内皮缺失造成,其形成可能与多核巨细胞相关。
     结论
     1.生长板区血管在调节破骨细胞仅在诸如股骨、肱骨、胫骨、尺骨、以及桡骨这些较大长骨的发育后期显现出作用。
     2.内皮细胞中ADAM10对于长骨中特化的血管在软骨内骨化中的正常发育及功能是必需的。
     3. ADAM10△EC小鼠长骨骨骺区破骨细胞数目的减少很有可能是由ADAM10缺乏导致Notch信号异常,引起血管内皮细胞分化障碍,导致血管结构异常造成的,而不是由ADAM10缺乏导致血管内皮释放RANKL等可溶性因子缺陷造成的。
     4. ADAM10在肿瘤细胞中的表达与骨肉瘤进展正相关。
     5. IA/IB期骨肉瘤中存在一类血管原性肿瘤细胞,可能通过“胞质内陷”形成血管管腔,ADAM10参与其中。
     6.富含巨细胞骨肉瘤中破骨细胞样多核巨细胞并非破骨细胞,而是一种血管原性细胞,其中涉及ADAM10/Notch1信号活化;该细胞可能与骨肉瘤血管内皮缺失有关。
The chondro-osseus junction (COJ) is the site of dynamic interactions between severaldifferent cell types that drive bone growth during endochondral ossification andosteosarcoma tumorigenesis and progression. The most prominent cell types at the growthplate are the hypertrophic chondrocytes on one side of the COJ, and invading osteoclastsand endothelial cells as well as osteoblasts on the other side. A considerable amount ofinformation is available on the regulation of chondrocytes, osteoclasts and osteoblasts at theCOJ during endochondral ossification, but only little is known about the role of endothelialcells in this process. We have previously identified a defect in long bone growth in micelacking the cell surface metalloprotease ADAM10(a disintegrin and metalloprotease10) inendothelial cells, raising questions about the underlying cause of this growth defect,additionally, whether ADAM10is involved in osteosarcoma is still unknown. ADAM10is aprincipal regulator of Notch signaling, and mice lacking ADAM10in endothelial cells(ADAM10△EC mice) display a characteristic increase in vascular branching in thedeveloping retinal vasculature that is a hallmark for defects in Notch signaling. MostADAM10△EC mice survive for many months, providing a unique opportunity to study howthe lack of ADAM10in endothelial cells affects the growth of long bones. On the otherhand, recent studies have shown that Notch signaling contribute to osteosarcomatumorigenesis and invasion, providing clues for the involvement of ADAM10as a majorsheddase of Notch in osteosarcoma progression through angiogenesis. This study was toexamine the long bones of ADAM10△EC mice at different times of development comparedto controls, with an emphasis on identifying possible abnormalities in the appearance anddistribution of endothelial cells, chondrocytes and osteoclasts at the COJ. In addition,ADAM10on the progression of human osteosarcoma and its angiogenesis were alsoinvestigated.
     Part1. ADAM10in mouse long bone growth defectMaterials and methods
     1. Establishment of ADAM10△EC mice. ADAM10△EC mice were generated bymating ADAM10lox/loxmice with transgenic mice expressing the endothelial-specificTie2-Cre transgene, to yield endothelial cell depleted ADAM10mice (ADAM10△EC,genotype as ADAM10lox/loxTie2-Cre+/-) and normal control mice (Control, genotype asADAM10lox/loxTie2-Cre-/-). To identify these mice, DNA was extracted from the tail andPCR was done to examine the amplification products of loxP and Tie2in order todistinguish whether it was from ADAM10△EC or control mice.
     2. Dynamic alterations of long bones growth defect in ADAM10△EC mice. FaxitronX-ray scanner was used to monitor the dynamic alterations of long bone growth defect bycomparing ADAM10△EC mice and control mice, trabecular bone density was alsocalculated. The overall alterations of bone and cartilage of ADAM10△EC mice wereexamined by Alizarin Red&Alcian Blue whole-mount staining. The alteration of thegrowth plate and its cartilage of femurs and tibiae from tissue sections of mouse knee jointwas examined by H&E staining and Safranin O&Fast Green cartilage staining, and theeffect of the chondrocyte growth by ADAM10deletion was also calculated.
     3. Vascular development at COJ affected by ADAM10deletion in endothelial cells.Mouse endothelial cell specific marker-endomucin antibody was used to detect the vascualrmorphological changes at the COJ region after deletion of ADAM10in endothelial cells byimmunofluorescent staining of the knee joint sections. In addition, methacrylate resin wasused as a casting material to establish the3D replica of the femoral vascular structure at theCOJ.
     4. The effect of ADAM10depletion to osteoclast at COJ and the relationship betweenthe alteration of osteoclast and the abnormalities of the vasculature at the COJ. TRAPstaining was performed to examine the alterations of the osteoclast number at the COJ ofthe femur after deletion of ADAM10in endothelial cells, and endomucin-TRAP doublestaining was performed to elucidate the correlation between the vascular abnormality andthe osteoclast alteration.
     5. The effect of ADAM10deletion in endothelial cells to osteoclastogenesis. Bonemarrow cells from the femurs and tibiae of both ADAM10△EC mice and control mice were isolated and cultured in vitro by stimulating with M-CSF to differentiate intomacrophages, which were continued stimulated with/without RANKL to differentiate intoosteoclast, as examined by TRAP staining to obtain the numerical and morphologicalalterations.
     6. RANKL/OPG signaling in ADAM10△EC mice. RNA was extracted in the COJregion from the forelimbs and hindlimbs of ADAM10△EC and control mice. Real timequantitative RT-PCR was performed to detect the changes of the RANKL/OPG ratio toaddress the effect of RANKL/OPG pathway on abnormal osteoclastogenesis in ADAM10△EC mice.
     Results
     1. Deletion of ADAM10in mouse endothelial cells caused multiple long bone growthdefect. Faxitron data analysis revealed that ADAM10△EC femurs were slightly shorter thanthose of littermate controls at P7, and that this growth defect persisted at all time points, butwas most severe at6months of age. Measurements of the length of the tibiae by faxitronanalysis showed that there was a significant growth defect at all stages from P7to P42inADAM10△EC mice compared to littermate controls.The length of the humerus, ulna andradius were slightly, but significantly shorter in ADAM10△EC mice compared to controllittermates starting at P14and at all later stages until P42. The length of the metacarpals ofADAM10△EC mice was comparable to that of controls at all stages of development. Theincreased density of the trabecular bone in ADAM10△EC femurs was also visible onfaxitron images at P28and P42. The tibia growth plates also displayed an increase in thedensity of trabecular bone at P21and later stages of development.
     2. Deletion of ADAM10led to structural abnormalities of long bone growth plate. Thehistopathological analysis of the growth plate at P7and P14did not uncover any evidentabnormalities in ADAM10△EC femurs at these early time points compared to controls. AtP21, the posterior part of the ADAM10△EC distal femur growth plate had developed adiscontinuity in three out of four samples. By P28, the discontinuity of the posterior aspectof the distal femur growth plate had progressed to a point where the entire growth plate wasbisected in ADAM10△EC mice, whereas the anterior aspects of the growth plate hadirregular enlargements of the zone of hypertrophic chondrocytes compared to controls. Inaddition, ADAM10△EC femurs showed an increase in the density of trabecular bone under the growth plate at P28, which was more pronounced towards the cortical aspects of thebone, and resulted in narrowing of the central bone marrow cavity compared to wild typecontrols. By P42, several large discontinuities spanning the entire zone of chondrocytes haddeveloped, and there was an overall increase in the density of trabecular bone. When asimilar analysis of tibiae was performed by H&E staining at different stages ofdevelopment, the growth plate in ADAM10△EC mice appeared normal at P7, but had anincreased size of the central part of the zone of hypertrophic chondrocytes starting at P14and persists until P42that was monitored, which caused subchondral bone deficiencytherein. However, unlike at the distal femur growth plate, there were no discontinuities ofthe proximal tibial growth plate. In addition, whole-mount Alizarin Red&Alcian Bluestaining revealed an early closure of the epiphyseal line of the femur of ADAM10△ECmice at P42. Safranin O&Fast Green cartilage staining also showed that the cartilagesynthesis in the proliferating zone of the femoral and tibial growth plate of ADAM10△ECmice markedly decreased starting at P21.
     3. Loss of ADAM10in mouse endothelial cells led to vascular developmentabnormality at COJ. The endomucin staining at the COJ at P14was stronger in samplesfrom ADAM10△EC mice compared to controls, and that there was an increased density ofendomucin-positive cells at the COJ. A quantification of the vessel density at the COJ atP14confirmed the increase in ADAM10△EC femurs at P14compared to controls. Bloodvessel invasion was evident at the discontinuity site at P21, and this blood vessel invasionwas found both at the superior and inferior of the bisected part of the growth plate. In tibia,bulb-like vessels were found at the COJ, and loss of blood vessels was underneath theenlarged hypertrophic growth plate, while compared with ADAM10△EC mice, the bloodvessel at the COJ of control mice shows a regular and even distribution pattern and theendomucin staining was less intensed. Examination of the vascular casts of the femur undera stereo microscope showed a large central artery with increased branching towards thegrowth plates that ended in regularly distributed fine vascular loop structures in controlmice. By comparison, the vascular casts from ADAM10△EC mice showed that the largecentral artery branched out in vascular loops that were less parallel and less well organizedand had numerous small bulb-like expansions.
     4. Long bone growth defect of ADAM10△EC mice was caused by the decrease of the osteoclast number at COJ. We found similar numbers and distribution of TRAP stainedcells in the growth plates of ADAM10△EC femurs compared to controls at P7and P14.However, at P21, the distal femoral growth plate in ADAM10△EC mice had a significantreduction in the number of TRAP-stained cells at the COJ compared to controls, and thisdifference persisted at P28. Similar observations were made in an analysis of the proximalgrowth plate of the tibia, where the number of TRAP+cells was comparable at P7and P14in ADAM10△EC mice and controls, but was significantly reduced in ADAM10△EC micefrom P21onward.
     5. The decrease of osteoclast number at COJ caused by ADAM10deletion inendothelial cells colsely related with disorganized vascular development at COJ.Co-staining of these samples for TRAP followed by merging of the images revealed a tightassociation of TRAP+cells with endothelial cells at the COJ at P14in ADAM10△EC miceand controls. At P28, there was a similar increase in the endomucin-positive cells at theCOJ in femurs from ADAM10△EC mice, but very few TRAP+cells could be detected atthe COJ.
     6. Loss of ADAM10in endothelial cells led to a decrease of osteoclastogenesis in vitro,while the RANKL/OPG pathway was not affected. When we cultured osteoclast precursorsfrom ADAM10△EC mice, we found that the osteoclastogenesis was slightly delayedcompared to the control mice, resulting in a small but significant reduction in the number ofTRAP+multinucleated osteoclasts. However, there was no significant difference in theRANKL/OPG ratio as determined by qPCR in samples extracted from the zone ofhypertrophic and terminally differentiation/COJ zones in the hindlimbs and forelimbs ofADAM10△EC or control mice.
     Part2. ADAM10in osteosarcoma progressionMaterials and methods
     1. Human osteosarcoma samples. Main samples were purchased osteosarcoma tissuechip slides, each includes40cases of human osteosarcoma tissue spots treated with PFAand embedded in paraffin. The pathological stages were from IA to IIB and the histologicaldiagnosis include ostoeblastic osteosarcoma, chondroblastic osteosarcoma, fibroblasticosteosarcoma, and giant cell rich osteosarcoma. Some samples were from the Departmentof Pathology of our Hospital.
     2. H&E staining. To address the origin, histological morphology, and pathologicaltypes of osteosarcoma tissues.
     3. Immunofluorescent staining. Osteosarcoma tissue sections were stained withanti-CD31, anti-cytoplasmic ADAM10, anti-activated Notch1(NICD, Notch1intracellulardomain) antibodies,and DAPI (to stain the neuclei), the expression density of CD31andNICD and the ADAM10+tumor cells were calculated and correlated with tumor stagingand histological types. In addition, CD31/ADAM10, CD31/NICD doubleimmunofluorescent stainings were done to investigate the correlation of ADAM10/Notch1with osteosarcoma vascular endothelial cells.
     4. TRAP staining. To investigate the expression of osteoclast in osteosarcoma tissuesand address whether osteoclast-like multinucleated giant cell is an authentic osteoclast.
     Results
     1. ADAM10expression positively correlated with osteosarcoma progression. Apolarized and condensed expression pattern of cytoplasmic ADAM10was observed in allcases and stages of osteosarcoma. ADM10+tumor cells increase dramatically asosteosarcoma advances from IA to IIB, the average ADAM10+tumor cell numbers of stageIIA and IIB were significantly higher than that of stage IA. In addition, the number ofADAM10+tumor cells was significantly larger in osteoblastic osteosarcoma than that inchondroblastic and fibroblastic osteosarcoma.
     2. A cluster of angiogenic tumor cells were identified in stage IA/IB osteosarcoma,which might form vascular lumens through “cytoplasmic invagination”. H&E stainingidentified a cluster of basophilic round tumor cells, its positivity for CD31staining suggestsits angiogenic property, some of these cells underwent different stages of “cytoplasmicinvagination”, which might be a mechanism utilized by osteosarcoma to form vascularlumen. Additionally, cytoplasmic ADAM10was homogeneously expressed in theseangiogenic tumor cells.
     3. Osteoclast-like multinucleated giant cell is not an osteoclast but an angiogenictumor cell, where ADAM10/Notch1signaling was activated. TRAP/DAPI double stainingshows that multinucleated giant cell was negative for TRAP staining in giant cell-richosteosarcoma, while osteoblastic, chondroblastic, and fibroblastic osteosarcoma all hadTRAP+tumor cells respectively. CD31was expressed at intermediate level in the cytoplasm of ginat cells, ADAM10and activated Notch1were also expressed in giant cellsin a similar pattern as CD31.
     4. The vasculature of partial osteosarcoma had endothelium deficiency. CD31stainingrevealed red blood cells in some osteosarcoma from stage IA to IIB osteosarcomavasculature were not surrounded by endothelium, which was stained positive for CD31anddisproved the reason as CD31was not expressed in endothelium of osteosarcoma but ratheras endothelium deficiency, which might be related with multinucleated giant cells.
     Conclusions
     1. The role of bone vessels at the growth plate in regulating the function of osteoclastsonly manifests itself in the large long bones such as the femur, humerus, tibia, ulna andradius at the later stages of their growth.
     2. ADAM10in endothelial cells is required for the proper development and function ofthe specialized vasculature in the bone during the process of endochondral ossification.
     3. The reduced number of osteoclasts at the COJ in joints of long bones of ADAM10△EC mice are likely the consequence of alterations in Notch-dependent differentiation ofendothelial cells in the absence of ADAM10, instead of defects in release of a soluble factorfrom endothelial cells by ADAM10.
     4. The expression of ADAM10in tumor cells positively correlates with osteosarcomaprogression.
     5. ADAM10participated in the cytoplasmic invagination of angiogenic tumor cells ofstage IA/IB osteosarcoma, which might contribute to vascular lumen formation.
     6. ADAM10/Notch1signaling was activated in multinucleated giant cell, which wasnot osteoclast, but rather was angiogenic and might be related with endothelium deficiencyin partial osteosarcoma vasculature.
引文
1Karsenty G, Wagner EF.2002. Reaching a genetic and molecular understanding of skeletal development. Dev Cell2:389–406.
    2Messerschmitt PJ, Garcia RM, Abdul-Karim FW, et al.2009. Osteosarcoma. J Am Acad Orthop Surg17:515-527
    3Coomber BL, Denton J, Sylvestre A, Kruth S.1998. Blood vessel density in canine osteosarcoma. Can J Vet Res62:199-204
    Blobel CP.2005. ADAMs: key players in EGFR-signaling, development and disease. Nat Rev Mol Cell Bio.6:32-43.
    5Bozkulak EC, Weinmaster G.2009. Selective use of ADAM10and ADAM17in activation of Notch1signaling. MolCell Biol.29(21):5679-5695.
    6Krebs LT, Shutter JR, Tanigaki K, et al.2004. Haplo insufficient lethality and formation of arteriovenousmalformations in Notch pathway mutants. Genes Dev.18(20):2469-2473.
    1Hellstrom M, Phng LK, Hofmann JJ, et al.2007. Dll4signalling through Notch1regulates formation of tip cells duringangiogenesis. Nature.445(7129):776-780.
    Kopan R, Ilagan MX.2009. The canonical Notch signaling pathway: unfolding the activation mechanism. Cell.137(2):216-233.
    3Logeat F, Bessia C, Brou C, et al.1998. The Notch1receptor is cleaved constitutively by a furin-like convertase. ProcNatl Acad Sci U S A.95(14):8108-8112
    4Bozkulak EC, Weinmaster G.2009. Selective use of ADAM10and ADAM17in activation of Notch1signaling. MolCell Biol.29(21):5679-5695.
    5De Strooper B, Annaert W, Cupers P, et al.1999. A presenilin-1-dependent gamma secretase-like protease mediatesrelease of Notch intracellular domain. Nature.398(6727):518-522.
    6Glomski K, Monette S, Manova K, et al.2011. Deletion of Adam10in endothelial cells leads to defects inorgan-specific vascular structures. Blood118:1163–1174.
    Hartmann D, de Strooper B, Serneels L, et al.2002. The disintegrin/metalloprotease ADAM10is essential for Notchsignalling but not for alpha-secretase activity in fibroblasts. Hum Mol Genet11:2615–2624.
    8Arribas J, Bech-Serra JJ, Santiago-Josefat B.2006. ADAMs, cell migration and cancer. Cancer Metastasis Rev25:57-68.
    Carl-McGrath S, Lendeckel U, Ebert M, Roessner A, Rocken C.2005. The disintegrin metalloproteinases ADAM9,ADAM12, and ADAM15are upregulated in gastric cancer. Int J Oncol26:17-24.
    Engin F, Bertin T, Ma O, Jiang MM, Wang L, et al.2009. Notch signaling contributes to the pathogenesis of humanosteosarcomas. Hum Mol Genet18:1464-1470
    11Zhang P, Yang Y, Zweidler-McKay PA, Hughes DP.2008. Critical role of notch signaling in osteosarcoma invasionand metastasis. Clin Cancer Res14:2962-2969.
    1Zhao, R., Wang, A., Hall, K. C., et al.2013. Lack of ADAM10in endothelial cells affects osteoclasts at thechondro-osseus junction. J. Orthop. Res. doi:10.1002/jor.22492
    2Hellstrom M, Phng LK, Hofmann JJ, et al.2007. Dll4signalling through Notch1regulates formation of tip cells duringangiogenesis. Nature.445(7129):776-780
    1Karsenty G, Wagner EF.2002. Reaching a genetic and molecular understanding of skeletal development. Dev Cell2:389–406
    Blobel CP.2005. ADAMs: key players in EGFR-signaling, development and disease. Nat Rev Mol Cell Bio.6:32-43.
    3Bozkulak EC, Weinmaster G.2009. Selective use of ADAM10and ADAM17in activation of Notch1signaling. MolCell Biol.29(21):5679-5695.
    Krebs LT, Shutter JR, Tanigaki K, et al.2004. Haplo insufficient lethality and formation of arteriovenousmalformations in Notch pathway mutants. Genes Dev.18(20):2469-2473.
    Kopan R, Ilagan MX.2009. The canonical Notch signaling pathway: unfolding the activation mechanism. Cell.137(2):216-233
    6Logeat F, Bessia C, Brou C, et al.1998. The Notch1receptor is cleaved constitutively by a furin-like convertase. ProcNatl Acad Sci U S A.95(14):8108-8112.
    1De Strooper B, Annaert W, Cupers P, et al.1999. A presenilin-1-dependent gamma secretase-like protease mediatesrelease of Notch intracellular domain. Nature.398(6727):518-522.
    2Kopan R, Ilagan MX.2009. The canonical Notch signaling pathway: unfolding the activation mechanism. Cell.137(2):216-233.
    Glomski K, Monette S, Manova K, et al.2011. Deletion of Adam10in endothelial cells leads to defects inorgan-specific vascular structures. Blood118:1163–1174.
    Hartmann D, de Strooper B, Serneels L, et al.2002. The disintegrin/metalloprotease ADAM10is essential for Notchsignalling but not for alpha-secretase activity in fibroblasts. Hum Mol Genet11:2615–2624.
    5Hellstrom M, Phng LK, Hofmann JJ, et al.2007. Dll4signalling through Notch1regulates formation of tip cells duringangiogenesis. Nature.445(7129):776-780.
    1Glomski K, Monette S, Manova K, et al.2011. Deletion of Adam10in endothelial cells leads to defects inorgan-specific vascular structures. Blood118:1163–1174.
    1Glomski K, Monette S, Manova K, et al.2011. Deletion of Adam10in endothelial cells leads to defects inorgan-specific vascular structures. Blood118:1163–1174.
    2Lobov IB, Renard RA, Papadopoulos N, et al.2007. Delta-like ligand4(Dll4) is induced by VEGF as a negativeregulator of angiogenic sprouting. Proc Natl Acad Sci U S A.104(9):3219-3224.
    1Maes C, Carmeliet P, Moermans K, et al.2002. Impaired angiogenesis and endochondral bone formation in mice
    2lacking the vascular endothelial growth factor isoforms VEGF164and VEGF188. Mech Dev111:61–73Nijweidi Peter J., JEAN H. M. FEYEN1986. Cells of Bone: Proliferation, Differentiation, and Hormonal
    3Regulation. Physiological Reviews66(4):855–886.Pang H, Wu XH, Fu SL, et al.2013. Co-culture with endothelial progenitor cells promotes survival, migration, anddifferentiation of osteoclast precursors. Biochem Biophys Res Commun430:729–734.
    4Mouline CC, Quincey D, Laugier JP, et al.2010. Osteoclastic differentiation of mouse and human monocytes in aplasma clot/biphasic calcium phosphate microparticles composite. Eur Cell Mater.10;20:379-92
    1Messerschmitt PJ, Garcia RM, Abdul-Karim FW, et al.2009. Osteosarcoma. J Am Acad Orthop Surg17:515-527.
    2Coomber BL, Denton J, Sylvestre A, Kruth S.1998. Blood vessel density in canine osteosarcoma. Can J Vet Res62:199-204
    3Arribas J, Bech-Serra JJ, Santiago-Josefat B.2006. ADAMs, cell migration and cancer. Cancer Metastasis Rev25:57-68.
    4Santiago-Josefat B, Esselens C, Bech-Serra JJ, Arribas J.2007. Post-transcriptional up-regulation of ADAM17uponepidermal growth factor receptor activation and in breast tumors. J Biol Chem282:8325-8331.
    Bozkulak EC, Weinmaster G.2009. Selective use of ADAM10and ADAM17in activation of Notch1signaling. MolCell Biol.29(21):5679-5695
    6Kopan R, Ilagan MX.2009. The canonical Notch signaling pathway: unfolding the activation mechanism. Cell.137(2):216-233
    Lobov IB, Renard RA, Papadopoulos N, et al.2007. Delta-like ligand4(Dll4) is induced by VEGF as a negativeregulator of angiogenic sprouting. Proc Natl Acad Sci U S A.104(9):3219-3224.
    Engin F, Bertin T, Ma O, Jiang MM, Wang L, et al.2009. Notch signaling contributes to the pathogenesis of humanosteosarcomas. Hum Mol Genet18:1464-1470
    9Zhang P, Yang Y, Zweidler-McKay PA, Hughes DP.2008. Critical role of notch signaling in osteosarcoma invasionand metastasis. Clin Cancer Res14:2962-2969.
    1Glomski K, Monette S, Manova K, et al.2011. Deletion of Adam10in endothelial cells leads to defects in
    2organ-specific vascular structures. Blood118:1163–1174.Zhao, R., Wang, A., Hall, K. C., et al.2013. Lack of ADAM10in endothelial cells affects osteoclasts at thechondro-osseus junction. J. Orthop. Res. doi:10.1002/jor.22492
    3Hellstrom M, Phng LK, Hofmann JJ, et al.2007. Dll4signalling through Notch1regulates formation of tip cells duringangiogenesis. Nature.445(7129):776-780.
    1Arihiro K, Inai K.2001. Expression of CD31, Met/hepatocyte growth factor receptor and bone morphogenetic proteinin bone metastasis of osteosarcoma. Pathol Int51:100-106.
    2Arribas J, Bech-Serra JJ, Santiago-Josefat B.2006. ADAMs, cell migration and cancer. Cancer Metastasis Rev25:57-68.
    3Glomski K, Monette S, Manova K, et al.2011. Deletion of Adam10in endothelial cells leads to defects inorgan-specific vascular structures. Blood118:1163–1174.
    4Hellstrom M, Phng LK, Hofmann JJ, et al.2007. Dll4signalling through Notch1regulates formation of tip cells duringangiogenesis. Nature.445(7129):776-780.
    5Bozkulak EC, Weinmaster G.2009. Selective use of ADAM10and ADAM17in activation of Notch1signaling. MolCell Biol.29(21):5679-5695.
    6Hogan BL, Kolodziej PA.2002. Organogenesis: Molecular mechanisms of tubulogenesis.Nat Rev Genet3:513–523.
    1Wolff JR, Bar T.1972.“Seamless” endothelia in brain capillaries during development of the rat’s cerebral cortex.Brain Res41:17–24.
    Pollack AL, Runyan RB, Mostov KE.1998. Morphogenetic mechanisms of epithelial tubulogenesis: MDCK cellpolarity is transiently rearranged without loss of cell-cell contact during scatter factor/hepatocyte growth factor inducedtubulogenesis. Dev Biol204:64–79
    3Iruela-Arispe ML, Davis GE.2009. Cellular and molecular mechanisms of vascular lumen formation. Dev Cell16:222–231
    1Tung JJ, Tattersall IW, Kitajewski J.2012. Tips, stalks, tubes: notch-mediated cell fate determination and mechanismsof tubulogenesis during angiogenesis. Cold Spring Harb Perspect Med2: a006601
    2Muller WA, Weigl SA, Deng X, Phillips DM.1993. PECAM-1is required for transendothelial migration of leukocytes.J Exp Med178:449-460
    1Conlon R A, Reaume A G and Rossant J. Notch1is required for the coordinate segmentation of somites. Development121:1533-45(1995).
    Pan D and Rubin G M. Kuzbanian controls proteolytic processing of Notch and mediates lateral inhibition duringDrosophila and vertebrate neurogenesis. Cell90:271-80(1997)
    3Lieber T, Kidd S and Young M W. kuzbanian-mediated cleavage of Drosophila Notch. Genes Dev16:209-21(2002)
    4Mumm J S, Schroeter E H, Saxena M T, Griesemer A, Tian X, Pan D J, et al. A ligand-induced extracellular cleavageregulates gamma-secretase-like proteolytic activation of Notch1. Mol Cell5:197-206(2000).
    1Brou C, Logeat F, Gupta N, Bessia C, LeBail O, Doedens J R, et al. A novel proteolytic cleavage involved in Notchsignaling: the role of the disintegrin-metalloprotease TACE. Mol Cell5:207-16(2000).
    2Qi H, Rand M D, Wu X, Sestan N, Wang W, Rakic P, et al. Processing of the notch ligand delta by the metalloproteaseKuzbanian. Science283:91-4(1999).
    3LaVoie M J and Selkoe D J. The Notch ligands, Jagged and Delta, are sequentially processed by alpha-secretase andpresenilin/gamma-secretase and release signaling fragments. J Biol Chem278:34427-37(2003).
    4Dyczynska E, Sun D, Yi H, Sehara-Fujisawa A, Blobel C P and Zolkiewska A. Proteolytic processing of delta-like1byADAM proteases. J Biol Chem282:436-44(2007).
    Barton W A, Himanen J, Antipenko A and Nikolov D B. Structures of axon guidance molecules and their neuronalreceptors. Adv Protein Chem68:65-106(2004)
    Pasquale E B. Eph receptor signalling casts a wide net on cell behaviour. Nat Rev Mol Cell Biol6:462-75(2005).
    Compagni A, Foo S, Logan M, Klein R and Adams R.21Eph receptors and ephrins control the morphogenesis oflimbs and blood vessels. J Anat201:423(2002)
    8McFarlane S. Metalloproteases: carving out a role in axon guidance. Neuron37:559-62(2003)
    1Hattori M, Osterfield M and Flanagan J G. Regulated cleavage of a contact-mediated axon repellent. Science289:1360-5(2000).
    2Tomita T, Tanaka S, Morohashi Y and Iwatsubo T. Presenilindependent intramembrane cleavage of ephrin-B1. MolNeurodegener1:2(2006).
    Sahin U, Weskamp G, Kelly K, Zhou H, Higashiyama S, Peschon J, et al. Distinct roles for ADAM10and ADAM17inectodomain shedding of six EGFR ligands. J Cell Biol164:769-79(2004).
    4Sanderson M P, Erickson S N, Gough P J, Garton K J, Wille P T, Raines E W, et al. ADAM10mediates ectodomainshedding of the betacellulin precursor activated by p-aminophenylmercuric acetate and extracellular calcium influx. JBiol Chem280:1826-37(2005).
    Abel S, Hundhausen C, Mentlein R, Schulte A, Berkhout T A, Broadway N, et al. The transmembrane CXC-chemokineligand16is induced by IFN-gamma and TNF-alpha and shed by the activity of the disintegrin-like metalloproteinaseADAM10. J Immunol172:6362-72(2004).
    6Wen C, Metzstein M M and Greenwald I. SUP-17, a Caenorhabditis elegans ADAM protein related to DrosophilaKUZBANIAN, and its role in LIN-12/NOTCH signalling. Development124:4759-67(1997)
    1Hundhausen C, Misztela D, Berkhout T A, Broadway N, Saftig P, Reiss K, et al. The disintegrin-like metalloproteinaseADAM10is involved in constitutive cleavage of CX3CL1(fractalkine) and regulates CX3CL1-mediated cell-celladhesion. Blood102:1186-95(2003).
    Goddard D R, Bunning R A and Woodroofe M N. Astrocyte and endothelial cell expression of ADAM17(TACE) inadult human CNS. Glia34:267-71(2001)
    3Weskamp G, Ford J W, Sturgill J, Martin S, Docherty A J P, Swendeman S, et al. ADAM10is a principal 'sheddase' ofthe lowaffinity immunoglobulin E receptor CD23. Nat Immunol7:1293-8(2006).
    Baki L, Marambaud P, Efthimiopoulos S, Georgakopoulos A, Wen P, Cui W, et al. Presenilin-1binds cytoplasmicepithelial cadherin, inhibits cadherin/p120association, and regulates stability and function of the cadherin/cateninadhesion complex. Proc Natl Acad Sci U S A98:2381-6(2001).
    Maretzky T, Reiss K, Ludwig A, Buchholz J, Scholz F, Proksch E, et al. ADAM10mediates E-cadherin shedding andregulates epithelial cell-cell adhesion, migration, and beta-catenin translocation. Proc Natl Acad Sci U S A102:9182-7(2005).
    1Radice G L, Rayburn H, Matsunami H, Knudsen K A, Takeichi M and Hynes R O. Developmental defects in mouseembryos lacking N-cadherin. Dev Biol181:64-78(1997).
    2Gabbiani G. The myofibroblast: a key cell for wound healing and fibrocontractive diseases. Prog Clin Biol Res54:183-94(1981).
    3Reiss K, Maretzky T, Ludwig A, Tousseyn T, de Strooper B, Hartmann D, et al. ADAM10cleavage of N-cadherin andregulation of cell-cell adhesion and beta-catenin nuclear signalling. EMBO J24:742-52(2005).
    4Marambaud P, Wen P H, Dutt A, Shioi J, Takashima A, Siman R, et al. A CBP binding transcriptional repressorproduced by the PS1/epsilon-cleavage of N-cadherin is inhibited by PS1FAD mutations. Cell114:635-45(2003)
    Nelson W J and Nusse R. Convergence of Wnt, beta-catenin, and cadherin pathways. Science303:1483-7(2004).
    Sadot E, Simcha I, Shtutman M, Ben-Ze'ev A and Geiger B. Inhibition of beta-catenin-mediated transactivation bycadherin derivatives. Proc Natl Acad Sci U S A95:15339-44(1998)
    Shtutman M, Zhurinsky J, Simcha I, Albanese C, D'Amico M, Pestell R, et al. The cyclin D1gene is a target of thebetacatenin/LEF-1pathway. Proc Natl Acad Sci U S A96:5522-7(1999).
    He T C, Sparks A B, Rago C, Hermeking H, Zawel L, da Costa L T, et al. Identification of c-MYC as a target of theAPC pathway. Science281:1509-12(1998).
    Mann B, Gelos M, Siedow A, Hanski M L, Gratchev A, Ilyas M, et al. Target genes of beta-catenin-Tcell-factor/lymphoid-enhancerfactor signaling in human colorectal carcinomas. Proc Natl Acad Sci U S A96:1603-8(1999)
    1Reiss K, Maretzky T, Haas I G, Schulte M, Ludwig A, Frank M and Saftig P. Regulated ADAM10-dependentectodomain shedding of gamma-protocadherin C3modulates cell-cell adhesion. J Biol Chem281:21735-44(2006)
    2Murata Y, Hamada S, Morishita H, Mutoh T and Yagi T. Interaction with protocadherin-gamma regulates the cellsurface expression of protocadherin-alpha. J Biol Chem279:49508-16(2004)
    3Wang X, Weiner J A, Levi S, Craig A M, Bradley A and Sanes J R. Gamma protocadherins are required for survival ofspinal interneurons. Neuron36:843-54(2002).
    Vincent B, Paitel E, Frobert Y, Lehmann S, Grassi J and Checler F. Phorbol ester-regulated cleavage of normal prionprotein in HEK293human cells and murine neurons. J Biol Chem275:35612-6(2000).
    Vincent B, Paitel E, Saftig P, Frobert Y, Hartmann D, De Strooper B, et al. The disintegrins ADAM10and TACEcontribute to the constitutive and phorbol ester-regulated normal cleavage of the cellular prion protein. J Biol Chem276:37743-6(2001).
    Plamont M, Chasseigneaux S, Delasnerie-Laupretre N, Beaudry P, Peoc'h K and Laplanche J. Variation at theADAM10gene locus is not associated with Creutzfeldt-Jakob disease. Neurosci Lett344:132-4(2003)
    7Prusiner S B, Groth D, Serban A, Koehler R, Foster D, Torchia M, et al. Ablation of the prion protein (PrP) gene inmice prevents scrapie and facilitates production of anti-PrP antibodies. Proc Natl Acad Sci USA90:10608-12(1993).
    1Yochem J, Weston K, Greenwald I. The Caenorhabditis elegans lin-12gene encodes a transmembrane protein withoverall similarity to Drosophila Notch. Nature.1988;335(6190):547-50.
    2Kopan R, Ilagan MX. The canonical Notch signaling pathway: unfolding the activation mechanism. Cell.2009;137(2):216-33.
    Kovall RA, Blacklow SC. Mechanistic insights into Notch receptor signaling from structural and biochemical studies.Curr Top Dev Biol.2010;92:31-71.
    Shawber CJ, Das I, Francisco E, et al. Notch signaling in primary endothelial cells. Ann N Y Acad Sci.2003;995:162-70.
    5Davis RL, Turner DL. Vertebrate hairy and Enhancer of split related proteins: transcriptional repressors regulatingcellular differentiation and embryonic patterning. Oncogene.2001;20(58):8342-57
    1Del Amo FF, Smith DE, Swiatek PJ, et al. Expression pattern of Motch, a mouse homolog of Drosophila Notch,suggests an important role in early postimplantation mouse development. Development.1992;115(3):737-44
    Beckers J, Clark A, Wunsch K, et al. Expression of the mouse Delta1gene during organogenesis and fetal development.Mech Dev.1999;84(1-2):165-8
    3Thurston G, Noguera-Troise I, Yancopoulos GD. The Delta paradox: DLL4blockade leads to more tumour vessels butless tumour growth. Nat Rev Cancer.2007;7(5):327-31.
    Carmeliet P, Ferreira V, Breier G, et al. Abnormal blood vessel development and lethality in embryos lacking a singleVEGF allele. Nature.1996;380(6573):435-9
    Krebs LT, Shutter JR, Tanigaki K, et al. Haploinsufficient lethality and formation of arteriovenous malformations inNotch pathway mutants. Genes Dev.2004;18(20):2469-73.
    6Limbourg A, Ploom M, Elligsen D, et al. Notch ligand Delta-like1is essential for postnatal arteriogenesis. Circ Res.2007;100(3):363-71.
    1Sorensen I, Adams RH, Gossler A. DLL1-mediated Notch activation regulates endothelial identity in mouse fetalarteries. Blood.2009;113(22):5680-8.
    2Uyttendaele H, Ho J, Rossant J, et al. Vascular patterning defects associated with expression of activated Notch4inembryonic endothelium. Proc Natl Acad Sci U S A.2001;98(10):5643-8.
    3Suchting S, Freitas C, le Noble F, et al. The Notch ligand Delta-like4negatively regulates endothelial tip cellformation and vessel branching. Proc Natl Acad Sci U S A.2007;104(9):3225-30
    4Sorensen I, Adams RH, Gossler A. DLL1-mediated Notch activation regulates endothelial identity in mouse fetalarteries. Blood.2009;113(22):5680-8.
    5Taylor KL, Henderson AM, Hughes CC. Notch activation during endothelial cell network formation in vitro targets thebasic HLH transcription factor HESR-1and downregulates VEGFR-2/KDR expression. Microvasc Res.2002;64(3):372-83.
    6Suchting S, Freitas C, le Noble F, et al. The Notch ligand Delta-like4negatively regulates endothelial tip cellformation and vessel branching. Proc Natl Acad Sci U S A.2007;104(9):3225-30.
    Shibuya M. Vascular endothelial growth factor receptor–1(VEGFR-1/Flt-1): a dual regulator for angiogenesis.Angiogenesis.2006;9(4):225-30; discussion31.
    Shawber CJ, Funahashi Y, Francisco E, et al. Notch alters VEGF responsiveness in human and murine endothelial cellsby direct regulation of VEGFR-3expression. J Clin Invest.2007;117(11):3369-82.
    9Tammela T, Zarkada G, Wallgard E, et al. Blocking VEGFR-3suppresses angiogenic sprouting and vascular networkformation. Nature.2008;454(7204):656-60.
    1Risau W, Flamme I. Vasculogenesis. Annu Rev Cell Dev Biol.1995;11:73-91
    Shawber CJ, Das I, Francisco E, et al. Notch signaling in primary endothelial cells. Ann N Y Acad Sci.2003;995:162-70.
    3Herbert SP, Huisken J, Kim TN, et al. Arterialvenous segregation by selective cell sprouting: an alternative mode ofblood vessel formation. Science.2009;326(5950):294-8.
    Kim YH, Hu H, Guevara-Gallardo S, et al. Artery and vein size is balanced by Notch and ephrin B2/EphB4duringangiogenesis. Development.2008;135(22):3755-64
    Trindade A, Kumar SR, Scehnet JS, et al. Overexpression of delta-like4induces arterializations and attenuates vesselformation in developing mouse embryos. Blood.2008;112(5):1720-9
    6Duarte A, Hirashima M, Benedito R, et al. Dosagesensitive requirement for mouse Dll4in artery development. GenesDev.2004;18(20):2474-8
    1Krebs LT, Starling C, Chervonsky AV, et al. Notch1activation in mice causes arteriovenous malformationsphenocopied by ephrinB2and EphB4mutants. Genesis.2010;48(3):146-50.
    Krebs LT, Shutter JR, Tanigaki K, et al. Haploinsufficient lethality and formation of arteriovenous malformations inNotch pathway mutants. Genes Dev.2004;18(20):2469-73
    Sorensen I, Adams RH, Gossler A. DLL1-mediated Notch activation regulates endothelial identity in mouse fetalarteries. Blood.2009;113(22):5680-8.
    Limbourg A, Ploom M, Elligsen D, et al. Notch ligand Delta-like1is essential for postnatal arteriogenesis. Circ Res.2007;100(3):363-71
    Suchting S, Freitas C, le Noble F, et al. The Notch ligand Delta-like4negatively regulates endothelial tip cellformation and vessel branching. Proc Natl Acad Sci U S A.2007;104(9):3225-30
    6Gerhardt H, Golding M, Fruttiger M, et al. VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. JCell Biol.2003;161(6):1163-77.
    1Suchting S, Freitas C, le Noble F, et al. The Notch ligand Delta-like4negatively regulates endothelial tip cellformation and vessel branching. Proc Natl Acad Sci U S A.2007;104(9):3225-30.
    Hellstrom M, Phng LK, Hofmann JJ, et al. Dll4signalling through Notch1regulates formation of tip cells duringangiogenesis. Nature.2007;445(7129):776-80.
    3Benedito R, Roca C, Sorensen I, et al. The notch ligands Dll4and Jagged1have opposing effects on angiogenesis. Cell.2009;137(6):1124-35
    Tammela T, Zarkada G, Wallgard E, et al. Blocking VEGFR-3suppresses angiogenic sprouting and vascular networkformation. Nature.2008;454(7204):656-60
    Gerhardt H, Golding M, Fruttiger M, et al. VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. JCell Biol.2003;161(6):1163-77.
    6Liu ZJ, Shirakawa T, Li Y, et al. Regulation of Notch1and Dll4by vascular endothelial growth factor in arterialendothelial cells: implications for modulating arteriogenesis and angiogenesis. Mol Cell Biol.2003;23(1):14-25.
    1Jakobsson L, Franco CA, Bentley K, et al. Endothelial cells dynamically compete for the tip cell position duringangiogenic sprouting. Nat Cell Biol.2010;12(10):943-53
    Guarani V, Deflorian G, Franco CA, et al. Acetylation-dependent regulation of endothelial Notch signalling by theSIRT1deacetylase. Nature.2011;473(7346):234-8.
    3Benjamin LE, Hemo I, Keshet E. A plasticity window for blood vessel remodelling is defined by pericyte coverage ofthe preformed endothelial network and is regulated by PDGF-B and VEGF. Development.1998;125(9):1591-8.
    1Armulik A, Abramsson A, Betsholtz C. Endothelial/pericyte interactions. Circ Res.2005;97(6):512-23.
    2Villa N, Walker L, Lindsell CE, et al. Vascular expression of Notch pathway receptors and ligands is restricted toarterial vessels. Mech Dev.2001;108(1-2):161-4.
    3Benedito R, Roca C, Sorensen I, et al. The notch ligands Dll4and Jagged1have opposing effects on angiogenesis. Cell.2009;137(6):1124-35.
    Liu H, Kennard S, Lilly B. NOTCH3expression is induced in mural cells through an autoregulatory loop that requiresendothelial-expressed JAGGED1. Circ Res.2009;104(4):466-75
    5Liu H, Zhang W, Kennard S, et al. Notch3is critical for proper angiogenesis and mural cell investment. Circ Res.2010;107(7):860-70.
    Domenga V, Fardoux P, Lacombe P, et al. Notch3is required for arterial identity and maturation of vascular smoothmuscle cells. Genes Dev.2004;18(22):2730-5
    Villa N, Walker L, Lindsell CE, et al. Vascular expression of Notch pathway receptors and ligands is restricted toarterial vessels. Mech Dev.2001;108(1-2):161-4.
    8Joutel A, Corpechot C, Ducros A, et al. Notch3mutations in CADASIL, a hereditary adult-onset condition causingstroke and dementia. Nature.1996;383(6602):707-10.
    1Leveen P, Pekny M, Gebre-Medhin S, et al. Mice deficient for PDGF B show renal, cardiovascular, and hematologicalabnormalities. Genes Dev.1994;8(16):1875-87.
    2Jin S, Hansson EM, Tikka S, et al. Notch signaling regulates platelet-derived growth factor receptor-beta expression invascular smooth muscle cells. Circ Res.2008;102(12):1483-91
    Campos AH, Wang W, Pollman MJ, et al. Determinants of Notch-3receptor expression and signaling in vascularsmooth muscle cells: implications in cell-cycle regulation. Circ Res.2002;91(11):999-1006.
    Noseda M, McLean G, Niessen K, et al. Notch activation results in phenotypic and functional changes consistent withendothelialto-mesenchymal transformation. Circ Res.2004;94(7):910-7.
    5Stewart KS, Zhou Z, Zweidler-McKay P, et al. Delta-like ligand4-Notch signaling regulates bone marrow–derivedpericyte/vascular smooth muscle cell formation. Blood.2011;117(2):719-26.
    1Leung DW, Cachianes G, Kuang WJ, et al. Vascular endothelial growth factor is a secreted angiogenic mitogen.Science.1989;246(4935):1306-9.
    Jain RK, Duda DG, Clark JW, et al. Lessons from phase III clinical trials on anti-VEGF therapy for cancer. Nat ClinPract Oncol.2006;3(1):24-40
    Ranganathan P, Weaver KL, Capobianco AJ. Notch signalling in solid tumours: a little bit of everything but not all thetime. Nat Rev Cancer.2011;11(5):338-51.
    DeAngelo DJ, Stone RM, Heaney ML, et al. Phase1clinical results with tandutinib (MLN518), a novel FLT3antagonist, in patients with acute myelogenous leukemia or high-risk myelodysplastic syndrome: safety,pharmacokinetics, and pharmacodynamics. Blood.2006;108(12):3674-81.
    5Real PJ, Tosello V, Palomero T, et al. Gammasecretase inhibitors reverse glucocorticoid resistance in T cell acutelymphoblastic leukemia. Nat Med.2009;15(1):50-8
    1Patel NS, Li JL, Generali D, et al. Up-regulation of delta-like4ligand in human tumor vasculature and the role of basalexpression in endothelial cell function. Cancer Res.2005;65(19):8690-7.
    2Duarte A, Hirashima M, Benedito R, et al. Dosagesensitive requirement for mouse Dll4in artery development. GenesDev.2004;18(20):2474-8.
    3Noguera-Troise I, Daly C, Papadopoulos NJ, et al. Blockade of Dll4inhibits tumour growth by promotingnon-productive angiogenesis. Nature.2006;444(7122):1032-7.
    4Ridgway J, Zhang G, Wu Y, et al. Inhibition of Dll4signalling inhibits tumour growth by deregulating angiogenesis.Nature.2006;444(7122):1083-7
    Yan M, Callahan CA, Beyer JC, et al. Chronic DLL4blockade induces vascular neoplasms. Nature.2010;463(7282):E6-7.
    6Liu Z, Turkoz A, Jackson EN, et al. Notch1loss of heterozygosity causes vascular tumors and lethal hemorrhage inmice. J Clin Invest.2011;121(2):800-8
    Wu Y, Cain-Hom C, Choy L, et al. Therapeutic antibody targeting of individual Notch receptors. Nature.2010;464(7291):1052-7.
    Benjamin LE, Hemo I, Keshet E. A plasticity window for blood vessel remodelling is defined by pericyte coverage ofthe preformed endothelial network and is regulated by PDGF-B and VEGF. Development.1998;125(9):1591-8.
    9Liu H, Kennard S, Lilly B. NOTCH3expression is induced in mural cells through an autoregulatory loop that requiresendothelial-expressed JAGGED1. Circ Res.2009;104(4):466-75.
    1Zeng Q, Li S, Chepeha DB, et al. Crosstalk between tumor and endothelial cells promotes tumor angiogenesis byMAPK activation of Notch signaling. Cancer Cell.2005;8(1):13-23
    Sunderkotter C, Steinbrink K, Goebeler M, et al. Macrophages and angiogenesis. J Leukoc Biol.1994;55(3):410-22
    Holash J, Davis S, Papadopoulos N, et al. VEGF-Trap: a VEGF blocker with potent antitumor effects. Proc Natl AcadSci U S A.2002;99(17):11393-8.
    Moellering RE, Cornejo M, Davis TN, et al. Direct inhibition of the NOTCH transcription factor complex. Nature.2009;462(7270):182-8.
    Funahashi Y, Hernandez SL, Das I, et al. A notch1ectodomain construct inhibits endothelial notch signaling, tumorgrowth, and angiogenesis. Cancer Res.2008;68(12):4727-35
    6Engin F, Bertin T, Ma O, et al. Notch signaling contributes to the pathogenesis of human osteosarcomas. Hum MolGenet.2009;18(8):1464-70.
    1Casanovas O, Hicklin DJ, Bergers G, et al. Drug resistance by evasion of antiangiogenic targeting of VEGF signalingin late-stage pancreatic islet tumors. Cancer Cell.2005;8(4):299-309.
    2Miller KD, Chap LI, Holmes FA, et al. Randomized phase III trial of capecitabine compared with bevacizumab pluscapecitabine in patients with previously treated metastatic breast cancer. J Clin Oncol.2005;23(4):792-9.
    3Bagley RG, Kurtzberg L, Weber W, et al. sFLT01: a novel fusion protein with antiangiogenic activity. Mol CancerTher.2011;10(3):404-15.
    Fis·cher C, Jonckx B, Mazzone M, et al. Anti-PlGF inhibits growth of VEGF(R)-inhibitorresistant tumors withoutaffecting healthy vessels. Cell.2007;131(3):463-75.
    5Hoey T, Yen WC, Axelrod F, et al. DLL4blockade inhibits tumor growth and reduces tumor-initiating cell frequency.Cell Stem Cell.2009;5(2):168-77.
    Noguera-Troise I, Daly C, Papadopoulos NJ, et al. Blockade of Dll4inhibits tumour growth by promotingnon-productive angiogenesis. Nature.2006;444(7122):1032-7
    Zaghloul N, Hernandez SL, Bae JO, et al. Vascular endothelial growth factor blockade rapidly elicits alternativeproangiogenic pathways in neuroblastoma. Int J Oncol.2009;34(2):401-7.
    8Ridgway J, Zhang G, Wu Y, et al. Inhibition of Dll4signalling inhibits tumour growth by deregulating angiogenesis.Nature.2006;444(7122):1083-7.
    [1] Karsenty G, Wagner EF.2002. Reaching a genetic and molecular understanding ofskeletal development. Dev Cell2:389–406.
    [2] Kronenberg HM.2003. Developmental regulation of the growth plate. Nature423:332–336.
    [3] Blobel CP.2005. ADAMs: key players in EGFR-signaling, development and disease.Nat Rev Mol Cell Bio.6:32-43.
    [4] Reiss K, Saftig P.2009. The "a disintegrin and metalloprotease"(ADAM) family ofsheddases: physiological and cellular functions. Semin Cell Dev Biol.20(2):126-137.
    [5] Bozkulak EC, Weinmaster G.2009. Selective use of ADAM10and ADAM17inactivation of Notch1signaling. Mol Cell Biol.29(21):5679-5695.
    [6] van Tetering G, van Diest P, Verlaan I, et al.2009. Metalloprotease ADAM10isrequired for Notch1site2cleavage. J Biol Chem.284(45):31018-31027.
    [7] Krebs LT, Shutter JR, Tanigaki K, et al.2004. Haplo insufficient lethality andformation of arteriovenous malformations in Notch pathway mutants. Genes Dev.18(20):2469-2473.
    [8] Krebs LT, Xue Y, Norton CR, et al.2000. Notch signaling is essential for vascularmorphogenesis in mice. Genes Dev.14(11):1343-1352.
    [9] Lobov IB, Renard RA, Papadopoulos N, et al.2007. Delta-like ligand4(Dll4) isinduced by VEGF as a negative regulator of angiogenic sprouting. Proc Natl Acad SciU S A.104(9):3219-3224.
    [10] Ridgway J, Zhang G, Wu Y, et al.2006. Inhibition of Dll4signalling inhibits tumourgrowth by deregulating angiogenesis. Nature.444(7122):1083-1087.
    [11] Limbourg FP, Takeshita K, Radtke F, et al.2005. Essential role of endothelial Notch1in angiogenesis. Circulation.111(14):1826-1832.
    [12] Gridley T.2007. Notch signaling in vascular development and physiology.Development.134(15):2709-2718.
    [13] Noguera-Troise I, Daly C, Papadopoulos NJ, et al.2006. Blockade of Dll4inhibitstumour growth by promoting non-productive angiogenesis. Nature.444(7122):1032-1037.
    [14] Roca C, Adams RH.2007. Regulation of vascular morphogenesis by Notch signaling.Genes Dev.21(20):2511-2524.
    [15] Suchting S, Freitas C, le Noble F, et al.2007. The Notch ligand Delta-like4negatively regulates endothelial tip cell formation and vessel branching. Proc NatlAcad Sci U S A.104(9):3225-3230.
    [16] Phng LK, Gerhardt H.2009. Angiogenesis: a team effort coordinated by notch. DevCell.16(2):196-208.
    [17] Hellstrom M, Phng LK, Hofmann JJ, et al.2007. Dll4signalling through Notch1regulates formation of tip cells during angiogenesis. Nature.445(7129):776-780.
    [18] Kopan R, Ilagan MX.2009. The canonical Notch signaling pathway: unfolding theactivation mechanism. Cell.137(2):216-233.
    [19] Logeat F, Bessia C, Brou C, et al.1998. The Notch1receptor is cleaved constitutivelyby a furin-like convertase. Proc Natl Acad Sci U S A.95(14):8108-8112.
    [20] De Strooper B, Annaert W, Cupers P, et al.1999. A presenilin-1-dependent gammasecretase-like protease mediates release of Notch intracellular domain. Nature.398(6727):518-522.
    [21] Struhl G, Greenwald I.1999. Presenilin is required for activity and nuclear access ofNotch in Drosophila. Nature.398(6727):522-525.
    [22] Glomski K, Monette S, Manova K, et al.2011. Deletion of Adam10in endothelialcells leads to defects in organ-specific vascular structures. Blood118:1163–1174.
    [23] Hartmann D, de Strooper B, Serneels L, et al.2002. The disintegrin/metalloproteaseADAM10is essential for Notch signalling but not for alpha-secretase activity infibroblasts. Hum Mol Genet11:2615–2624.
    [24] Rooke J, Pan D, Xu T, et al.1996. KUZ, a conserved metalloprotease-disintegrinprotein with two roles in Drosophila neurogenesis. Science273:1227–1230.
    [25] Sotillos S, Roch F, Campuzano S.1997. The metalloprotease disintegrin Kuzbanianparticipates in Notch activation during growth and patterning of Drosophila imaginaldiscs. Development124:4769–4779.
    [26] Wen C, Metzstein MM, Greenwald I.1997. SUP-17, a Caenorhabditis elegansADAM protein related to Drosophila KUZBANIAN, and its role in LIN-12/NOTCHsignaling. Development124:4759–4767.
    [27] Maes C, Carmeliet P, Moermans K, et al.2002. Impaired angiogenesis andendochondral bone formation in mice lacking the vascular endothelial growth factorisoforms VEGF164and VEGF188. Mech Dev111:61–73.
    [28] Gerber HP, Vu TH, Ryan AM, et al.1999. VEGF couples hypertrophic cartilageremodeling, ossification and angiogenesis during endochondral bone formation. NatMed5:623–628.
    [29] Gerber HP, Ferrara N.2000. Angiogenesis and bone growth. Trends Cardiovasc Med10:223–228.
    [30] Nijweidi Peter J., JEAN H. M. FEYEN1986. Cells of Bone: Proliferation,Differentiation, and Hormonal Regulation. Physiological Reviews66(4):855–886.
    [31] Udagawa N, Takahashi N, Akatsu T, et al.1990. Origin of osteoclasts: maturemonocytes and macrophages are capable of differentiating into osteoclasts under asuitable microenviroment prepared by bone marrow-derived stromal cells. Proc NatlAcad Sci U S A.87(18):7260-4.
    [32] Pang H, Wu XH, Fu SL, et al.2013. Co-culture with endothelial progenitor cellspromotes survival, migration, and differentiation of osteoclast precursors. BiochemBiophys Res Commun430:729–734.
    [33] Mouline CC, Quincey D, Laugier JP, et al.2010. Osteoclastic differentiation ofmouse and human monocytes in a plasma clot/biphasic calcium phosphatemicroparticles composite. Eur Cell Mater.10;20:379-92.
    [34] Messerschmitt PJ, Garcia RM, Abdul-Karim FW, et al.2009. Osteosarcoma. J AmAcad Orthop Surg17:515-527.
    [35] Coomber BL, Denton J, Sylvestre A, Kruth S.1998. Blood vessel density in canineosteosarcoma. Can J Vet Res62:199-204.
    [36] Arribas J, Bech-Serra JJ, Santiago-Josefat B.2006. ADAMs, cell migration andcancer. Cancer Metastasis Rev25:57-68.
    [37] Santiago-Josefat B, Esselens C, Bech-Serra JJ, Arribas J.2007. Post-transcriptionalup-regulation of ADAM17upon epidermal growth factor receptor activation and inbreast tumors. J Biol Chem282:8325-8331.
    [38] Carl-McGrath S, Lendeckel U, Ebert M, Roessner A, Rocken C.2005. The disintegrinmetalloproteinases ADAM9, ADAM12, and ADAM15are upregulated in gastriccancer. Int J Oncol26:17-24.
    [39] Ko SY, Lin SC, Wong YK, Liu CJ, Chang KW, et al.2007. Increase of disinterginmetalloprotease10(ADAM10) expression in oral squamous cell carcinoma. CancerLett245:33-43.
    [40] Engin F, Bertin T, Ma O, Jiang MM, Wang L, et al.2009. Notch signaling contributesto the pathogenesis of human osteosarcomas. Hum Mol Genet18:1464-1470.
    [41] Zhang P, Yang Y, Zweidler-McKay PA, Hughes DP.2008. Critical role of notchsignaling in osteosarcoma invasion and metastasis. Clin Cancer Res14:2962-2969.
    [42] Hughes DP.2009. How the NOTCH pathway contributes to the ability ofosteosarcoma cells to metastasize. Cancer Treat Res152:479-496.
    [43] Zhao, R., Wang, A., Hall, K. C., et al.2013. Lack of ADAM10in endothelial cellsaffects osteoclasts at the chondro-osseus junction. J. Orthop. Res.doi:10.1002/jor.22492
    [44] Arihiro K, Inai K.2001. Expression of CD31, Met/hepatocyte growth factor receptorand bone morphogenetic protein in bone metastasis of osteosarcoma. Pathol Int51:100-106.
    [45] Hogan BL, Kolodziej PA.2002. Organogenesis: Molecular mechanisms oftubulogenesis.Nat Rev Genet3:513–523.
    [46] Lubarsky B, Krasnow MA.2003. Tube morphogenesis: Making and shapingbiological tubes. Cell112:19–28
    [47] Dejana E.2004. Endothelial cell–cell junctions: happy together. Nat Rev Mol CellBiol5:261–270.
    [48] Bryant DM, Mostov KE.2008. From cells to organs: building polarized tissue. NatRev Mol Cell Biol9:887–901.
    [49] Iruela-Arispe ML, Davis GE.2009. Cellular and molecular mechanisms of vascularlumen formation. Dev Cell16:222–231.
    [50] Zeeb M, Strilic B, Lammert E.2010. Resolving cell-cell junctions: lumen formationin blood vessels. Curr Opin Cell Biol22:626–632.
    [51] Datta A, Bryant DM, Mostov KE.2011. Molecular regulation of lumenmorphogenesis. Curr Biol21: R126–136.
    [52] Wolff JR, Bar T.1972.“Seamless” endothelia in brain capillaries during developmentof the rat’s cerebral cortex. Brain Res41:17–24.
    [53] Folkman J, Haudenschild C.1980. Angiogenesis in vitro. Nature288:551–556.
    [54] Davis GE, Camarillo CW.1996. An a2b1integrin dependent pinocytic mechanisminvolving intracellular vacuole formation and coalescence regulates capillary lumenand tube formation in three-dimensional collagen matrix. Exp Cell Res224:39–51.
    [55] Kamei M, Saunders WB, Bayless KJ, Dye L, Davis GE, Weinstein BM.2006.Endothelial tubes assemble from intracellular vacuoles in vivo. Nature442:453–456.
    [56] Davis GE, KohW, Stratman AN.2007.Mechanisms controlling human endotheliallumen formation and tube assembly in three-dimensional extracellular matrices. BirthDefects Res C Embryo Today81:270–285.
    [57] Pollack AL, Runyan RB, Mostov KE.1998. Morphogenetic mechanisms of epithelialtubulogenesis: MDCK cell polarity is transiently rearranged without loss of cell-cellcontact during scatter factor/hepatocyte growth factor induced tubulogenesis. DevBiol204:64–79.
    [58] Parker LH, Schmidt M, Jin SW, et al.2004. The endothelial-cell-derived secretedfactor Egfl7regulates vascular tube formation. Nature428:754–758.
    [59] Jin SW, Beis D, Mitchell T, Chen JN, Stainier DY.2005. Cellular and molecularanalyses of vascular tube and lumen formation in zebrafish. Development132:5199–5209.
    [60] Wang Y, Kaiser MS, Larson JD, et al.2010. Moesin1and Ve-cadherin are required inendothelial cells during in vivo tubulogenesis. Development137:3119–3128.
    [61] Tung JJ, Tattersall IW, Kitajewski J.2012. Tips, stalks, tubes: notch-mediated cellfate determination and mechanisms of tubulogenesis during angiogenesis. ColdSpring Harb Perspect Med2: a006601.
    [62] Folkman J.1971. Tumor angiogenesis: therapeutic implications. N Engl J Med285:1182-1186.
    [63] Muller WA, Weigl SA, Deng X, Phillips DM.1993. PECAM-1is required fortransendothelial migration of leukocytes. J Exp Med178:449-460.
    [64] Buckley CD, Doyonnas R, Newton JP, Blystone SD, Brown EJ, et al.1996.Identification of alpha v beta3as a heterotypic ligand for CD31/PECAM-1. J Cell Sci109(Pt2):437-445.
    [65] Dejana E, Zanetti A, Del Maschio A.1996. Adhesive proteins at endothelialcell-to-cell junctions and leukocyte extravasation. Haemostasis26Suppl4:210-219.
    [1] Conlon R A, Reaume A G and Rossant J. Notch1is required for the coordinatesegmentation of somites. Development121:1533-45(1995).
    [2] Krebs L T, Xue Y, Norton C R, Shutter J R, Maguire M, Sundberg J P, et al. Notchsignaling is essential for vascular morphogenesis in mice. Genes Dev14:1343-52(2000).
    [3] Huppert S S, Le A, Schroeter E H, Mumm J S, Saxena M T, Milner L A, et al.Embryonic lethality in mice homozygous for a processing-deficient allele of Notch1.Nature405:966-70(2000).
    [4] Pan D and Rubin G M. Kuzbanian controls proteolytic processing of Notch andmediates lateral inhibition during Drosophila and vertebrate neurogenesis. Cell90:271-80(1997).
    [5] Wen C, Metzstein M M and Greenwald I. SUP-17, a Caenorhabditis elegans ADAMprotein related to Drosophila KUZBANIAN, and its role in LIN-12/NOTCHsignalling. Development124:4759-67(1997).
    [6] Hurlbut G D, Kankel M W, Lake R J and Artavanis-Tsakonas S. Crossing paths withNotch in the hyper-network. Curr Opin Cell Biol19:166-75(2007).
    [7] De Strooper B, Saftig P, Craessaerts K, Vanderstichele H, Guhde G, Annaert W, et al.Deficiency of presenilin-1inhibits the normal cleavage of amyloid precursorprotein. Nature391:387-90(1998).
    [8] Lieber T, Kidd S and Young M W. kuzbanian-mediated cleavage of Drosophila Notch.Genes Dev16:209-21(2002).
    [9] Mumm J S, Schroeter E H, Saxena M T, Griesemer A, Tian X, Pan D J, et al. Aligand-induced extracellular cleavage regulates gamma-secretase-like proteolyticactivation of Notch1. Mol Cell5:197-206(2000).
    [10] Brou C, Logeat F, Gupta N, Bessia C, LeBail O, Doedens J R, et al. A novelproteolytic cleavage involved in Notch signaling: the role of thedisintegrin-metalloprotease TACE. Mol Cell5:207-16(2000).
    [11] Qi H, Rand M D, Wu X, Sestan N, Wang W, Rakic P, et al. Processing of the notchligand delta by the metalloprotease Kuzbanian. Science283:91-4(1999).
    [12] Mishra-Gorur K, Rand M D, Perez-Villamil B and Artavanis-Tsakonas S.Down-regulation of Delta by proteolytic processing. J Cell Biol159:313-24(2002).
    [13] LaVoie M J and Selkoe D J. The Notch ligands, Jagged and Delta, are sequentiallyprocessed by alpha-secretase and presenilin/gamma-secretase and release signalingfragments. J Biol Chem278:34427-37(2003).
    [14] Dyczynska E, Sun D, Yi H, Sehara-Fujisawa A, Blobel C P and Zolkiewska A.Proteolytic processing of delta-like1by ADAM proteases. J Biol Chem282:436-44(2007).
    [15] Barton W A, Himanen J, Antipenko A and Nikolov D B. Structures of axon guidancemolecules and their neuronal receptors. Adv Protein Chem68:65-106(2004).
    [16] Pasquale E B. Eph receptor signalling casts a wide net on cell behaviour. Nat RevMol Cell Biol6:462-75(2005).
    [17] Compagni A, Foo S, Logan M, Klein R and Adams R.21Eph receptors and ephrinscontrol the morphogenesis of limbs and blood vessels. J Anat201:423(2002).
    [18] McFarlane S. Metalloproteases: carving out a role in axon guidance. Neuron37:559-62(2003).
    [19] Hattori M, Osterfield M and Flanagan J G. Regulated cleavage of a contact-mediatedaxon repellent. Science289:1360-5(2000).
    [20] Tomita T, Tanaka S, Morohashi Y and Iwatsubo T. Presenilindependentintramembrane cleavage of ephrin-B1. Mol Neurodegener1:2(2006).
    [21] Sahin U, Weskamp G, Kelly K, Zhou H, Higashiyama S, Peschon J, et al. Distinctroles for ADAM10and ADAM17in ectodomain shedding of six EGFR ligands. JCell Biol164:769-79(2004).
    [22] Sanderson M P, Erickson S N, Gough P J, Garton K J, Wille P T, Raines E W, et al.ADAM10mediates ectodomain shedding of the betacellulin precursor activated byp-aminophenylmercuric acetate and extracellular calcium influx. J Biol Chem280:1826-37(2005).
    [23] Abel S, Hundhausen C, Mentlein R, Schulte A, Berkhout T A, Broadway N, et al. Thetransmembrane CXC-chemokine ligand16is induced by IFN-gamma and TNF-alphaand shed by the activity of the disintegrin-like metalloproteinase ADAM10. JImmunol172:6362-72(2004).
    [24] Hundhausen C, Misztela D, Berkhout T A, Broadway N, Saftig P, Reiss K, et al. Thedisintegrin-like metalloproteinase ADAM10is involved in constitutive cleavage ofCX3CL1(fractalkine) and regulates CX3CL1-mediated cell-cell adhesion. Blood102:1186-95(2003).
    [25] Goddard D R, Bunning R A and Woodroofe M N. Astrocyte and endothelial cellexpression of ADAM17(TACE) in adult human CNS. Glia34:267-71(2001).
    [26] Boulday G, Coupel S, Coulon F, Soulillou J P and Charreau B. Antigraftantibody-mediated expression of metalloproteinases on endothelial cells. Differentialexpression of TIMP-1and ADAM-10depends on antibody specificity and isotype.Circ Res88:430-7(2001).
    [27] Weskamp G, Ford J W, Sturgill J, Martin S, Docherty A J P, Swendeman S, et al.ADAM10is a principal 'sheddase' of the lowaffinity immunoglobulin E receptorCD23. Nat Immunol7:1293-8(2006).
    [28] Baki L, Marambaud P, Efthimiopoulos S, Georgakopoulos A, Wen P, Cui W, et al.Presenilin-1binds cytoplasmic epithelial cadherin, inhibits cadherin/p120association,and regulates stability and function of the cadherin/catenin adhesion complex. ProcNatl Acad Sci U S A98:2381-6(2001).
    [29] Marambaud P, Shioi J, Serban G, Georgakopoulos A, Sarner S, Nagy V, et al. Apresenilin-1/gamma-secretase cleavage releases the E-cadherin intracellular domainand regulates disassembly of adherens junctions. EMBO J21:1948-56(2002).
    [30] Maretzky T, Reiss K, Ludwig A, Buchholz J, Scholz F, Proksch E, et al. ADAM10mediates E-cadherin shedding and regulates epithelial cell-cell adhesion, migration,and beta-catenin translocation. Proc Natl Acad Sci U S A102:9182-7(2005).
    [31] Reiss K, Maretzky T, Ludwig A, Tousseyn T, de Strooper B, Hartmann D, et al.ADAM10cleavage of N-cadherin and regulation of cell-cell adhesion andbeta-catenin nuclear signalling. EMBO J24:742-52(2005).
    [32] Radice G L, Rayburn H, Matsunami H, Knudsen K A, Takeichi M and Hynes R O.Developmental defects in mouse embryos lacking N-cadherin. Dev Biol181:64-78(1997).
    [33] Gabbiani G. The myofibroblast: a key cell for wound healing and fibrocontractivediseases. Prog Clin Biol Res54:183-94(1981).
    [34] Van Hoorde L, Braet K and Mareel M. The N-cadherin/catenin complex in colonfibroblasts and myofibroblasts. Cell Adhes Commun7:139-50(1999).
    [35] Ko K S, Arora P D and McCulloch C A. Cadherins mediate intercellular mechanicalsignaling in fibroblasts by activation of stretchsensitive calcium-permeable channels.J Biol Chem276:35967-77(2001).
    [36] Marambaud P, Wen P H, Dutt A, Shioi J, Takashima A, Siman R, et al. A CBPbinding transcriptional repressor produced by the PS1/epsilon-cleavage of N-cadherinis inhibited by PS1FAD mutations. Cell114:635-45(2003).
    [37] Nelson W J and Nusse R. Convergence of Wnt, beta-catenin, and cadherin pathways.Science303:1483-7(2004).
    [38] Sadot E, Simcha I, Shtutman M, Ben-Ze'ev A and Geiger B. Inhibition ofbeta-catenin-mediated transactivation by cadherin derivatives. Proc Natl Acad Sci U SA95:15339-44(1998).
    [39] Simcha I, Kirkpatrick C, Sadot E, Shtutman M, Polevoy G, Geiger B, et al. Cadherinsequences that inhibit beta-catenin signaling: a study in yeast and mammalian cells.Mol Biol Cell12:1177-88(2001).
    [40] Shtutman M, Zhurinsky J, Simcha I, Albanese C, D'Amico M, Pestell R, et al. Thecyclin D1gene is a target of the betacatenin/LEF-1pathway. Proc Natl Acad Sci U SA96:5522-7(1999).
    [41] He T C, Sparks A B, Rago C, Hermeking H, Zawel L, da Costa L T, et al.Identification of c-MYC as a target of the APC pathway. Science281:1509-12(1998).
    [42] Mann B, Gelos M, Siedow A, Hanski M L, Gratchev A, Ilyas M, et al. Target genesof beta-catenin-T cell-factor/lymphoid-enhancerfactor signaling in human colorectalcarcinomas. Proc Natl Acad Sci U S A96:1603-8(1999).
    [43] Reiss K, Maretzky T, Haas I G, Schulte M, Ludwig A, Frank M and Saftig P.Regulated ADAM10-dependent ectodomain shedding of gamma-protocadherin C3modulates cell-cell adhesion. J Biol Chem281:21735-44(2006).
    [44] Murata Y, Hamada S, Morishita H, Mutoh T and Yagi T. Interaction withprotocadherin-gamma regulates the cell surface expression of protocadherin-alpha. JBiol Chem279:49508-16(2004).
    [45] Wang X, Weiner J A, Levi S, Craig A M, Bradley A and Sanes J R. Gammaprotocadherins are required for survival of spinal interneurons. Neuron36:843-54(2002).
    [46] Vincent B, Paitel E, Frobert Y, Lehmann S, Grassi J and Checler F. Phorbolester-regulated cleavage of normal prion protein in HEK293human cells and murineneurons. J Biol Chem275:35612-6(2000).
    [47] Vincent B, Paitel E, Saftig P, Frobert Y, Hartmann D, De Strooper B, et al. Thedisintegrins ADAM10and TACE contribute to the constitutive and phorbolester-regulated normal cleavage of the cellular prion protein. J Biol Chem276:37743-6(2001).
    [48] Plamont M, Chasseigneaux S, Delasnerie-Laupretre N, Beaudry P, Peoc'h K andLaplanche J. Variation at the ADAM10gene locus is not associated withCreutzfeldt-Jakob disease. Neurosci Lett344:132-4(2003).
    [49] Prusiner S B, Groth D, Serban A, Koehler R, Foster D, Torchia M, et al. Ablation ofthe prion protein (PrP) gene in mice prevents scrapie and facilitates production ofanti-PrP antibodies. Proc Natl Acad Sci USA90:10608-12(1993).
    [1] Yochem J, Weston K, Greenwald I. The Caenorhabditis elegans lin-12gene encodesa transmembrane protein with overall similarity to Drosophila Notch. Nature.1988;335(6190):547-50.
    [2] Greenwald I. LIN-12/Notch signaling: lessons from worms and flies. Genes Dev.1998;12(12):1751-62.
    [3] Kopan R, Ilagan MX. The canonical Notch signaling pathway: unfolding theactivation mechanism. Cell.2009;137(2):216-33.
    [4] Kovall RA, Blacklow SC. Mechanistic insights into Notch receptor signaling fromstructural and biochemical studies. Curr Top Dev Biol.2010;92:31-71.
    [5] Shawber CJ, Das I, Francisco E, et al. Notch signaling in primary endothelial cells.Ann N Y Acad Sci.2003;995:162-70.
    [6] Davis RL, Turner DL. Vertebrate hairy and Enhancer of split related proteins:transcriptional repressors regulating cellular differentiation and embryonic patterning.Oncogene.2001;20(58):8342-57.
    [7] Nakagawa O, McFadden DG, Nakagawa M, et al. Members of the HRT family ofbasic helixloop-helix proteins act as transcriptional repressors downstream of Notchsignaling. Proc Natl Acad Sci U S A.2000;97(25):13655-60.
    [8] Del Amo FF, Smith DE, Swiatek PJ, et al. Expression pattern of Motch, a mousehomolog of Drosophila Notch, suggests an important role in early postimplantationmouse development. Development.1992;115(3):737-44.
    [9] Uyttendaele H, Marazzi G, Wu G, et al. Notch4/int-3, a mammary proto-oncogene, isan endothelial cell-specific mammalian Notch gene. Development.1996;122(7):2251-9.
    [10] Beckers J, Clark A, Wunsch K, et al. Expression of the mouse Delta1gene duringorganogenesis and fetal development. Mech Dev.1999;84(1-2):165-8.
    [11] Shutter JR, Scully S, Fan W, et al. Dll4, a novel Notch ligand expressed in arterialendothelium. Genes Dev.2000;14(11):1313-8.
    [12] Mailhos C, Modlich U, Lewis J, et al. Delta4, an endothelial specific notch ligandexpressed at sites of physiological and tumor angiogenesis. Differentiation.2001;69(2-3):135-44.
    [13] Zimrin AB, Pepper MS, McMahon GA, et al. An antisense oligonucleotide to thenotch ligandjagged enhances fibroblast growth factor–induced angiogenesis in vitro. JBiol Chem.1996;271(51):32499-502.
    [14] Thurston G, Noguera-Troise I, Yancopoulos GD. The Delta paradox: DLL4blockadeleads to more tumour vessels but less tumour growth. Nat Rev Cancer.2007;7(5):327-31.
    [15] Siekmann AF, Covassin L, Lawson ND. Modulation of VEGF signalling output bythe Notch pathway. Bioessays.2008;30(4):303-13.
    [16] Phng LK, Potente M, Leslie JD, et al. Nrarp coordinates endothelial Notch and Wntsignaling to control vessel density in angiogenesis. Dev Cell.2009;16(1):70-82.
    [17] Carmeliet P, Ferreira V, Breier G, et al. Abnormal blood vessel development andlethality in embryos lacking a single VEGF allele. Nature.1996;380(6573):435-9.
    [18] Ferrara N, Carver-Moore K, Chen H, et al. Heterozygous embryonic lethality inducedby targeted inactivation of the VEGF gene. Nature.996;380(6573):439-42.
    [19] Gale NW, Dominguez MG, Noguera I, et al. Haploinsufficiency of delta-like4ligandresults in embryonic lethality due to major defects in arterial and vasculardevelopment. Proc Natl Acad Sci U S A.2004;101(45):15949-54.
    [20] Krebs LT, Shutter JR, Tanigaki K, et al. Haploinsufficient lethality and formation ofarteriovenous malformations in Notch pathway mutants. Genes Dev.2004;18(20):2469-73.
    [21] Suchting S, Freitas C, le Noble F, et al. The Notch ligand Delta-like4negativelyregulates endothelial tip cell formation and vessel branching. Proc Natl Acad Sci U SA.2007;104(9):3225-30.
    [22] Krebs LT, Xue Y, Norton CR, et al. Notch signaling is essential for vascularmorphogenesis in mice. Genes Dev.2000;14(11):1343-52.
    [23] Fischer A, Schumacher N, Maier M, et al. The Notch target genes Hey1and Hey2arerequired for embryonic vascular development. Genes Dev.2004;18(8):901-11.
    [24] Limbourg A, Ploom M, Elligsen D, et al. Notch ligand Delta-like1is essential forpostnatal arteriogenesis. Circ Res.2007;100(3):363-71.
    [25] Sorensen I, Adams RH, Gossler A. DLL1-mediated Notch activation regulatesendothelial identity in mouse fetal arteries. Blood.2009;113(22):5680-8.
    [26] Uyttendaele H, Ho J, Rossant J, et al. Vascular patterning defects associated withexpression of activated Notch4in embryonic endothelium. Proc Natl Acad Sci U S A.2001;98(10):5643-8.
    [27] Krebs LT, Starling C, Chervonsky AV, et al. Notch1activation in mice causesarteriovenous malformations phenocopied by ephrinB2and EphB4mutants. Genesis.2010;48(3):146-50.
    [28] Taylor KL, Henderson AM, Hughes CC. Notch activation during endothelial cellnetwork formation in vitro targets the basic HLH transcription factor HESR-1anddownregulates VEGFR-2/KDR expression. Microvasc Res.2002;64(3):372-83.
    [29] Harrington LS, Sainson RC, Williams CK, et al. Regulation of multiple angiogenicpathways by Dll4and Notch in human umbilical vein endothelial cells. MicrovascRes.2008;75(2):144-54.
    [30] Funahashi Y, Shawber CJ, Vorontchikhina M, et al. Notch regulates the angiogenicresponse via induction of VEGFR-1. J Angiogenes Res.2010;2(1):3.
    [31] Outtz HH, Wu JK, Wang X, et al. Notch1deficiency results in decreasedinflammation during wound healing and regulates vascular endothelial growth factorreceptor-1and inflammatory cytokine expression in macrophages. J Immunol.2010;185(7):4363-73.
    [32] Shawber CJ, Funahashi Y, Francisco E, et al. Notch alters VEGF responsiveness inhuman and murine endothelial cells by direct regulation of VEGFR-3expression. JClin Invest.2007;117(11):3369-82.
    [33] Duarte A, Hirashima M, Benedito R, et al. Dosagesensitive requirement for mouseDll4in artery development. Genes Dev.2004;18(20):2474-8.
    [34] Iso T, Maeno T, Oike Y, et al. Dll4-selective Notch signaling induces ephrinB2geneexpression in endothelial cells. Biochem Biophys Res Commun.2006;341(3):708-14.
    [35] Carlson TR, Yan Y, Wu X, et al. Endothelial expression of constitutively activeNotch4elicits reversible arteriovenous malformations in adult mice. Proc Natl AcadSci U S A.2005;102(28):9884-9.
    [36] Trindade A, Kumar SR, Scehnet JS, et al. Overexpression of delta-like4inducesarterializations and attenuates vessel formation in developing mouse embryos. Blood.2008;112(5):1720-9.
    [37] Shibuya M. Vascular endothelial growth factor receptor–1(VEGFR-1/Flt-1): a dualregulator for angiogenesis. Angiogenesis.2006;9(4):225-30; discussion31.
    [38] Tammela T, Zarkada G, Wallgard E, et al. Blocking VEGFR-3suppresses angiogenicsprouting and vascular network formation. Nature.2008;454(7204):656-60.
    [39] Risau W, Flamme I. Vasculogenesis. Annu Rev Cell Dev Biol.1995;11:73-91.
    [40] Herbert SP, Huisken J, Kim TN, et al. Arterialvenous segregation by selective cellsprouting: an alternative mode of blood vessel formation. Science.2009;326(5950):294-8.
    [41] Kim YH, Hu H, Guevara-Gallardo S, et al. Artery and vein size is balanced by Notchand ephrin B2/EphB4during angiogenesis. Development.2008;135(22):3755-64.
    [42] Hellstrom M, Phng LK, Hofmann JJ, et al. Dll4signalling through Notch1regulatesformation of tip cells during angiogenesis. Nature.2007;445(7129):776-80.
    [43] Lobov IB, Renard RA, Papadopoulos N, et al. Delta-like ligand4(Dll4) is induced byVEGF as a negative regulator of angiogenic sprouting. Proc Natl Acad Sci U S A.2007;104(9):3219-24.
    [44] Gerhardt H, Golding M, Fruttiger M, et al. VEGF guides angiogenic sproutingutilizing endothelial tip cell filopodia. J Cell Biol.2003;161(6):1163-77.
    [45] Benedito R, Roca C, Sorensen I, et al. The notch ligands Dll4and Jagged1haveopposing effects on angiogenesis. Cell.2009;137(6):1124-35.
    [46] Liu ZJ, Shirakawa T, Li Y, et al. Regulation of Notch1and Dll4by vascularendothelial growth factor in arterial endothelial cells: implications for modulatingarteriogenesis and angiogenesis. Mol Cell Biol.2003;23(1):14-25.
    [47] Patel NS, Li JL, Generali D, et al. Up-regulation of delta-like4ligand in humantumor vasculature and the role of basal expression in endothelial cell function. CancerRes.2005;65(19):8690-7.
    [48] Jakobsson L, Franco CA, Bentley K, et al. Endothelial cells dynamically compete forthe tip cell position during angiogenic sprouting. Nat Cell Biol.2010;12(10):943-53.
    [49] Guarani V, Deflorian G, Franco CA, et al. Acetylation-dependent regulation ofendothelial Notch signalling by the SIRT1deacetylase. Nature.2011;473(7346):234-8.
    [50] Benjamin LE, Hemo I, Keshet E. A plasticity window for blood vessel remodelling isdefined by pericyte coverage of the preformed endothelial network and is regulatedby PDGF-B and VEGF. Development.1998;125(9):1591-8.
    [51] Armulik A, Abramsson A, Betsholtz C. Endothelial/pericyte interactions. Circ Res.2005;97(6):512-23.
    [52] Villa N, Walker L, Lindsell CE, et al. Vascular expression of Notch pathwayreceptors and ligands is restricted to arterial vessels. Mech Dev.2001;108(1-2):161-4.
    [53] Hofmann JJ, Luisa Iruela-Arispe M. Notch expression patterns in the retina: An eyeon receptor-ligand distribution during angiogenesis. Gene Expr Patterns.2007;7(4):461-70.
    [54] High FA, Lu MM, Pear WS, et al. Endothelial expression of the Notch ligand Jagged1is required for vascular smooth muscle development. Proc Natl Acad Sci U S A.2008;105(6):1955-9.
    [55] Liu H, Kennard S, Lilly B. NOTCH3expression is induced in mural cells through anautoregulatory loop that requires endothelial-expressed JAGGED1. Circ Res.2009;104(4):466-75.
    [56] Liu H, Zhang W, Kennard S, et al. Notch3is critical for proper angiogenesis andmural cell investment. Circ Res.2010;107(7):860-70.
    [57] Domenga V, Fardoux P, Lacombe P, et al. Notch3is required for arterial identity andmaturation of vascular smooth muscle cells. Genes Dev.2004;18(22):2730-5.
    [58] Joutel A, Andreux F, Gaulis S, et al. The ectodomain of the Notch3receptoraccumulates within the cerebrovasculature of CADASIL patients. J Clin Invest.2000;105(5):597-605.
    [59] Joutel A, Corpechot C, Ducros A, et al. Notch3mutations in CADASIL, a hereditaryadult-onset condition causing stroke and dementia. Nature.1996;383(6602):707-10.
    [60] Leveen P, Pekny M, Gebre-Medhin S, et al. Mice deficient for PDGF B show renal,cardiovascular, and hematological abnormalities. Genes Dev.1994;8(16):1875-87.
    [61] Soriano P. Abnormal kidney development and hematological disorders in PDGFbetareceptor mutant mice. Genes Dev.1994;8(16):1888-96.
    [62] Jin S, Hansson EM, Tikka S, et al. Notch signaling regulates platelet-derived growthfactor receptor-beta expression in vascular smooth muscle cells. Circ Res.2008;102(12):1483-91.
    [63] Campos AH, Wang W, Pollman MJ, et al. Determinants of Notch-3receptorexpression and signaling in vascular smooth muscle cells: implications in cell-cycleregulation. Circ Res.2002;91(11):999-1006.
    [64] Noseda M, McLean G, Niessen K, et al. Notch activation results in phenotypic andfunctional changes consistent with endothelialto-mesenchymal transformation. CircRes.2004;94(7):910-7.
    [65] Noseda M, Fu Y, Niessen K, et al. Smooth Muscle alpha-actin is a direct target ofNotch/CSL. Circ Res.2006;98(12):1468-70.
    [66] Stewart KS, Zhou Z, Zweidler-McKay P, et al. Delta-like ligand4-Notch signalingregulates bone marrow–derived pericyte/vascular smooth muscle cell formation.Blood.2011;117(2):719-26.
    [67] Leung DW, Cachianes G, Kuang WJ, et al. Vascular endothelial growth factor is asecreted angiogenic mitogen. Science.1989;246(4935):1306-9.
    [68] Jain RK, Duda DG, Clark JW, et al. Lessons from phase III clinical trials onanti-VEGF therapy for cancer. Nat Clin Pract Oncol.2006;3(1):24-40.
    [69] Ranganathan P, Weaver KL, Capobianco AJ. Notch signalling in solid tumours: alittle bit of everything but not all the time. Nat Rev Cancer.2011;11(5):338-51.
    [70] DeAngelo DJ, Stone RM, Heaney ML, et al. Phase1clinical results with tandutinib(MLN518), a novel FLT3antagonist, in patients with acute myelogenous leukemia orhigh-risk myelodysplastic syndrome: safety, pharmacokinetics, andpharmacodynamics. Blood.2006;108(12):3674-81.
    [71] Real PJ, Tosello V, Palomero T, et al. Gammasecretase inhibitors reverseglucocorticoid resistance in T cell acute lymphoblastic leukemia. Nat Med.2009;15(1):50-8.
    [72] Noguera-Troise I, Daly C, Papadopoulos NJ, et al. Blockade of Dll4inhibits tumourgrowth by promoting non-productive angiogenesis. Nature.2006;444(7122):1032-7.
    [73] Ridgway J, Zhang G, Wu Y, et al. Inhibition of Dll4signalling inhibits tumourgrowth by deregulating angiogenesis. Nature.2006;444(7122):1083-7.
    [74] Hoey T, Yen WC, Axelrod F, et al. DLL4blockade inhibits tumor growth andreduces tumor-initiating cell frequency. Cell Stem Cell.2009;5(2):168-77.
    [75] Yan M, Callahan CA, Beyer JC, et al. Chronic DLL4blockade induces vascularneoplasms. Nature.2010;463(7282):E6-7.
    [76] Liu Z, Turkoz A, Jackson EN, et al. Notch1loss of heterozygosity causes vasculartumors and lethal hemorrhage in mice. J Clin Invest.2011;121(2):800-8.
    [77] Wu Y, Cain-Hom C, Choy L, et al. Therapeutic antibody targeting of individualNotch receptors. Nature.2010;464(7291):1052-7.
    [78] Schmid MC, Varner JA. Myeloid cells in the tumor microenvironment: modulation oftumor angiogenesis and tumor inflammation. J Oncol.2010;2010:201026.
    [79] Hirschi KK, Rohovsky SA, D’Amore PA. PDGF, TGF-beta, and heterotypic cell-cellinteractions mediate endothelial cell-induced recruitment of10T1/2cells and theirdifferentiation to a smooth muscle fate. J Cell Biol.1998;141(3):805-14.
    [80] Zeng Q, Li S, Chepeha DB, et al. Crosstalk between tumor and endothelial cellspromotes tumor angiogenesis by MAPK activation of Notch signaling. Cancer Cell.2005;8(1):13-23.
    [81] Sunderkotter C, Steinbrink K, Goebeler M, et al. Macrophages and angiogenesis. JLeukoc Biol.1994;55(3):410-22.
    [82] Holash J, Davis S, Papadopoulos N, et al. VEGF-Trap: a VEGF blocker with potentantitumor effects. Proc Natl Acad Sci U S A.2002;99(17):11393-8.
    [83] Moellering RE, Cornejo M, Davis TN, et al. Direct inhibition of the NOTCHtranscription factor complex. Nature.2009;462(7270):182-8.
    [84] Funahashi Y, Hernandez SL, Das I, et al. A notch1ectodomain construct inhibitsendothelial notch signaling, tumor growth, and angiogenesis. Cancer Res.2008;68(12):4727-35.
    [85] Engin F, Bertin T, Ma O, et al. Notch signaling contributes to the pathogenesis ofhuman osteosarcomas. Hum Mol Genet.2009;18(8):1464-70.
    [86] Casanovas O, Hicklin DJ, Bergers G, et al. Drug resistance by evasion ofantiangiogenic targeting of VEGF signaling in late-stage pancreatic islet tumors.Cancer Cell.2005;8(4):299-309.
    [87] Jain RK. Normalization of tumor vasculature: an emerging concept in antiangiogenictherapy. Science.2005;307(5706):58-62.
    [88] Miller KD, Chap LI, Holmes FA, et al. Randomized phase III trial of capecitabinecompared with bevacizumab plus capecitabine in patients with previously treatedmetastatic breast cancer. J Clin Oncol.2005;23(4):792-9.
    [89] Bagley RG, Kurtzberg L, Weber W, et al. sFLT01: a novel fusion protein withantiangiogenic activity. Mol Cancer Ther.2011;10(3):404-15.
    [90] Fischer C, Jonckx B, Mazzone M, et al. Anti-PlGF inhibits growth ofVEGF(R)-inhibitorresistant tumors without affecting healthy vessels. Cell.2007;131(3):463-75.
    [91] Zaghloul N, Hernandez SL, Bae JO, et al. Vascular endothelial growth factorblockade rapidly elicits alternative proangiogenic pathways in neuroblastoma. Int JOncol.2009;34(2):401-7.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700