用户名: 密码: 验证码:
视网膜色素变性合并肢端病变一家系致病基因筛查
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
[目的]
     应用候选基因筛查、连锁分析方法对一合并有肢端病变的视网膜色素变性家系进行致病基因排除定位。
     [材料和方法]
     1.通过家系调查收集家系临床资料。
     2.抽取家系成员外周血并提取全血基因组DNA。
     3.查阅文献及网络数据库,确定已知的发病率高的视网膜色素变性致病基因为候选基因。
     4.对于候选基囚USH2A.RPGR,通过选取微卫星标记,对已知遗传状态的家系成员行聚丙烯酰胺凝胶电泳,银染显色后进行非参数连锁分析。
     5.对于候选基因RHO、PRPF3、PRPF8、PRPF31、RDS、RP10、RPGR、RP1基因的突变热点区域设计引物,将先证者基因组DNA进行PCR扩增后直接测序,通过与网络数据库进行比对,明确有无突变。
     [结果]
     家系临床研究表明,YPH家系所患视网膜色素变性系遗传性疾病,常染色体显性遗传可能性大。对于USH2A、RPGR做的家系非参连锁分析结果显示,家系中患者与标记位点无连锁不平衡现象,故可排除这两个基因致病。对先证者的RHO、 PRPF3、PRPF8、PRPF31、RDS、RP10、RPGR基因编码区或突变热点区域直接测序结果显示,未发现致病性突变。
     先证者RP1基因编码区有一杂合性突变导致RP1蛋白D998Y突变,经过生物信息学方法预测,这一突变是致病性突变。但是,对家系其他成员的筛查却发现这一突变不与家系中患者共分离,故很可能不是YPH家系的致病性突变。
     [结论]
     家系中RP1蛋白D998Y突变的意义尚待进一步评估。
     YPH家系致病基因可能不是已知常见的视网膜色素变性致病基因。
Objective
     To detect the mutation in a family with retinitis pigmentosa and acropathy, using candidate genes screening.
     Materials and Methods
     1. Clinical data were collected in this family. All family members were studied with medical history, ophthalmologic examinations, ERG, VEP and whole body physical examinations.
     2. Venous blood was collected from research subjects and genomic DNA was extracted.
     3. Candidate genes were determined by reviewing literature and online databases.
     4. To screen the genes USH2A and RPGR, linkage analysis were performed after detecting the microsatellite markers of this family.
     5. To screen the genes RHO, PRPF3, PRPF8, PRPF31, RP1, RDS, RP10and RPGR, primers were designed and direct sequencing were performed after PCR. Then results were compared with web databases.
     Results
     Patients in this family manifest retinal degeneration with acropathy, which represent a novel retinitis pigmentosa syndrome. The inheritance pattern is not clear, we consider autosomal dominant most possible. The screening of RHO, PRPF3, PRPF8, PRPF31, RDS, RP10and RPGR genes in the proband of YPH family were negative.
     We found a novel mutation in RP1gene (D998Y) in the proband. D998Y is thought to be pathologic by bioinformatic evaluation, but it does not cosegregate with the patients in this family. Further evaluation is needed to determine this mutation.
     Conclusion
     Whether RP1D998Y mutation is the disease-causing mutation in YPH family should be further evaluated.
     We consider a novel disease-causing mutation may exist in YPH family.
引文
1. Bhattacharya SS, Wright AF, Clayton JF, et al. Close genetic linkage between X-linked retinitis pigmentosa and a restriction fragment length polymorphism identified by recombinant DNA probe L1.28. Nature 1984;309:253-5.
    2. McKie AB, McHale JC, Keen TJ, et al. Mutations in the pre-mRNA splicing factor gene PRPC8 in autosomal dominant retinitis pigmentosa (RP13). Hum Mol Genet 2001;10:1555-62.
    3. Vithana EN, Abu-Safieh L, Allen MJ, et al. A human homolog of yeast pre-mRNA splicing gene, PRP31, underlies autosomal dominant retinitis pigmentosa on chromosome 19q13.4 (RP11). Mol Cell 2001;8:375-81.
    4. Chakarova CF, Hims MM, Bolz H, et al. Mutations in HPRP3, a third member of pre-mRNA splicing factor genes, implicated in autosomal dominant retinitis pigmentosa. Hum Mol Genet 2002; 11:87-92.
    5. Maita H, Kitaura H, Keen TJ, Inglehearn CF, Ariga H, Iguchi-Ariga SM. PAP-1, the mutated gene underlying the RP9 form of dominant retinitis pigmentosa, is a splicing factor. Exp Cell Res 2004;300:283-96.
    6. Bessant DA, Payne AM, Mitton KP, et al. A mutation in NRL is associated with autosomal dominant retinitis pigmentosa. Nat Genet 1999;21:355-6.
    7. Mitton KP, Swain PK, Chen S, Xu S, Zack DJ, Swaroop A. The leucine zipper of NRL interacts with the CRX homeodomain. A possible mechanism of transcriptional synergy in rhodopsin regulation. J Biol Chem 2000;275:29794-9.
    8. Peng GH, Ahmad O, Ahmad F, Liu J, Chen S. The photoreceptor-specific nuclear receptor Nr2e3 interacts with Crx and exerts opposing effects on the transcription of rod versus cone genes. Hum Mol Genet 2005; 14:747-64.
    9. Hartong DT, Dange M, McGee TL, Berson EL, Dryja TP, Colman RF. Insights from retinitis pigmentosa into the roles of isocitrate dehydrogenases in the Krebs cycle. Nat Genet 2008;40:1230-4.
    10. Cai X, Conley SM, Naash MI. RPE65:role in the visual cycle, human retinal disease, and gene therapy. Ophthalmic Genet 2009;30:57-62.
    11. Dryja TP, Hahn LB, Cowley GS, McGee TL, Berson EL. Mutation spectrum of the rhodopsin gene among patients with autosomal dominant retinitis pigmentosa. Proc Natl Acad Sci U S A 1991;88:9370-4.
    12. Demirci FY, Rigatti BW, Wen G, et al. X-linked cone-rod dystrophy (locus COD1): identification of mutations in RPGR exon ORF15. Am J Hum Genet 2002;70:1049-53.
    13. Badner JA, Gershon ES, Goldin LR. Optimal ascertainment strategies to detect linkage to common disease alleles. Am J Hum Genet 1998;63:880-8.
    14. Holmans P. Affected sib-pair methods for detecting linkage to dichotomous traits: review of the methodology. Hum Biol 1998;70:1025-40.
    15. Laboratory of statistical genetics. http://linkage.rockefeller.edu/.
    16. Grantham R. Amino acid difference formula to help explain protein evolution. Science 1974; 185:862-4.
    17. Ng PC, Henikoff S. Accounting for human polymorphisms predicted to affect protein function. Genome Res 2002; 12:436-46.
    18. Ramensky V, Bork P, Sunyaev S. Human non-synonymous SNPs:server and survey. Nucleic Acids Res 2002;30:3894-900.
    19. Rudd MF, Williams RD, Webb EL, Schmidt S, Sellick GS, Houlston RS. The predicted impact of coding single nucleotide polymorphisms database. Cancer Epidemiol Biomarkers Prev 2005; 14:2598-604.
    20. Ferrer-Costa C, Orozco M, de la Cruz X. Sequence-based prediction of pathological mutations. Proteins 2004;57:811-9.
    21. Blom N, Gammeltoft S, Brunak S. Sequence and structure-based prediction of eukaryotic protein phosphorylation sites. J Mol Biol 1999;294:1351-62.
    22. Pierce EA, Quinn T, Meehan T, McGee TL, Berson EL, Dryja TP. Mutations in a gene encoding a new oxygen-regulated photoreceptor protein cause dominant retinitis pigmentosa. Nat Genet 1999;22:248-54.
    23. Sullivan LS, Heckenlively JR, Bowne SJ, et al. Mutations in a novel retina-specific gene cause autosomal dominant retinitis pigmentosa. Nat Genet 1999;22:255-9.
    24. Pacione LR, Szego MJ, Ikeda S, Nishina PM, McInnes RR. Progress toward understanding the genetic and biochemical mechanisms of inherited photoreceptor degenerations. Annu Rev Neurosci 2003;26:657-700.
    25. Yakubov E, Gottlieb M, Gil S, Dinerman P, Fuchs P, Yavin E. Overexpression of genes in the CAl hippocampus region of adult rat following episodes of global ischemia. Brain Res Mol Brain Res 2004; 127:10-26.
    26. Schmidt-Kastner R, Zhang B, Belayev L, et al. DNA microarray analysis of cortical gene expression during early recirculation after focal brain ischemia in rat. Brain Res Mol Brain Res 2002; 108:81-93.
    27. Bernaudin M, Tang Y, Reilly M, Petit E, Sharp FR. Brain genomic response following hypoxia and re-oxygenation in the neonatal rat. Identification of genes that might contribute to hypoxia-induced ischemic tolerance. J Biol Chem 2002;277:39728-38.
    28. Tang Y, Pacary E, Freret T, et al. Effect of hypoxic preconditioning on brain genomic response before and following ischemia in the adult mouse:identification of potential neuroprotective candidates for stroke. Neurobiol Dis 2006;21:18-28.
    1. Wang Q, Chen Q, Zhao K, Wang L, Traboulsi El. Update on the molecular genetics of retinitis pigmentosa. Ophthalmic Genet 2001;22:133-54.
    2. Cottet S, Schorderet DF. Mechanisms of apoptosis in retinitis pigmentosa. Curr Mol Med 2009;9:375-83.
    3. Zhao C, Lu S, Zhou X, Zhang X, Zhao K, Larsson C. A novel locus (RP33) for autosomal dominant retinitis pigmentosa mapping to chromosomal region 2cen-ql2.1. Hum Genet 2006;119:617-23.
    4. Dryja TP, McGee TL, Reichel E, et al. A point mutation of the rhodopsin gene in one form of retinitis pigmentosa. Nature 1990;343:364-6.
    5. Zhao K, Xiong S, Wang L, Cui Y, Wang Q. Novel rhodopsin mutation in a Chinese family with autosomal dominant retinitis pigmentosa. Ophthalmic Genet 2001;22:155-62.
    6. Roof DJ, Adamian M, Hayes A. Rhodopsin accumulation at abnormal sites in retinas of mice with a human P23H rhodopsin transgene. Invest Ophthalmol Vis Sci 1994;35:4049-62.
    7. Goto Y, Peachey NS, Ripps H, Naash MI. Functional abnormalities in transgenic mice expressing a mutant rhodopsin gene. Invest Ophthalmol Vis Sci 1995;36:62-71.
    8. Travis GH, Brennan MB, Danielson PE, Kozak CA, Sutcliffe JG. Identification of a photoreceptor-specific mRNA encoded by the gene responsible for retinal degeneration slow (rds). Nature 1989;338:70-3.
    9. Hawkins RK, Jansen HG, Sanyal S. Development and degeneration of retina in rds mutant mice:photoreceptor abnormalities in the heterozygotes. Exp Eye Res 1985;41:701-20.
    10. Farrar GJ, Kenna P, Jordan SA, et al. A three-base-pair deletion in the peripherin-RDS gene in one form of retinitis pigmentosa. Nature 1991;354:478-80.
    11. Kajiwara K, Hahn LB, Mukai S, Travis GH, Berson EL, Dryja TP. Mutations in the human retinal degeneration slow gene in autosomal dominant retinitis pigmentosa. Nature 1991;354:480-3.
    12. Kajiwara K, Berson EL, Dryja TP. Digenic retinitis pigmentosa due to mutations at the unlinked peripherin/RDS and ROM1 loci. Science 1994;264:1604-8.
    13. Reig C, Martinez-Gimeno M, Carballo M. A heterozygous novel C253Y mutation in the highly conserved cysteine residues of ROM 1 gene is the cause of retinitis pigmentosa in a Spanish family? Hum Mutat 2000; 16:278.
    14. Pierce EA, Quinn T, Meehan T, McGee TL, Berson EL, Dryja TP. Mutations in a gene encoding a new oxygen-regulated photoreceptor protein cause dominant retinitis pigmentosa. Nat Genet 1999;22:248-54.
    15. Sullivan LS, Heckenlively JR, Bowne SJ, et al. Mutations in a novel retina-specific gene cause autosomal dominant retinitis pigmentosa. Nat Genet 1999;22:255-9.
    16. Morimura H, Saindelle-Ribeaudeau F, Berson EL, Dryja TP. Mutations in RGR, encoding a light-sensitive opsin homologue, in patients with retinitis pigmentosa. Nat Genet 1999;23:393-4.
    17. Bessant DA, Payne AM, Mitton KP, et al. A mutation in NRL is associated with autosomal dominant retinitis pigmentosa. Nat Genet 1999;21:355-6.
    18. Sohocki MM, Sullivan LS, Mintz-Hittner HA, et al. A range of clinical phenotypes associated with mutations in CRX, a photoreceptor transcription-factor gene. Am J Hum Genet 1998;63:1307-15.
    19. Mitton KP, Swain PK, Chen S, Xu S, Zack DJ, Swaroop A. The leucine zipper of NRL interacts with the CRX homeodomain. A possible mechanism of transcriptional synergy in rhodopsin regulation. J Biol Chem 2000;275:29794-9.
    20. Bowne SJ, Sullivan LS, Blanton SH, et al. Mutations in the inosine monophosphate dehydrogenase 1 gene (IMPDH1) cause the RP10 form of autosomal dominant retinitis pigmentosa. Hum Mol Genet 2002; 11:559-68.
    21. McKie AB, McHale JC, Keen TJ, et al. Mutations in the pre-mRNA splicing factor gene PRPC8 in autosomal dominant retinitis pigmentosa (RP13). Hum Mol Genet 2001;10:1555-62.
    22. Vithana EN, Abu-Safieh L, Allen MJ, et al. A human homolog of yeast pre-mRNA splicing gene, PRP31, underlies autosomal dominant retinitis pigmentosa on chromosome 19q 13.4 (RP11). Mol Cell 2001;8:375-81.
    23. Chakarova CF, Hims MM, Bolz H, et al. Mutations in HPRP3, a third member of pre-mRNA splicing factor genes, implicated in autosomal dominant retinitis pigmentosa. Hum Mol Genet 2002; 11:87-92.
    24. Inglehearn CF, Carter SA, Keen TJ, et al. A new locus for autosomal dominant retinitis pigmentosa on chromosome 7p. Nat Genet 1993;4:51-3.
    25. Keen TJ, Hims MM, McKie AB, et al. Mutations in a protein target of the Pim-1 kinase associated with the RP9 form of autosomal dominant retinitis pigmentosa. Eur J Hum Genet 2002; 10:245-9.
    26. Maita H, Kitaura H, Keen TJ, Inglehearn CF, Ariga H, Iguchi-Ariga SM. PAP-1, the mutated gene underlying the RP9 form of dominant retinitis pigmentosa, is a splicing factor. Exp Cell Res 2004;300:283-96.
    27. Wada Y, Abe T, Takeshita T, Sato H, Yanashima K, Tamai M. Mutation of human retinal fascin gene (FSCN2) causes autosomal dominant retinitis pigmentosa. Invest Ophthalmol Vis Sci 2001;42:2395-400.
    28. Haider NB, Jacobson SG, Cideciyan AV, et al. Mutation of a nuclear receptor gene, NR2E3, causes enhanced S cone syndrome, a disorder of retinal cell fate. Nat Genet 2000;24:127-31.
    29. Coppieters F, Leroy BP, Beysen D, et al. Recurrent mutation in the first zinc finger of the orphan nuclear receptor NR2E3 causes autosomal dominant retinitis pigmentosa. Am J Hum Genet 2007;81:147-57.
    30. Peng GH, Ahmad O, Ahmad F, Liu J, Chen S. The photoreceptor-specific nuclear receptor Nr2e3 interacts with Crx and exerts opposing effects on the transcription of rod versus cone genes. Hum Mol Genet 2005; 14:747-64.
    31. Cheng H, Aleman TS, Cideciyan AV, Khanna R, Jacobson SG, Swaroop A. In vivo function of the orphan nuclear receptor NR2E3 in establishing photoreceptor identity during mammalian retinal development. Hum Mol Genet 2006;15:2588-602.
    32. Bardien S, Ramesar R, Bhattacharya S, Greenberg J. Retinitis pigmentosa locus on 17q (RP17):fine localization to 17q22 and exclusion of the PDEG and TIMP2 genes. Hum Genet 1997; 101:13-7.
    33. Rebello G, Ramesar R, Vorster A, et al. Apoptosis-inducing signal sequence mutation in carbonic anhydrase IV identified in patients with the RP17 form of retinitis pigmentosa. Proc Natl Acad Sci U S A 2004;101:6617-22.
    34. Datta R, Waheed A, Bonapace G, Shah G1M, Sly WS. Pathogenesis of retinitis pigmentosa associated with apoptosis-inducing mutations in carbonic anhydrase IV. Proc Natl Acad Sci U S A 2009; 106:3437-42.
    35. Fingert JH, Oh K, Chung M, et al. Association of a novel mutation in the retinol dehydrogenase 12 (RDH12) gene with autosomal dominant retinitis pigmentosa. Arch Ophthalmol 2008; 126:1301-7.
    36. Nishiguchi KM, Sokal I, Yang L, et al. A novel mutation (I143NT) in guanylate cyclase-activating protein 1 (GCAP1) associated with autosomal dominant cone degeneration. Invest Ophthalmol Vis Sci 2004;45:3863-70.
    37. Sato M, Nakazawa M, Usui T, Tanimoto N, Abe H, Ohguro H. Mutations in the gene coding for guanylate cyclase-activating protein 2 (GUCA1B gene) in patients with autosomal dominant retinal dystrophies. Graefes Arch Clin Exp Ophthalmol 2005;243:235-42.
    38. Chakarova CF, Papaioannou MG, Khanna H, et al. Mutations in TOPORS cause autosomal dominant retinitis pigmentosa with perivascular retinal pigment epithelium atrophy. Am J Hum Genet 2007;81:1098-103.
    39. Abid A, Ismail M, Mehdi SQ, Khaliq S. Identification of novel mutations in the SEMA4A gene associated with retinal degenerative diseases. J Med Genet 2006;43:378-81.
    40. Finckh U, Xu S, Kumaramanickavel G, et al. Homozygosity mapping of autosomal recessive retinitis pigmentosa locus (RP22) on chromosome 16p12.1-p12.3. Genomics 1998;48:341-5.
    41. Gu S, Kumaramanickavel G, Srikumari CR, Denton MJ, Gal A. Autosomal recessive retinitis pigmentosa locus RP28 maps between D2S1337 and D2S286 on chromosome 2p11-p15 in an Indian family. J Med Genet 1999;36:705-7.
    42. Hameed A, Khaliq S, Ismail M, et al. A new locus for autosomal recessive RP (RP29) mapping to chromosome 4q32-q34 in a Pakistani family. Invest Ophthalmol Vis Sci 2001;42:1436-8.
    43. Zhang Q, Zulfiqar F, Xiao X, et al. Severe autosomal recessive retinitis pigmentosa maps to chromosome Ip13.3-p21.2 between D1S2896 and D1S457 but outside ABCA4. Hum Genet 2005;118:356-65.
    44. Morimura H, Fishman GA, Grover SA, Fulton AB, Berson EL, Dryja TP. Mutations in the RPE65 gene in patients with autosomal recessive retinitis pigmentosa or leber congenital amaurosis. Proc Natl Acad Sci U S A 1998;95:3088-93.
    45. Gu SM, Thompson DA, Srikumari CR, et al. Mutations in RPE65 cause autosomal recessive childhood-onset severe retinal dystrophy. Nat Genet 1997; 17:194-7.
    46. Martinez-Mir A, Paloma E, Allikmets R, et al. Retinitis pigmentosa caused by a homozygous mutation in the Stargardt disease gene ABCR. Nat Genet 1998; 18:11-2.
    47. Allikmets R. Simple and complex ABCR:genetic predisposition to retinal disease. Am J Hum Genet 2000;67:793-9.
    48. den Hollander Al, Heckenlively JR, van den Born LI, et al. Leber congenital amaurosis and retinitis pigmentosa with Coats-like exudative vasculopathy are associated with mutations in the crumbs homologue 1 (CRB1) gene. Am J Hum Genet 2001;69:198-203.
    49. Bhattacharya G, Miller C, Kimberling WJ, Jablonski MM, Cosgrove D. Localization and expression of usherin:a novel basement membrane protein defective in people with Usher's syndrome type Ⅱa. Hear Res 2002;163:1-11.
    50. Seyedahmadi BJ, Rivolta C, Keene JA, Berson EL, Dryja TP. Comprehensive screening of the USH2A gene in Usher syndrome type Ⅱ and non-syndromic recessive retinitis pigmentosa. Exp Eye Res 2004;79:167-73.
    51. D'Cruz PM, Yasumura D, Weir J, et al. Mutation of the receptor tyrosine kinase gene Mertk in the retinal dystrophic RCS rat. Hum Mol Genet 2000;9:645-51.
    52. Gal A, Li Y, Thompson DA, et al. Mutations in MERTK, the human orthologue of the RCS rat retinal dystrophy gene, cause retinitis pigmentosa. Nat Genet 2000;26:270-1.
    53. Huang SH, Pittler SJ, Huang X, Oliveira L, Berson EL, Dryja TP. Autosomal recessive retinitis pigmentosa caused by mutations in the alpha subunit of rod cGMP phosphodiesterase. Nat Genet 1995;11:468-71.
    54. Danciger M, Blaney J, Gao YQ, et al. Mutations in the PDE6B gene in autosomal recessive retinitis pigmentosa. Genomics 1995;30:1-7.
    55. Tsang SH, Gouras P, Yamashita CK, et al. Retinal degeneration in mice lacking the gamma subunit of the rod cGMP phosphodiesterase. Science 1996;272:1026-9.
    56. Hagstrom SA, North MA, Nishina PL, Berson EL, Dryja TP. Recessive mutations in the gene encoding the tubby-like protein TULP1 in patients with retinitis pigmentosa. Nat Genet 1998; 18:174-6.
    57. Banerjee P, Kleyn PW, Knowles JA, et al. TULP1 mutation in two extended Dominican kindreds with autosomal recessive retinitis pigmentosa. Nat Genet 1998; 18:177-9.
    58. Dryja TP, Finn JT, Peng YW, McGee TL, Berson EL, Yau KW. Mutations in the gene encoding the alpha subunit of the rod cGMP-gated channel in autosomal recessive retinitis pigmentosa. Proc Natl Acad Sci U S A 1995;92:10177-81.
    59. Bareil C, Hamel CP, Delague V, Arnaud B, Demaille J, Claustres M. Segregation of a mutation in CNGB1 encoding the beta-subunit of the rod cGMP-gated channel in a family with autosomal recessive retinitis pigmentosa. Hum Genet 2001; 108:328-34.
    60. Nakazawa M, Wada Y, Tamai M. Arrestin gene mutations in autosomal recessive retinitis pigmentosa. Arch Ophthalmol 1998; 116:498-501.
    61. Ruiz A, Winston A, Lim YH, Gilbert BA, Rando RR, Bok D. Molecular and biochemical characterization of lecithin retinol acyltransferase. J Biol Chem 1999;274:3834-41.
    62. Thompson DA, Li Y, McHenry CL, et al. Mutations in the gene encoding lecithin retinol acyltransferase are associated with early-onset severe retinal dystrophy. Nat Genet 2001;28:123-4.
    63. Maw MA, Kennedy B, Knight A, et al. Mutation of the gene encoding cellular retinaldehyde-binding protein in autosomal recessive retinitis pigmentosa. Nat Genet 1997; 17:198-200.
    64. Ruiz A, Borrego S, Marcos I, Antinolo G. A major locus for autosomal recessive retinitis pigmentosa on 6q, determined by homozygosity mapping of chromosomal regions that contain gamma-aminobutyric acid-receptor clusters. Am J Hum Genet 1998;62:1452-9.
    65. Abd El-Aziz MM, Barragan I, O'Driscoll CA, et al. EYS, encoding an ortholog of Drosophila spacemaker, is mutated in autosomal recessive retinitis pigmentosa. Nat Genet 2008;40:1285-7.
    66. Bayes M, Goldaracena B, Martinez-Mir A, et al. A new autosomal recessive retinitis pigmentosa locus maps on chromosome 2q31-q33. J Med Genet 1998;35:141-5.
    67. Tuson M, Marfany G, Gonzalez-Duarte R. Mutation of CERKL, a novel human ceramide kinase gene, causes autosomal recessive retinitis pigmentosa (RP26). Am J Hum Genet 2004;74:128-38.
    68. Goldstein O, Zangerl B, Pearce-Kelling S, et al. Linkage disequilibrium mapping in domestic dog breeds narrows the progressive rod-cone degeneration interval and identifies ancestral disease-transmitting chromosome. Genomics 2006;88:541-50.
    69. Zangerl B, Goldstein O, Philp AR, et al. Identical mutation in a novel retinal gene causes progressive rod-cone degeneration in dogs and retinitis pigmentosa in humans. Genomics 2006;88:551-63.
    70. Maw MA, Corbeil D, Koch J, et al. A frameshift mutation in prominin (mouse)-like 1 causes human retinal degeneration. Hum Mol Genet 2000;9:27-34.
    71. Zhang Q, Zulfiqar F, Xiao X, et al. Severe retinitis pigmentosa mapped to 4pl5 and associated with a novel mutation in the PROM 1 gene. Hum Genet 2007; 122:293-9.
    72. Hartong DT, Dange M, McGee TL, Berson EL, Dryja TP, Colman RF. Insights from retinitis pigmentosa into the roles of isocitrate dehydrogenases in the Krebs cycle. Nat Genet 2008;40:1230-4.
    73. Musarella MA, Anson-Cartwright L, Leal SM, et al. Multipoint linkage analysis and heterogeneity testing in 20 X-linked retinitis pigmentosa families. Genomics 1990;8:286-96.
    74. Ott J, Bhattacharya S, Chen JD, et al. Localizing multiple X chromosome-linked retinitis pigmentosa loci using multilocus homogeneity tests. Proc Natl Acad Sci U S A 1990;87:701-4.
    75. Hardcastle AJ, Thiselton DL, Zito I, et al. Evidence for a new locus for X-linked retinitis pigmentosa (RP23). Invest Ophthalmol Vis Sci 2000;41:2080-6.
    76. Gieser L, Fujita R, Goring HH, et al. A novel locus (RP24) for X-linked retinitis pigmentosa maps to Xq26-27. Am J Hum Genet 1998;63:1439-47.
    77. Melamud A, Shen GQ, Chung D, et al. Mapping a new genetic locus for X linked retinitis pigmentosa to Xq28. J Med Genet 2006;43:e27.
    78. Andreasson S, Ponjavic V, Abrahamson M, et al. Phenotypes in three Swedish families with X-linked retinitis pigmentosa caused by different mutations in the RPGR gene. Am J Ophthalmol 1997; 124:95-102.
    79. Bader I, Brandau O, Achatz H, et al. X-linked retinitis pigmentosa:RPGR mutations in most families with definite X linkage and clustering of mutations in a short sequence stretch of exon ORF15. Invest Ophthalmol Vis Sci 2003;44:1458-63.
    80. Shu X, Black GC, Rice JM, et al. RPGR mutation analysis and disease:an update. Hum Mutat 2007;28:322-8.
    81. Hardcastle AJ, Thiselton DL, Van Maldergem L, et al. Mutations in the RP2 gene cause disease in 10% of families with familial X-linked retinitis pigmentosa assessed in this study. Am J Hum Genet 1999;64:1210-5.
    82. Koenekoop RK, Lopez I, den Hollander Al, Allikmets R, Cremers FP. Genetic testing for retinal dystrophies and dysfunctions:benefits, dilemmas and solutions. Clin Experiment Ophthalmol 2007;35:473-85.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700