用户名: 密码: 验证码:
基于磷酸钙骨水泥的多孔微球的制备及结构与性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
因外伤、感染和肿瘤等造成的骨组织缺损是临床上的常见病症,自体骨和异体骨是常用的骨修复材料。但自体骨来源有限以及异体骨存在的免疫排斥反应限制了它们的应用。所以如何构建具有良好的生物相容性、生物应答特性、基因激活特性和促进新生组织形成功能的生物材料受到广泛的关注。微球具有良好的流动性,并且微球堆积体的孔隙连通性非常优异,有利于骨缺损部位的填充和修复。传统的陶瓷微球需要经高温烧结,不利于负载药物和生物活性成分,以高分子为基体的微球缺乏骨传导性和骨诱导性。
     针对上述问题,本研究以磷酸钙骨水泥为原料,分别采用液滴冷凝法和挤出-滚圆法制备了粒径可控的多孔磷酸钙微球,并对微球进行改性处理,提高微球的强度、抗崩解性、降解性、细胞相容性和骨诱导性等方面的性能。
     为了提高本研究制备的微球的细胞生物学性能,本研究首先采用聚乙二醇(PEG)水溶液对磷酸钙骨水泥固化体进行表面改性。经PEG处理后,骨水泥固化体表面被规则的片状结晶覆盖,形成规则片状结晶的原因主要是PEG的加入一方面提高了溶液的离子浓度,从而减缓溶液中离子的扩散速度;另一方面PEG与钙离子螯合,减慢了羟基磷灰石的结晶速度。MC3T3-E1细胞实验结果表明这种规则片状拓扑结构有利于细胞粘附、增殖和分化。
     通过液滴冷凝法制备了粒径在0.3~3mm可控的磷酸钙微球。通过滴重法,从理论上探讨了各因素对微球粒径的影响。随着液固比的变化,微球的总孔隙率介于40%~60%,显孔隙率介于20%~60%,孔隙之间连通性良好。由于研究发现硅酸钙具有优异的矿化性和骨诱导性,所以,在微球中添加一定量的硅酸钙以改善微球的理化性能和成骨能力。微球强度随着硅酸钙添加量的增大先提高后降低,当硅酸钙添加量为20%时,微球的强度是不添加硅酸钙的微球2倍。复合硅酸钙的微球在PBS中浸泡2周仍未出现明显的崩解现象,比不含硅酸钙的微球的抗崩解时间提高了10倍。细胞实验结果表明,添加20%硅酸钙的微球比不含硅酸钙的微球细胞相容性好,可以促进细胞的增殖。兔子股骨缺损修复实验结果表明,微球的组织相容性良好,植入4周时微球被纤维组织和骨组织包裹,并且周围有血管生成;随着植入时间延长至8周,微球内部出现纤维组织和少量的新骨,微球完全被骨组织包裹;16周时各微球样品内外都有大量的骨组织,骨母细胞和骨细胞数量明显下降,这说明骨的成熟度提高。兔子背部竖脊肌8周的植入实验结果表明,微球(d=2mm)间的孔隙有利于血管化。微球的体内植入实验结果还发现硅酸钙的添加促进了微球的体内降解,但添加量过大会使微球因在体内降解过快从而影响微球的骨传导性。适当的添加量是利用硅酸钙改善微球强度和成骨性能的关键。
     挤出-滚圆技术很少被用于无机复合微球的制备,本研究以壳聚糖为赋形剂,磷酸钙骨水泥为主要原料,通过挤出-滚圆的方法制备了粒径均一,抗崩解性良好的磷酸钙微球。挤出-滚圆法可以制备粒径在0.3~3mm可控的微球,效率高,微球圆度好。挤出-滚圆过程中在机械力的作用下,微球内磷酸钙原料颗粒之间接触更加紧密,赋性剂只是填充在磷酸钙原料颗粒之间,不影响磷酸钙骨水泥的水化结晶,所以水化后以针棒状结晶为主。微球的抗崩解性优异,在PBS中浸泡2周仍没有明显的崩解现象;微球强度接近松质骨。通过PEG溶液浸泡后,微球表面被规则片状结晶所覆盖,微球内小于100nm的微孔所占比例增大,100~1000nm的微孔所占比例减小,结晶形貌的变化改变了微球内孔径分布的分布。细胞实验结果表明规则片状形貌促进了细胞的增殖。
     为了满足大块骨缺损的填充修复,通过真空浸渍的方法,以PLGA为粘结剂,制备了磷酸钙微球支架。CT结果显示磷酸钙微球支架的平均孔隙率为35.36%±1.18%,孔隙连通性良好,微球之间孔隙基本保留下来。采用过程法对微球堆积过程进行模拟,模型的平均孔隙率是40.3%±0.11%,孔隙完全连通。连通的孔隙结构有利于新骨组织的长入,同时也有利于营养物质的输送和代谢物的排出。
The current replacement procedures for bone defect therapy mainly depended onautologous tissue which is the golden standard. Unfortunately, the origination of autologousbone is often limited in supply, and the allogenous bone takes an increased risk of diseasetransmission. Microparticulate forms have been widely used to treat defective bones. Asmicrospheres were good at flowability, the defect of bone can be filled well by them.Completely-connected hole among microspheres is good for bone repair.
     Calcium phosphate cement (CPC) is highly promising for wide clinical applicationsbecause of its good biocompatibility, excellent bioactivity, low heat release during theself-setting reaction, adequate stiffness, and easy shaping for any complicated geometry. Inrecent years, new strategies that exploit the intrinsic properties of CPCs have been envisaged,and pre-set CPC scaffolds or granules by various processing techniques have been extensivelyput forward.
     In order to improve the cytocompatibility of microspheres, the surface modification ofhardened calcium phosphate cement has been study first. After immersed inpolyethyleneglycol solution the surface of modified sample was covered by regular blade-likecrystalline structure. The results of cell experiments exhibited that the samples with regularblade-like crystalline structure had better cell response (cell attachment, viability, proliferationand differentiation) compared to those with irregular blade-like crystalline structure.
     In this study, calcium phosphate microspheres(0.3-3mm) with apparent porosity of47%or more were prepared by dripping-freezing procedure. The mechanical strength, resistance todisintegration, resorbability, and bioactivity of the microspheres has been improvedsignificantly as calcium silicate added.No remarkably disintegration has been found duringtwo weeks because of the addition of calcium silicate. The microspheres with differentcontent of calcium silicate were implante in femoral bone defects and sarcotheca of back ofrabbits. New bone can be seen not only in the gaps between microspheres but also internal ofmicrospheres at8weeks. The microspheres contain40%calcium silicate have been degradedmost part at16weeks. The number of osteoblasts, osteocytes and multinuclear cells wasdecreased as time extension. Blood vessels can be found around new bones. These results indicated that calcium silicate improved the degradation and osteogenic capability ofmicrospheres. The pore structure among microspheres was good for vascularization.
     Another method used to produce porous calcium phosphate microspheres(0.3-3mm) isextrusion–spheronisation. Different with the microspheres which were prepared bydripping-freezing procedure, the main crystal structure is rodlike, no disintegration was foundmore than two weeks. After immersed in the polyethyleneglycol solution, the surface ofmicrospheres was covered by regular blade-like structure. The result of MTT showed that theregular blade-like structure is good for cell proliferation.
     The microspherical scaffolds were prepared by vacuum impregnation, PLGA was usedas binder. The porosity(35.36%±1.18%) of scaffold was tested by micro-CT. The strength ofscaffolds improved as the content of PLGA increased, but the porosity decreased as manypores were filled by PLGA. Process based simulation was used to simulation the process ofmicrospheres accumulation. The result indicated the pores among microspheres are fullconnected. This structure is good for transportation of nutrition and elimination of metabolin.
引文
[1]原发性骨质疏松症诊治指南(2011)
    [2] Damien CJ, Parsons JR. Bone graft and bone graft substitutes: a review of currenttechnology and application [J]. JAppl Biomater,1991,2(3):187-208.
    [3] Dodd CA, Fergusson CM, Freedman L, et al. Allograft versus autograft bone inscoliosis surgery [J]. J Bone Joint Surg Br,1988,70(3):431-434.
    [4] Seiler JG3rd, Johnson J. Iliac cerst autogenous bone grafting: donor sitecomplications [J]. J South OrthopAssoc,2000,9(2):91-97.
    [5] Nalla RK, Kruzic JJ, Kinney JH, et al. Role of microstructure in the aging-relateddeterioration of the toughness of human cortical bone [J]. Materials Science andEngineering: C,2006,26(8):1251-1260.
    [6] Currey JD. Biomechanics of mineralized skeletons, inSkeletal Biomineralization:Patterns, Processes and Evolutionary Trends, New York:Short Courses in Geology,1990.11.
    [7]姚康德,尹玉姬编著.组织工程相关生物材料[M].北京:化学工业出版社,2003:2-3.
    [8] Nerem RM. Tissue engineering in the USA. Med Biol Eng Comput.1992,30(4):8-12.
    [9]姚康德,尹玉姬编著.组织工程相关生物材料[M].北京:化学工业出版社,2003:4-5.
    [10] Crane GM, Lshaug SL, Mikos AG, et al. Bone Tissue Engineering [J].NatureMedicine.1995,1(12):1322-1326.
    [11]王身国,涂赤枫,李光明,等.细胞支架及其构建技术的研究[J].第三届全国组织工程学术会议暨第一届中国国际组织工程会议论文汇编.成都:2002.453-45.
    [12] Muschler GF, Nakamoto C, Griffith LG. Engineering principles of clinical cell-basedtissue engineering[J]. The Journal of Bone and Joint Surgery,2004,86:1541-1558.
    [13] Smith L. Ceramic-Plastic material as bone substitute [J]. Clin Orthop Relat Res,1992,282:4-9.
    [14] Hulbert SF, Riehbourg HL, Klawitter JJ, et al.Evaluation of a metal-ceramiccomposite hip prosthesis [J]. J Biomed Mater Res,1975,9(4):189-198.
    [15] X.D.Zhang, W.Q.Chen,J.Weng. The research of osteoinductivity on caleiumphosphate ceramics. The19thAnnual Meeting of the society for biomaterials.Birminghain.AL, USA:1993,299.
    [16] Daeulsi G, LeGeros RZ, Nery E, et al. Transformation of biphasic calcium phosphateceramics in vivo: ultrastructural and physicochemical characterization [J]. J BiomedMater Res,1989,23(8):883-894.
    [17] Best SM, Porter AE, Thian ES, et al. Bioceramics: Past, present and for the future [J].Journal of the European Ceramic Society,2008,28:1319-1327.
    [18]李世普.生物医用材料导论[M].武汉:武汉工业大学出版社,2000:53-196.
    [19]王迎军著,生物医用陶瓷材料[M],广州:华南理工大学出版社,2010:1-5.
    [20] Hench LL and Polak JM. Third-generation biomedical materials [J]. Science,2002,295(5557):1014-1017.
    [21] Hench LL. Biomaterials [J]. Science,1980,208(4446):826-831.
    [22] Hench LL. Bioceramics [J]. JAm Ceram Soc,1998,81(7):1705-1728.
    [23] Davies JE. In vitro modeling of the bone/implant interface [J]. Anat Rec.1996,245(2):426-445.
    [24] Burg KJ, Prter S, Kellan JF. Biomaterial developments for bone tissue engineering[J].2000,21(5):2347-2359.
    [25] Chen R, Hunt JA. Biomimetic materials processing for tissue engineering processes[J]. J Mater Chem.2007,17(7):3974-3979.
    [26] Cao T, Ho KH. Teoh SH. Scaffold design and in vitro study of osteochondralcoculture in a three-dimensional porous polycaprolactone scaffold fabricated byfused deposition modeling [J]. Tissue Eng.2003,1(3):103-112.
    [27] Lysaght MJ, Reyes J. The growth of tissue engineering [J]. Tissue Eng,2001,7(5):485-493.
    [28] Schuqens C, Maquet V, Grandfils C, et al.Polylactide MacroPorous biodegradableimplants for cell transplantation.II.Preparation of Polylaetide foams by liquid-liquidphase separation [J]. J Biomed Mater Res,1996,30(4):449-461.
    [29] Griffith LG. Polymeric biomaterials [J].Acta Materialia,2000,48(1):263-277.
    [30] Burg KJ, Porte S, Kellam JF. Biomaterial developments for bone tissue engineering[J]. Biomaterials,2000,21(23):2347-2359.
    [31]王迎军著,生物医用陶瓷材料[M],广州:华南理工大学出版社,2010:27.
    [32] Klein C, de Groot K, Chen W, et al. Osseous substance formation induced in porouscalcium phosphate ceramics in soft tissues [J]. Biomaterials,1994,15(1):31-34.
    [33] Liu DM. Fabrication and characterization of porous hydroxyapatite granules [J].Biomaterials,1996,17(20):1955-1957.
    [34]戴红莲,李世普,闫玉华,等.多孔磷酸三钙陶瓷人工骨在体内的新陈代谢过程研究[J].硅酸盐学报,2003,3(12):1161-1165.
    [35] Kaili Lin, Lei Chen, Haiyun Qu, et al. Improvement of mechanical properties ofmacroporous β-tricalcium phosphate bioceramic scaffolds with uniform andinterconnected pore structures [J]. Ceramics International,2011,37(7):2397-2403.
    [36] Liu Y, Kim JH, Young D, et al. Novel template-casting technique for fabricatingbeta-tricalcium phosphate scaffolds with high interconnectivity and mechanicalstrength and in vitro cell responses [J]. J Biomed Mater Res A,2010,92(3):997-1006.
    [37] Hench LL, Polak JM. Third-Generation Biomedical Materials [J]. Science,2002,295:1014-1017.
    [38] Ducheyne P, Qiu Q. Bioactive ceramics: the effect of surface reactivity on boneformation and bone cell function [J]. Biomaterials,1999,20:2287-2303.
    [39] Hench LL, Xynos I, Edgar A, et al.激活基因的玻璃[J].无机材料学报,2002,17(5):807-909.
    [40] Chen QZ, Thompson ID, Boccaccini AR.45S5Bioglass-derived glass-ceramicscaffolds for bone tissue engineering [J]. Biomaterials,2006,27(11):2414-2425.
    [41] Jones JR, Ehrenfried LM, Hench LL. Optimizing bioactive glass scaffolds for bonetissue engineering [J]. Biomaterials,2006,27(7):964-973.
    [42] Brown WE, Chow LC. Dental restorative cement paste [P]. U. S. Patent4,518,430,1985.
    [43] Chow LC. Development of self-setting calcium phosphate cements [J]. J Ceram SocJpn,1991,99(10):954-964.
    [44] Costanation PD, Friedman CD, Chow LC, et al. Experimental hydroxyapatitecement cranioplasty [J]. Plast Reconstr Surg,1992,90(2):174-185.
    [45] del Real RP, Wolke JG, Vallet-Regi M, et al. A new method to produce macroporesin calcium phosphate ceramics [J]. Biomaterials,2002,23(17):3673-3680.
    [46] del Real RP, Ooms E, Wolke JG, et al. In vivo bone response to porous calciumphosphate cement [J]. J Biomed Mater Res,2003,65(1):30-36.
    [47] Almirall A, Larrecq G, Delgado JA, et al. Fabrication of low temperaturemacroporous hydroxyapatite scaffolds by foaming and hydrolysis of an α-TCP paste[J]. Biomaterials,2004,25(17):3671-3680.
    [48] Takagi S, Chow LC. Formation of macropores in calcium phosphate cementimplants [J]. J Mater Sci: Mater Med,2001,12(2):135-139.
    [49] Yoshikawa T, Suwa Y, Ohgushi H, et al. Self-setting hydroxyapatite cement as acarrier for bone-forming cells [J]. Biomed Mater Eng,1996,6(5):345-351.
    [50]刘昌胜,许卫军,沈卫.含有成孔剂的多孔磷酸钙骨水泥[P].中国专利98110645.5,1998.
    [51] Baralet JE, Grover L, Gaunt T, et al. Preparation of macroporous calcium phosphatecement tissue engineering scaffold [J]. Biomaterials,2002,23(15):3063-3072.
    [52] Yin Y, Ye F, Cai S, et al. Gelatin manipulation of latent macroporous formation inbrushite cement [J]. J Mater Sci: Mater Med,2003,14(3):255-261.
    [53]郑玉峰,李莉编著.生物医用材料学[M].西安:西北工业大学出版社,2009:230.
    [54]郑玉峰,李莉编著.生物医用材料学[M].西安:西北工业大学出版社,2009:236-238.
    [55]郑玉峰,李莉编著.生物医用材料学[M].西安:西北工业大学出版社,2009:238-240.
    [56] Mareau VH, Robert E. Crystallization of ultrathin poly(ε-caprolactone) films in thepresence of residual solvent, an in situ atomic force microscopy study [J]. Polymer,2005,46(18):7255-7265
    [57] Price RD, Berry MG, Navsaria HA. Hyaluronic acid: the scientific and clinicalevidence [J]. J Plast, ReconstrAesthet Surg,2007,60(10):1110-1119.
    [58] Pisár ik M, Bako D, eppan M. Non-Newtonian properties of hyaluronic acidaqueous solution [J]. Colloids and Surfaces A: Physicochemical and EngineeringAspects,1995,97(3):197-202
    [59] Hideki Murakami, Masao Kobayashi, Hirofumi Takeuchi, et al. Further applicationof a modified spontaneous emulsification solvent diffusion method to various typesof PLGAand PLApolymers for preparation of nanoparticles [J]. Powder Technology,2000,107(1-2):137-143.
    [60] Xie S, Wang S, Zhu L, et al. The effect of glycolic acid monomer ratio on theemulsifying activity of PLGA in preparation of protein-loaded SLN [J]. ColloidsSurf B Biointerfaces,2009,74(1):358-361.
    [61] MJesús Dorta, Obdulia Munguía, Matías Llabres. Effects of polymerizationvariables on PLGA properties: molecular weight, composition and chain structure[J].International Journal of Pharmaceutics,1993,100(1-3):9-14.
    [62] Salvatore D'Antone, Fabio Bignotti, Luciana Sartore, et al. Thermogravimetricinvestigation of two classes of block copolymers based on poly(lactic-glycolic acid)and poly(ε-caprolactone) or poly(ethylene glycol)[J].Polymer Degradation andStability,2001,74(1):119-124.
    [63] Schenderlein S, Lück M, MüllerBW. Partial solubility parameters ofpoly(D,L-lactide-co-glycolide)[J]. Int J Pharm,2004,286(1-2):19-26.
    [64]王平山,蔡锦方,梁进,等.可吸收内固定物在手部关节内骨折的应用[J].中华手外科杂志,2003,19(2):68.
    [65] Wang H, Li Y, Zuo Y, et al. Biocompatibility and osteogenesis of biomimeticnano-hydroxyapatite/polyamide composite scaffolds for bone tissue engineering [J].Biomaterials,2007,28(22):3338-3348.
    [66] Kim SS, Sun Park M, Jeon O, et al. Poly(lactide-co-glycolide)/hydroxyapatitecomposite scaffolds for bone tissue engineering [J]. Biomaterials,2006,27(8):1399-1409.
    [67] Jack KS, Velayudhan S, Luckman P, et al. The fabrication and characterization ofbiodegradable HA/PHBV nanoparticle-polymer composite scaffolds [J]. ActaBiomaterialia,2009,5(7):2657-2667.
    [68] Zhang Xingdong, Chen Jiyong, Zhou Jiming, et al. Porous hydroxyapatite granules:their synthesis, application and characterization [J]. Clinical materials,1989,4:319-327.
    [69] Paul W, Nesamony J, Sharma CP. Delivery of insulin from hydroxyapatite ceramicmicrospheres: preliminary in vivo studies [J]. Journal of biomedical materialsresearch.2002,61(4):660-662.
    [70]马光辉,苏治国编著.高分子微球材料[M].北京,化学工业出版社,2005,3.
    [71]马光辉,苏治国编著.高分子微球材料[M].北京,化学工业出版社,2005,7.
    [72]马光辉,苏治国编著.高分子微球材料[M].北京,化学工业出版社,2005,231-260.
    [73] W.Paul, C.P.Sharma. Development of porous spherical hydroxyapatite granules:application towards protein delivery [J]. J. Mater. Sci: Mater Med1999,10:383-388.
    [74] Vladimir S.Komlev, Serguei M. Barinov, Elena V. Koplik. A method to fabricateporous spherical hydroxyapatite granules intended for time-controlled drug release[J]. Biomaterials,2002,23:3449-3454.
    [75] Descamps M, Hornez JC, Leriche A. Manufacture of hydroxyapatite beads formedical applications [J]. J Eur Ceram Soc,2009,29(3):369-375.
    [76] Fukue Nagata, Tatsuya Miyajima, Yoshiyuki Yokogawa. A method to fabricatehydroxyapatite/poly(lactic acid)microspheres intended for biomedical application [J].J Eur Ceram Soc,2006,26(4-5):533-535.
    [77] Shchukin DG, Sukhorukov GB, Mohwald H. Biomimetic fabrication ofnanoengineered hydroxyapatite/polyelectrolyte composite shell [J]. Chem Mater,2003,15(20):3947-3950.
    [78] Huang WH, Wang, Q, Wang DP. Technology of preparation of hollowhydroxyapatite microspheres [J]. Journal of Tongji University(Natural Science),2005,33(1):88.
    [79]刘莹,赵旭,潘琰,等.简单方法制备羟基磷灰石中空微球[J],物理化学学报,2009,25(7):1467-1471.
    [80] Rosenberg ES, Fox GK, Cohen C. Bioactive glass granules for regeneration ofhuman periodontal defects. Journal of esthetic dentistry [J].2000,12(5):248-57.
    [81] Silva GA, Coutinho OP, Ducheyne P. Materials in particulate form for tissueengineering.2. Applications in bone. Journal of tissue engineering and regenerativemedicine [J].2007,1(2):97-109.
    [82] Shan Zhao, Yanbao Li, Dongxu Li. Synthesis and in vitro bioactivity ofCaO-SiO2-P2O5mesoporous micropsheres. Microporous and Mesoporous Materials[J].2010,135:67-73.
    [83] Qi Xiaopeng, He Fupo, Ye jiandong. Microstructure and mechanical properties ofcalcium phosphate cement/gelatin composite scaffold with oriented pore structurefor bone tissue engineering [J]. Journal of Wuhan university of technology,2012,27:92-95.
    [84] He Fupo, Ye Jiandong. In vitro degradation, biocompatibility, and in vivoosteogenesis of poly(lactic-coglycolic acid)/calcium phosphate cement scaffold withunidirectional lamellar pore structure [J]. Journal of biomedical materials researchpart,2012,100:3239-3250.
    [85] Komlev VS, Barinov SM, Koplik EV. A method to fabricate porous sphericalhydroxyapatite granules intended for time-controlled drug release [J]. Biomaterials,2002,23:3449-3454.
    [86] A.C.Tas. Preparation of porous apatite granules from calcium phosphate cement. JMater Sci: Mater Med [J],2008,19:2231-2239.
    [87] Perez RA, Del Valle S, Altankov G, et al. Porous hydroxyapatite andgelatin/hydroxyapatite microspheres obtained by calcium phosphate cementemulsion [J]. J Biomed Mater Res BAppl Biomater,2011,97(1):156-166.
    [88] Jeong-Hui Park, Gil-su Lee, Ueon Sang Shin, Hae-Won Kim. Self-hardeningMicrospheres of calcium phosphate cement with collagen for drug delivery andtissue engineering in bone repair. The American Ceramic Society [J].2011,94(2):351-354.
    [89] Fukue Nagata, Tatsuya Miyajima, Yoshiyuki Yokogawa. A method to fabricatehydroxyapatite/poly(lactic acid) microspheres intended for biomedical application[J]. Journal of the European Ceramic Society,2006,26:533-535.
    [90] Li Chunlin, Shwu Jenchang, Shyh Mingkuo, et al. Preparation and evaluation ofβ-TCP/polylactide microspheres as osteogenesis materials [J]. Journal of appliedpolymer science,2008,108:3210-3217.
    [91] Hong Shen, Xixue Hu, Fei Yang, et al. An injectable scaffold: rhBMP-2-loadedpoly(lactide-co-glycolide)/hydroxyapatite composite [J]. Acta Biomaterialia,2010,6:455-465.
    [92] Shi X, Wang Y, Varsheny, et al. In-vitro osteogenesis of synovium stem cellsinduced by controlled release of bisphosphate additives from microsphericalmesoporous silica composite [J]. Biomaterials,2009,5:3996-4005.
    [93] Shi X, Wang Y, Ren L, et al. Novel mesoporous silica-based antibiotic releasingscaffold for repair [J]. Acta Biomater,2009,5:1697-1707.
    [94] Mark Borden, Mohamed Attawia, Yusuf Khan, et al. Tissue enigineeredmicrosphere-based matrices for bone repair: design and evaluation [J]. Biomaterials,2002,23:551-559.
    [95]沃德A. G.,考茨A.,李文渊.明胶的科学与工艺学[M],北京:轻工业出版社,1982:11-15.
    [96]阮埃乃.明胶的凝胶及溶胶-凝胶的转化[M].明胶科学与技术,1990:2.
    [97]黄来发主编.食品增稠剂[M].北京:中国轻工业出版社,2000:238-239.
    [98]黄来发主编.食品增稠剂[M].北京:中国轻工业出版社,2000:107-108.
    [99] Washburn EW. The dynamics of capillary flow [J]. Phys Rev1921;17(3):273–83.
    [100] Standard Test Methods for Apparent Porosity, Liquid Absorption, Apparent SpecificGravity and Bulk Density of Refractory Shapes by Vacuum Pressure, ASTMC830-00.
    [101] Klawitter JJ, Hulbert SF. Application of Porous Ceramics for the attachment of LoadBearing OrthopedicApplication [J]. J Biomed. Mater. Rcs.,1971,5(6):161-229.
    [102] de Groot K. Bioceramics consisting of calcium phosphate salts [J]. Biomaterials.1980,1(1):47-50.
    [103] Jain SK, Awasthi AM, Jain NK, et al. Calcium silicate based microspheres ofrepaglinide for gastroretentive floating drug delivery: Preparation and in vitrocharacterization [J]. J Control Release,2005,107(2):300-309.
    [104]胡福增主编.材料表面与界面[M],广州:华东理工大学出版社,2008:8.
    [105] Yildirim QE, Xu Q, Basaran OA. Analysis of the drop weight method [J]. Physics offluids,2005,17(6):1-14.
    [106] Wilkinson MC. Extended use of, and comments on, the drop-weight (drop-volume)technique for the determination of surface and interfacial tensions. Journal of colloidand interface science [J].1972,40(1):14-26.
    [107] Wilkinson MC. Applicability of the drop-weight technique to the determination ofthe surface tensions of liquid metals. Jouranl of the chemical society faradaytransactions I [J].1973,69:474-480.
    [108]吴树森,王飞虹.滴重法中校正因子关联式的研究[J].化学学报,1998,46:523-527.
    [109] Carter DR, Spengler DM. Mechanical properties and composition of cortical bone[J]. Clin Orthop Relat Res,1978,135:193-217.
    [110] Christofferen J, Chritofferen MR, Kolthoff N, et al. Effects of strontium ions ongrowth and dissolution of hydroxyapatite and on bone mineral detection [J]. Bone,1997,20:47-54.
    [111] Dudev T, Lim C. Principles governing Mg, Ca, and Zn binding and selectivity inproteins [J]. Chem Rev,2003,103(3):773-787.
    [112] Mertz W. The essential trace elements [J]. Science,1981,213(4514):1332-1338.
    [113] Carlisle EM. Silicon: A Possible Factor in Bone Calcification [J]. Science,1970,167(3916):279-280.
    [114] Schwarz K, Milne DB. Growth-promoting effects of silicon in rats [J]. Nature,1972,239(5371):333-334.
    [115] de Aza PN, Luklinska ZB, Anseau M, et al. Morphological studies ofpseudowollastonite for biomedical application [J]. J Microscopy,1996,182(1):24-31.
    [116] Siriphannon P, Hayashi S, Yasumori A, et al. Preparation and sintering of CaSiO3from coprecipitated powder using NaOH as precipitant and its apatite formation insimulated body fluid solution [J]. J. Mater. Res.,1999,14(2):529-536.
    [117] Siriphannon P, Kameshima Y, Yasumori A, et al. Influence of preparation conditionson the microstructure and bioactivity of alpha-CaSiO3ceramics: formation ofhydroxyapatite in simulated body fluid [J]. J. Biomed. Mater. Res.,2000,52(1):30-39.
    [118] Siriphannon P, Kameshima Y, Yasumori A, et al. Formation of hydroxyapatite onCaSiO3powders in simulated body fluid [J]. Journal of the European CeramicSociety.2002,22:511-520.
    [119] Voron'ko YK, Sobol AA, Ushakov SN, et al. Phase Transformations and MeltStructure of Calcium Metasilicate [J]. Inorganic Materials,2002,38(8):825-830.
    [120] Han Guo, Jie Wei, Changshengliu, Yuan Yuan. Development of calciumsilicate/calcium phosphate cement for bone regeneration [J]. Biomed Mater,2007,2(3):153-159.
    [121] Xu S, Lin K, Wang Z, et al. Reconstruction of calvarial defect of rabbits usingporous calcium silicate bioactive ceramics [J]. Biomaterials.2008,29(17):2588-2596.
    [122] Ni S, Chang J, Chou L, et al. Comparison of osteoblast-like cell responses to calciumsilicate and tricalcium phosphate ceramics in vitro [J]. J Biomed Mater Res B ApplBiomater,2007,80(1):174-183.
    [123] Fei L, Wang C, Xue Y, et al. Osteogenic differentiation of osteoblasts induced bycalcium silicate and calcium silicate/β-tricalcium phosphate composite bioceramics[J]. J Biomed Mater Res B Appl Biomater,2012,100(5):1237-1244.
    [124] Chen Wang, Yang Xue, Kaili Lin, et al. The enhancement of bone regeneration by acombination of osteoconductivity and osteostimulation using β-CaSiO3/β-Ca3(PO4)2composite bioceramics [J]. Acta Biomater,2012,8(1):350-360.
    [125] Li B, Brown KV, Wenke JC, et al. Sustained release of vancomycin frompolyurethane scaffolds inhibits infection of bone wounds in rat femoral segmentaldefect model [J]. J Control Release,2010,145(3):221-230.
    [126]丁红,徐美丽,杨春荣,等.紫外分光光度法测定甲氨蝶呤明胶微球的含量[J].山西医科大学学报,2000,31:127-128.
    [127]梁燕,王鸿丽,张松.紫外分光光度法测定注射用甲氨蝶呤含量[J].武警医学,2001,12:102-103.
    [128]李著,唐明述等译.水泥和混凝土化学[M].北京:中国工业出版社,1966:51.
    [129]刘勇. α-硅酸钙和β-硅酸钙的体外体内降解性研究[D].西安:第四军医大学,2009.
    [130] Guo H, Wei J, Yuan Y, et al. Development of calcium silicate/calcium phosphatecement for bone regeneration [J]. Biomed. Mater,2007,2(3): S153–S159
    [131] Siriphannon P, Kameshima Y, Yasumori A, et al. Influence of preparation conditionson the microstructure and bioactivity of α-CaSiO3ceramics: Formation ofhydroxyapatite in simulated body fluid [J]. J Biomed Mater Res,2000,52(1):30-39.
    [132] Liu X, Ding C, Wang Z. Apatite formed on the surface of plasma sprayedwollastonite coating immersed in simulated body fluid [J]. Biomaterials,2001,22(14):2007-2012.
    [133] Siriphannon P, KameshimY, Yasumori A, et al. Formation of hydroxyapatite onCaSiO3powders in simulated body fluid [J]. Journal of the European CeramicSociety.2002,22:511-520.
    [134] Hench LL, Xynos I, Edgar A, et al. Gene activating glasses [J]. Journal of inorganicmaterials,2002,17(5):807-909.
    [135] Elliott JC. Structure and chemistry of the apatites and other calcium orthophosphates[M]. Netherlands: Elsevier science,1994:28-29.
    [136]刘振东.骨折愈合原理[M].北京:人民军医出版社,2012:30.
    [137]许竞斌编著.实用骨科学[M].上海:上海广协书局出版社,1954:15.
    [138] Nakahara N, Matsubara, Osaka. Method and apparatus for making spherical granules[P]. U.S:3277520,1966,10.
    [139] Conine JW, Hadley HR. Preparation of small solid pharmaceutical spheres [J]. DrugCosm Ind,1970,90:38-41.
    [140]张瑞十,潘家祯,王力文.螺旋挤出-滚圆法制备2mm精细氧化铝小球成球机理的探讨[J].中国陶瓷,2008,44(7):43-45.
    [141]李青坡,游剑,杨蕾,等.挤出-滚圆法制备葛根芩连微丸[J].中草药,2005,36:1473-1476.
    [142]王鲁敏,潘家祯,郭春林.中药浸膏微丸制备研究[J].中国药业,2005,14:47-48.
    [143] Marler JJ, Upton J, Langer R, et al. Transplantation of cells in matrices for tissueengineering [J].Adv Drug Deliv Rev,1998,33:165-182.
    [144] Constantino PD, Friedman CD, Chow LC, et al. Hydroxyapatite cement. I. basicchemistry and histologic properties [J]. Arch Otolaryngd Head Neck Surg,1991,117(4):379-384.
    [145]顾其胜,侯春林,徐政.实用生物医用材料学[M].上海:上海科学技术出版社,2005.
    [146]王迎军著.生物医用陶瓷材料[M].广州:华南理工大学出版社,2010:132.
    [147]王迎军著.生物医用陶瓷材料[M].广州:华南理工大学出版社,2010:172.
    [148] Ginebra MP, Espanol M, Montufar EB, et al. New processing approaches in calciumphosphate cements and their applications in regenerative medicine [J], ActaBiomater,2010,6(8):2863–2873.
    [149] Shinnosuke OKADA, Yuya OAKI, Jun KOMOTORI, Hiroaki IMAI. Control ofcellular activity of osteoblastic cells with microtopography of biphasic calciumphosphate scaffolds [J]. Journal of the Ceramic Society of Japan,2011,119(8):635-639.
    [150] Harris JM. Polyethylene Glycol Chemistry Biotechnical and BiomedicalApplications [M]. New York: Academic Press,1992:12-14.
    [151] Fangping Chen, Changsheng Liu, Jie Wei, et al. Preparetion and characterization ofinjectable calcium phosphate cement paste modified by polyethylene glycol-6000[J].Materials Chemistry and Physics,2011,125(3):818-824.
    [152] Kunzler TP, Drobek T, Schuler M, et al. Systematic study of osteoblast andfibroblast response to roughness by means of surface-morphology gradients [J].Biomaterials,2007,28(13):2175–2182.
    [153] Deligianni DD, Katsala ND, Koutsoukos PG, et al. Effect of surface roughness ofhydroxyapatite on human bone marrow cell adhesion, proliferation, differentiationand detachment strength [J]. Biomaterials,2001,22(1):87–96.
    [154] Rosa AL, Beloti MM, van Noort R. Osteoblastic differentiation of cultured rat bonemarrow cells on hydroxyapatite with different surface topography [J]. DentalMaterials,2003,19(8):768–772.
    [155]马爱洁,杨青芳,梁威,等.生物可降解多孔支架的研究进展[J].材料科学与工程学报,2005,23(5):621-624
    [156]王正辉,萧翼之.高分子生物材料的研究进展[J].高分子材料科学与工程,2005,21(5):19-22.
    [157] www.biotium.com
    [158] Fulmer MT, Brown PW. Hydrolysis of dicalcium phosphate dihydrate tohydroxyapatite [J]. J Mate Sci Mater Med,1998,9(4):197–202.
    [159] Habraken WJ, Wolke JG, Jansen JA. Ceramic composites as matrices and scaffoldsfor drug delivery in tissue engineering [J]. Adv Drug Deliv Rev,2007,59(4-5):234-248.
    [160]顾汉卿,徐国风.生物用医用材料学[M].天津:科技翻译出版社,1993:23-29.
    [161]姚康德,易玉姬.组织工程相关生物材料[M].北京:化学工业出版社,2003:13-17.
    [162] Crane GM, Lshaug SL, Mikos AG. Bone Tissue Engineering [J]. Nature Medicine,1995,1(12):1322-1326.
    [163] Bakke, ren.3-D pore-scale modeling of sandstones and flow simulations in thepore networks [J]. SPE Journal,1997,2:136-149.
    [164]赵秀才,姚军.数字岩心建模及其准确性评价[J].西安石油大学学报(自然科学版).2007,22:16-20.
    [165] Jones JR, Tsigkou O, Coates EE, Stevens MM, et al. Extracellular matrix formationand mineralization on a phosphate-free porous bioactive glass scaffold using primaryhuman osteoblast (HOB) cells [J]. Biomaterials,2007,28(9):1653–1663.
    [166] Fyhrie DP, Kimura JH. Cancellous bone biomechanics [J]. Journal of Biomechanics,1999,32(11):1139-1148.
    [167] Miao X, Lim WK, Huang X, et al. Preparation and characterization ofinterpenetrating phased TCP/HA/PLGA composites [J]. Materials Letters,2005,59(29-30):4000-4005.
    [168]谢洪勇,刘志军编.粉体力学与工程[M].北京:化学工业出版社,2007:35.
    [169] Klawitter JJ, Bagwell JG, Weinstein AM, et al. An evaluation of bone growth intoporous high density polyethylene [J]. J Biomed Mater Res,1976,10:311–323.
    [170] Hing KA, Best SM, Tanner KE, et al. Mediation of bone ingrowth in poroushydroxyapatite bone graft substitutes [J]. J Biomed Mater Res A,2004,68:187–200.
    [171] Liu Y, Kim JH, Young D, et al. Novel template-casting technique for fabricatingβ-tricalcium phosphate scaffolds with high interconnectivity and mechanical strengthand in vitro cell responses [J]. J Biomed Mater Res A,2010,92(3):997-1006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700