用户名: 密码: 验证码:
离轴反射光学系统计算机辅助装调技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着光学设计技术与光学制造技术的不断进步,光学系统逐渐从轴对称系统发展为离轴反射系统。离轴反射光学系统的装调是实现离轴光学系统高成像质量必不可少的一部分,离轴反射光学系统的高性能装调也越来越依赖高技术的支持。计算机辅助装调技术作为离轴光学系统研制过程中不可缺少的技术保障手段正逐渐成为空间光学系统研究的关键技术之一,而且计算机辅助装调技术的发展也极大的促进了光学设计与先进光学加工技术的进一步发展。
     本论文主要针对计算机辅助装调技术在离轴反射光学系统中的应用进行研究。主要研究内容如下:
     1.轴对称光学系统像差特性的研究
     利用轴对称光学系统的矢量波像差理论分析了轴对称光学系统失调时初级球差、彗差、像散特性,建立了轴对称失调光学系统波像差Zernike系数与视场之间的关系式。将矢量波像差应用于常用的轴对称RC、TMA系统的装调过程,研究获得RC、TMA系统在装调过程中球差、彗差、像散的相关性质,分析了不能依据轴上视场成像质量判断光学系统装调状态的原因;同时对不同元件失调像差相互补偿进行了研究,指导了光学系统的设计。
     2.离轴光学系统像差特性的研究
     利用坐标变换建立了离轴(孔径离轴)光学系统与对应轴对称光学系统波像差Zernike系数的转化关系;引入矢量坐标变换将矢量波像差理论应用到离轴光学系统,获得了离轴光学系统、失调离轴光学系统初级像差的矢量表达式,研究结果表明离轴光学系统、失调离轴光学系统初级像差依然由球差、彗差、像散组成,不同像差与视场的依据关系不同;以离轴RC、TMA系统为例分析了失调情况下离轴反射光学系统的球差、彗差、像散特性;同时利用坐标变换研究了大口径反射镜初级面形误差对光学系统像差特性的影响;对光学元件面形误差引入像差与光学元件失调像差相互校正来实现光学系统设计进行了研究,指导基于自由曲面的反射光学系统设计。
     3.离轴光学系统元件失调量的分析
     对于离轴三反光学系统的装调需求,建立了基于矢量波像差理论的轴对称光学系统、离轴光学系统元件失调模型(失调矩阵)。模拟离轴光学系统失调量不同数量级情况下的装调过程,通过模拟分析可知随着失调量的增加系统在装调过程中的调整次数也不断的增加,失调量数量级较大的情况下可能出现越调越坏的情况(算法不收敛),利用矢量波像差理论分析了失调量较大情况下算法不收敛的原因。
     4.实际离轴光学系统元件失调量的计算
     在利用离轴光学系统元件失调模型计算元件失调量的过程中,分析了实际装调过程中计算元件失调量不准确的原因,提出了设置失调矩阵奇异值阈值的方法来解决该问题,提高了算法的稳定性。详细介绍了离轴光学系统粗装调的过程,结果表明基于矢量波像差理论的离轴光学计算机辅助装调模型可以准确的获得该离轴反射系统中待装调元件的失调量,最终指导完成光学系统的实际装调,系统全视场的波像差小于0.09λ(λ为632.8nm)。
With the development of optical design and optical manufacture technology,thereflective optical system style have been development from axial symmetry tooff-axis or eccentric. The assemble of off-axis optical system is absolutelynecessarily to achieve the diffraction-limited system image quality, and thehigh-powered mount off-axis system are more and more depended on high tech.Computer–aided alignment (CAA) technology has been developed to solve thedifficulties of high quality optical system alignment in recent years, which play thekey role in the process of system development, and the development of CAA willpromote the optical design and optical manufacture.
     The theory of CAA technology and some issues about its application in off-axissystem are studied in this paper, the main research contents are as follows:
     1. The misalignment induced aberrations of symmetry optical system
     Using the vector aberration theory, we analyzed the third order aberration fieldsof misaligned symmetry optical system, the relationship between perturbed systemwavefront error Zernike coefficients and system field have been found. Themounting process of symmetry RC and TMA is analyzed by vector aberration theory,the characteristic of3rdspherical aberration and3rdcoma and3rdastigmatism ofmisaligned RC TMA is obtained, the reason that the alignment of optical systemcannot be accomplished using on-axis performance data alone is analyzed. Thedifferent element misaligned induced aberration compensate is studied and theconclusion guided the process of optical design.
     2. The misalignment induced aberrations of off-axis optical system
     By introducing the coordinates transform, the relationship between axialsymmetry system and off-axis system wavefront error Zernike coefficients have beenfound, and using a transformed pupil vector into the aberration expansions of ansymmetry optical system, the vector aberration expansions through third order ofoff-axis optical system are obtained. The result show that the off-axis and misalignedoff-axis optical system's aberrations are still make up of3rdspherical aberration and3rdcoma and3rdastigmatism, different aberration have different field dependencies.By the vector aberration expansions of off-axis system, the characteristic of3rd spherical aberration and3rdcoma and3rdastigmatism of misaligned off-axis RC andoff-axis TMA is obtained. Based on the coordinates transform, the influence ofsurface-profile error of larger mirror on aberrations characteristics of optical systemis gained. The aberrations compensate relation between element misaligned inducedand surface-profile error induced is studied and the conclusion guided the process ofoptical design based on free form surface.
     3. The analysis misalignment of off-axis optical system's element
     According to the demand for the alignment of off-axis three-mirror reflectiveoptical system in an engineering project, the misaligned model of co-axis opticalsystem and off-axis optical system is build by vector aberration theory. Thealignment process is simulate at different misaligned magnitude, the result show thatthe adjust time increased with the misaligned magnitude. It may be getting a worseassemble result by CAA arithmetic at biggish misalignment, the reason is analyzedby the vector aberration theory.
     4. The calculation misalignment of a real off-axis optical system's element
     A singular value decomposition method is applied to the CAA arithmetic, thecausation of poor solution of the alignment is analyzed by the matrix conditionnumber and the singular value, the threshold of singular value is proposed to achievethe correct result. The coarse alignment process is introduced, the stimulantcalculation is processed to an off-axis three-mirror reflective optical system underthe different signal noise ratio and the result shows that the method in this paper isrational and effective and steady, and the off-axis three-mirror reflective opticalsystem is well aligned by this method, the off-axis system produced a measuredwavefront error less than0.09λ RMS at λ equal to632.8nm across all image plane.
引文
[1]杨力.现代光学制造工程[M].北京:科学出版社,2009:77-165.
    [2] Thomas I.Harris. Overview of CODE V Development [C]. SPIE.1990,1354:104-111
    [3]陈世平.空间相机设计与实验[M].北京:中国宇航出版社,2009:42-47
    [4]马文坡.航天光学遥感技术[M].北京:中国科学技术出版社,2011:66-83
    [5] P. Gloesener, F. Wolfs, et al. Design, manufacturing and testing of a four-mirror telescopewith a wide field of view[C]. International Conference on Space Optics2011
    [6] Kristof Seidl, Jens Knobbe, et al. Design of an all-reflective unobscured optical-powerzoom objective[J]. Applied Optics,2009,48(21):4097-4107
    [7] Kristof Seidl, Katja Richter et al. Wide field-of-view all-reflective objectives designed formultispectral image acquisition in photogrammetric applications[C]. SPIE.(2011)817210:1-10
    [8] John F. Silny, Eugene D. Kim, et al. Optically fast, wide field-of-view, five-mirroranastigmat (5MA) imagers for remote sensing applications[C]. SPIE.2011,815804:1-13
    [9] John F. Silnya, Thomas G. Chrien. Large format imaging spectrometers for futurehyperspectral Landsat mission[C]. SPIE.2011,815803:1-26
    [10]李圣怡,戴一帆等.大中型光学非球面镜制造与测量新技术[M].北京:国防工业出版社,2011:2-34,92-290,346-505.
    [11]许德衍,王青,高志山等.现行光学元件检测与国际标准[M].北京:科学出版社,2009:1-25.
    [12]田爱玲,王红军等译.非球面光学元件的先进制造和应用技术[M].浙江:浙江大学出版社,2011:9-84
    [13]杨力,伍凡等译,光学车间检测(Third Edition)[M].北京:机械工业出版社,2012:199-404
    [14] Alan Johns, Bonita Seatona et al. James Webb Space Telescope-Applying Lessons Learnedto I&T[C]. SPIE.2008,70160E:1-7
    [15] H. John Wood, Sanford W. Hinkal. An overview of the HST optical systemsperformance[C]. SPIE.1993,1996:134-143
    [16] Alcione Mora, Amir Vosteen. Gaia in-orbit realignment. Overview and data analysis[C].SPIE.2012,84421Q:1-14
    [17] Hans J. K rcher, Alfred Krabbe, Thomas Wegmann. The SOFIA Telescope: Preparing forEarly Science[C]. SPIE.2008,70123T:1-9
    [18] Philippe Martin, Siegmund Idler. Herschel payload: Straylight design and performance[C].SPIE.2008,701007:1-11
    [19] Sebastian Scheiding, Christoph Damm et al. Ultra precisely manufactured mirror assemblieswith well defined reference structures[C]. SPIE.2010,773908:1-10
    [20] Ira M. Egdall. Manufacture of a three-mirror wide field optical system [J]. Opt. Eng,1985,24(2):285‐289
    [21] George N. Lawrence, Weng W. Chow. Wave-front tomography by zernike polynomialdecomposition[J].Optics Letters.(1984)9(7):267-269
    [22] Hwan J.Jeong, George N.Lawrence et al. Auto-alignment of a three-mirror off-axistelescope by reverse optimization and end-to-end aberration measurements [C]. SPIE.1987,818:419-430
    [23] Hwan J. Jeong, George N.Lawrence. Simultaneous determination of misalignment andmirror surface figure error of a three mirror off-axis telescope by end-to-end measurementsand reverse optimization: numerical analysis and simulation[C]. SPIE.1988,966:341-353
    [24] J.W.Figoski, T.E.Shrode, et al. Computer-aided alignment of a wide-field three-mirror,unobscured, high-resolution[C].SPIE1989,1049:166‐177.
    [25] Marie Therese Velluet, et al. Automatical alignment system for telescope[C]. SPIE,1994,2210:747‐751.
    [26] Patricia Hayes,et al. Alignment verification by wavefront testing of the composite infraredspectrometer[C].SPIE,1996,2814:59‐65.
    [27] J W.Figoski. Alignment and test results of the QuickBird telescope using the Ball OpticalSystem Test Facility[C]. SPIE.1999,3785:99-108
    [28] Shigeo Irio, Takeo Watanabe, et al. Development for the alignment procedure ofthree-aspherical-mirror optics[C]. SPIE.2000,3997:807-813
    [29] Michael R.Descour, Mark R.Willer, et al. Misalignment modes in high performance opticalsystems[C]. SPIE.1999,3737:635-643
    [30] Ho‐Soon Yang. Alignment methods for Cassegrain and RC telescope with wide‐field ofview[C]. Space Systems Engineering and Optical Alignment Mechanisms.2004,5528:334‐341.
    [31] E. D. Kim, Y.W Choi, H. S. Yang, et al. Optical alignment of a high-resolution optical earthobservation camera for small satellites [J]. Optical Society of Korea,2004.
    [32] Lee, H., Dalton, G. B., Tosh, I. A. J. and Kim, S.-W., Computer-guided alignment I:Phaseand amplitude modulation of alignment-influenced optical wavefront[J], Optics Express Vol.15, No.63127-3139(2007a)
    [33] Lee, H., Dalton, G. B., Tosh, I. A. J. and Kim, S.-W., Computer-guided alignment II:Optical system alignment using differential wavefront sampling[J], Optics Express Vol.15,No.2315424-15437(2007b)
    [34] Lee, H., Dalton, G. B., Tosh, I. A. J. and Kim, S.-W., Computer-guided alignmentIII:Description of inter-element alignment effect in circular-pupil optical systems[J], OpticsExpress Vol.16, No.1510992-11006
    [35] Yun jong Kim, Ho-Soon Yang et al. Alignment of off-axis optical system with multi mirrorsusing derivative of Zernike polynomial coefficient[C]. SPIE.2009,74330C:1-8
    [36] K.P.Thompson, T. Schmid, and J. P. Rolland, The misalignment induced aberrations ofTMA telescopes [J], Opt. Express16(25),20345–20353(2008).
    [37] T. Schmid, K. P. Thompson, and J. P. Rolland, Alignment induced aberration fields of nextgeneration telescopes[C]. SPIE.2008,7068:70680E1-70680E7
    [38] T. Schmid, K. P. Thompson, and J. P. Rolland, Misalignment-induced nodal aberrationfields in two-mirror astronomical telescopes [J]. Appl. Opt.49(16), D131–D144(2010).
    [39] T. Schmid, K. P. Thompson, and J. P. Rolland, A unique astigmatic nodal property inmisaligned Ritchey-Chrétien telescopes with misalignment coma removed [J] Opt. Express18(5),5282–5288(2010).
    [40] T. Schmid, J. P. Rolland, A.Rakich, and K. P. Thompson, Separation of the effects ofastigmatic figure error from misalignments using Nodal Aberration theory (NAT)[J] Opt.Express18(16),17433–17477(2010).
    [41]张斌,韩昌元.离轴非球面三反射镜光学系统装调中计算机辅助优化方法的研究[J].光学学报.2001,21(1):54‐58.
    [42]张斌.复杂光学系统的计算机辅助装调技术研究[D].长春光学精密机械与物理研究所,2000.
    [43]张斌,张晓辉,等.光学系统计算机辅助装调中的一种优化算法[J].光学精密工程.2000,8(3):273‐277.
    [44]杨晓飞.三反射镜光学系统的计算机辅助装调技术研究[D].长春光学精密机械与物理研究所,2004.
    [45]杨晓飞,张晓辉,韩昌元.Zemax软件在离轴三反射镜系统计算机辅助装调中的应用[J].光学精密工程,2004,12(3):270‐274.
    [46]杨晓飞,张晓辉,韩昌元.用像差逐项优化法装调离轴三反射镜光学系统[J].光学学报.2004,24(1):115‐120.
    [47]杨晓飞,韩昌元.利用离轴三反镜光学系统确定各镜的装调公差[J].光学技术,2005,31(2):173‐176.
    [48]罗森,朱永田.计算机辅助装调方法在离轴卡塞格林系统中的应用[J].光学技术.2008,34(4):514‐517.
    [49]刘剑峰,龙夫年,等.离轴三镜系统计算机辅助装调方法研究[J].光学技术.2004,30(5):571‐576.
    [50]张伟,刘剑峰,龙夫年.离轴三镜系统光学元件间补偿关系研究[J].光子学报.2005,34(8):1160‐1164.
    [51]林妩媚.光学系统计算机辅助装调(CAA)机理的研究[J].光电工程.1999,26:49‐52.
    [52]蒋世磊.高精度光学镜头装校方法研究光学镜头重力变形分析研究[D].成都:中国科学院成都光电技术研究所.2003.
    [53]梁列国,周汉昌,赵冬娥,等.瞬态温度表面传感器的校准技术研究[J].光学学报.2001,22(2):263‐267.
    [54]车驰骋.反射式光学系统的计算机辅助装调技术研究[D].西安:中国科学院西安光学精密机械研究所,2008.
    [55]孔小辉.两镜系统计算机辅助装调研究[D].西安:中国科学院西安光学精密机械研究所,2010.
    [56]车驰骋,李英才等.基于矢量波像差理论的计算机辅助装调技术的研究[J].光子学报,2008,37(8):1630-1633
    [57]孔小辉,樊学武.基于矢量波像差理论的两镜系统装调技术研究[J].激光与光电子进展,2010,47:0822021-0822027
    [58]张东阁,傅雨田.计算辅助装调的代理模型方法[J].红外与激光工程,2013,42(3):680-685
    [1] H. J. Steffens. The development of Newtonian optics in England [M]. London:ScienceHistory Publications,1977
    [2] R. A. Smith. A compleat system of optics [M]. London: Cambridge press,1978
    [3] H. H. Hopkins. The wave theory of aberrations [M].Oxford: Oxford on Clarendon press,1950
    [4] H. A. Buchdahl. An introduction to Hamiltonian optics [M].London: Cambridge
    [5] University press,1970
    [6] W. T. Welford. Aberrations of optical systems [M].Bristol: Adam Hilger,1986
    [7] M. Born, E.Wolf. Principle of Optics [M].London: Cambridge University Press.7thEdition,2005
    [8] R.A. Buchroeder. Tilted component optical systems [D] Tucson: University of Arizona,1976
    [9] R.A. Buchroeder. Tilted-component telescopes Part1: Theory [J].Applied Optics,1970,9(9):2169-2171
    [10] H. A. Buchdahl. Systems without symmetries: foundations of a theory of Lagrangianaberration coefficients [J]. J.Opt.Soc.Am.A,1972,62(11):1314-1324
    [11] SHACK R V,THOMPSON K P.Influence of alignment errors of a telescope system on itsaberration field[C]. SPIE. l980,251:146-153.
    [12] TURNE T S. Vector aberration theory on spreadsheet analysis of tilted and decenteredsystems[C]. SPIE.1992,1752:184-195.
    [13] THOMPSON K P. A graphic approach to the analysis of perturbed optical systems[C]. SPIE,1980,237:127-134.
    [14] K.P. Thompson, Aberrations Fields in Tilted and Decentered Optical Systems [D]. Tucson:University of Arizona,,1980.
    [15] J. R. Rogers. Aberration of unobscured reflective optical system [D]. Tucson: University ofArizona,1983.
    [16] Regis Tessieres. Analysis for alignment of optical systems [D]. Tucson: University ofArizona,2003.
    [17] J. R. Rogers, Vector aberration theory and the design of off-axis systems[C], SPIE.1985,554:76–81
    [18] J. R. Rogers and S. Tachihara, Practical tilted mirror systems [C]. SPIE.1986,679:12–16
    [19] K. P. Thompson, Practical methods for the optical design of systems without symmetry[C].SPIE.1996,2774:2-10
    [20] K. P. Thompson, Description of the third-order optical aberrations of near-circular pupiloptical systems without symmetry [J], J. Opt. Soc. Am. A22(7),1389–1401(2005).
    [21] K. P. Thompson, Multinodal fifth-order optical aberrations of optical systems withoutrotational symmetry: spherical aberration [J], J. Opt. Soc. Am. A26(5),1090–1100(2009).
    [22] K. P. Thompson, Multinodal fifth-order optical aberrations of optical systems withoutrotational symmetry: the comatic aberration [J], J. Opt. Soc. Am. A27(6),1490–1503(2010).
    [23] K. P. Thompson, Multinodal fifth-order optical aberrations of optical systems withoutrotational symmetry: the astigmatic aberration [J], J. Opt. Soc. Am. A28(5),821–836(2011).
    [24] K. P. Thompson, Tobias Schmid, Jannick P. Rolland. Recent discoveries from NodalAberration Theory [C]. SPIE,2010,7652:76522Q1-76522Q11
    [25] T. Schmid, K. P. Thompson, and J. P. Rolland, Alignment induced aberration fields of nextgeneration telescopes[C], SPIE.2008,7068:70680E1-70680E7
    [26] T. Schmid, K. P. Thompson, and J. P. Rolland, Misalignment-induced nodal aberrationfields in two-mirror astronomical telescopes[J], Appl. Opt.49(16), D131–D144(2010).
    [27] T. Schmid, K. P. Thompson, and J. P. Rolland, A unique astigmatic nodal property inmisaligned Ritchey-Chrétien telescopes with misalignment coma removed[J], Opt. Express18(5),5282–5288(2010).
    [28] T. Schmid, J. P. Rolland, A.Rakich, and K. P. Thompson, Separation of the effects ofastigmatic figure error from misalignments using Nodal Aberration theory (NAT)[J], Opt.Express18(16),17433–17477(2010).
    [29]杨照金,范紀红,王雷.现代光学计量与测试[M].北京:北京航空航天大学出版社,2010:230-257
    [30]沙定国,林家明,张旭升,等编著.光学测试技术[M].北京:北京理工大学出版社,2010:74-118.
    [31]杨照金,王雷,范紀红.空间光学仪器设备及其校准检测技术[M].北京:中国计量出版社,2009:17-66
    [32]舒朝濂,田爱玲,杭凌侠,郭忠达编著.现代光学制造技术[M].北京:国防工业出版社,2008:323-330
    [33]潘君骅著.光学非球面的设计、加工与检验[M].苏州:苏州大学出版社,2004:37-71
    [34]辛企明,孙雨南,谢敬辉编著.近代光学制造技术[M].北京:国防工业出版社,1997:97-103
    [35]辛企明著.光学塑料非球面制造技术[M].北京:国防工业出版社,2005:158-179
    [36]李圣怡,戴一帆等.大中型光学非球面镜制造与测量新技术[M].北京:国防工业出版社,2011:346-390,457-505.
    [37]许德衍,王青,高志山等.现行光学元件检测与国际标准[M].北京:科学出版社,2009:60-175.
    [38]田爱玲,王红军等译.非球面光学元件的先进制造和应用技术[M].浙江:浙江大学出版社,2011:49-60
    [39]杨力.现代光学制造工程[M].北京:科学出版社,2009:354-372.
    [40] V.N.Mahajan. Zernike Polynomials and aberration balancing [J]. SPIE.2003,5173:1-17
    [41] C.ECampbell. Matrix method to find a new set of Zernike coefficients from an original setwhen the aperture radius is change [J]. J. Opt. Soc. Am.20(2):209–217(2003).
    [42]单宝忠,王淑岩,牛憨笨,等. Zernike多项式拟合方法及应用[J].光学精密工程.2002,10(3):318-323
    [43] J.Y.Wang, D.E.Silva. Wavefront interpretation with Zernike polynomials[J]. Appl.Opt.,1980,19(9):1510-1518
    [44] J.Scheiegerling. Scaling Zernike expansion coefficients to different pupil seizes[J]. J. Opt.Soc. Am.19(10):1937–19(2002).
    [45] J.H.Bruning, R.Herriott, J.E.Allagher, et al. Digital Wavefront Measuring Interferometer forTesting Optical Surfaces and Lenses [J]. Appl.Opt.,1974,13(11):2693-2703
    [46]张伟,刘剑锋,等.基于Zernike多项式进行波面拟合研究[J].光学技术.2005.31(5):675-678
    [47]杨力,伍凡等译,光学车间检测(Third Edition)[M].北京:机械工业出版社,2012:369-404
    [48]车驰骋.反射式光学系统的计算机辅助装调技术研究[D].西安:中国科学院西安光学精密机械研究所,2008.
    [49] Code V Reference Manual.2007Chapter10:19-25
    [50] K. P. Thompson, Kyle Fuerschbach, Jannick P.Rolland. An analytic expression for the fielddependence of FRINGE Zernike polynomial coefficients in optical systems that arerotationally nonsymmetric[C]. SPIE.2010,784906:1-11
    [51] Jannick P.Rolland, Cristina Dunn, K. P. Thompson. An analytic expression for the fielddependence of FRINGE Zernike polynomial coefficients in Rotationally Symmetric OpticalSystem[C]. SPIE.2010,77900M:1-11
    [52]莫卫东. Zernike多项式拟合干涉波面的基本原则[J].空间工程大学学报.2002,3(3):35-38
    [53]莫卫东. Zernike多项式拟合干涉面方法研究[J].高速摄影与光子学.1991,23(4):296-304
    [54]莫卫东.冯金高.数字化玻璃表面检测系统的研究[J].光子学报.2001.30(5):618-623
    [55]屈金祥. Zernike多项式及其在低温光学中的应用[C].上海市制冷学会2005年学术年会论文集.2005
    [56]莫卫东.光学干涉波面数字化处理方法与应用[J].计算物理.2003.20(6):514-520
    [57] MetroPro Reference Guide,OMP-0347E.ZYGO Corporation
    [58]候溪,伍凡,等.中心遮栏非球面主镜Seidel像差拟合分析的优化[J].光电子激光.2006.17(5):568-572
    [59] J.C.Wyant. Basic wavefront aberration theory for optical metrology, Academic Press, NewYork,1992, Vol.IX,1-53
    [60] R.K.Tyson. Conversion of Zernike aberration coefficients to Seidel and higher-order Powerseries aberration coefficients[J]. Optical Engineering,1982,7(6):262-264
    [61]孔小辉.两镜系统计算机辅助装调研究[M].西安:中国科学院西安光学精密机械研究所,2010.
    [1] K.P.Thompson, Tobias Schmid, Ozan Cakmakci, Jannick P.Rolland. Real-ray-based methodfor locating individual surface aberration field centers in imaging optical systems withoutrotational symmetry [J]. J. Opt. Soc. Am. A26(6),1503–1517(2009).
    [2] K. P. Thompson, Tobias Schmid, Jannick P. Rolland. Recent discoveries from NodalAberration Theory[C]. SPIE,2010,7652:76522Q1-76522Q11
    [3] Theodore S.Turner. Vector aberration theory on a spreadsheet-analysis of tilted anddecentered system[C]. SPIE,1992,1752:184-195
    [4] T. Schmid, J. P. Rolland, A.Rakich, and K. P. Thompson, Separation of the effects ofastigmatic figure error from misalignments using Nodal Aberration theory (NAT)[J] Opt.Express18(16),17433–17477(2010).
    [5]张虎.矢量像差理论及其在离轴头盔显示系统设计中的应用[D].长春:中国科学院长春光学精密机械研究所,2010
    [6]任百川.偏轴光学系统矢量像差理论研究[D].长春:中国科学院长春光学精密机械研究所,2010
    [7] K. P. Thompson, Description of the third-order optical aberrations of near-circular pupiloptical systems without symmetry[J], J. Opt. Soc. Am. A22(7),1389–1401(2005).
    [8] J. R. Rogers. Aberration of unobscured reflective optical system [D], Tucson: University ofArizona,1983.
    [9] Regis Tessieres. Analysis for alignment of optical systems [D]. Tucson: University ofArizona,2003.
    [10] K.P. Thompson, Aberrations Fields in Tilted and Decentered Optical Systems [D]. Tucson:University of Arizona,1980.
    [11] J. R. Rogers. Techniques and tools for obtaining symmetrical performance fromtilted-component systems [J], Opt.Eng,30(7),1776–1787(2000).
    [12]杨力.现代光学制造工程[M].北京:科学出版社,2009:139-168.
    [13]陈世平.空间相机设计与实验[M].北京:中国宇航出版社,2009:42-47
    [14]马文坡.航天光学遥感技术[M].北京:中国科学技术出版社,2011:66-83
    [15] Alan Johns, Bonita Seatona et al. James Webb Space Telescope-Applying Lessons Learnedto I&T[C]. SPIE.2008,70160E:1-7
    [16] H. John Wood, Sanford W. Hinkal. An overview of the HST optical systems performance
    [C]. SPIE.1993,1996:134-143
    [17] Hans J. K rcher, Alfred Krabbe, Thomas Wegmann. The SOFIA Telescope: Preparing forEarly Science [C]. SPIE.2008,70123T:1-9
    [18] Philippe Martin, Siegmund Idler. Herschel payload: Straylight design and performance [C].SPIE.2008,701007:1-11
    [19] Roland Geyl. Design and fabrication of a three mirror flat field anastigmat for highresolution earth observation [C]. SPIE,1994,2210:739‐749.
    [20] Marie Therese Velluet, et al. Automatical alignment system for telescope [C]. SPIE,1994,2210:747-751
    [21]韩昌元高分辨力空间相机的光学系统研究[J].光学精密工程,2008,16(11):2164~2172
    [22]郭永祥,李英才,吕保斌.一种新型无遮拦三反射光学系统研究[J].光学学报,2010,30(4):1144~1147
    [23]郭永祥,李英才,梁天梅等.一种大视场离轴三反光学系统研究[J].光学学报,2010,30(9):2680~2683
    [24]常军,翁志成,姜会林,等.长焦距空间三反射镜光学系统的设计[J].光学精密工程,2001,9(4):315-318.
    [25]宋岩峰,邵晓鹏,徐军.离轴三反射镜光学系统研究[J].红外与激光工程,2008,37(4):706-709
    [26]姚罡,黄颖,傅丹膺.一种易于制造、较大视场离轴三反光学系统设计[J].航天返回与遥感,2010,31(5):44-48
    [27]李旭阳,李英才,马臻等.大F数长焦距空间相机光学系统设计[J].光学学报,2010,30(7):2093-2097
    [28]樊学武,马臻,陈荣利等.具有二次像面的三反射光学系统的研究[J].光子学报,2003,32(8):1001-1003
    [29]薛庆生,黄煜,林冠宇.大视场高分辨力星载成像光谱仪光学系统设计[J].光学学报,2011,31(8):08220011~08220016
    [30]薛庆生,林冠宇,宋克非.星载大视场短波红外成像光谱仪光学设计[J].光子学报,2011,40(5):673~678
    [31]刘晓梅,向阳.宽视场成像光谱仪前置远心离轴三反光学系统设计[J].光学学报,2011,31(6):06220041~06220044
    [32] T. Schmid, K. P. Thompson, and J. P. Rolland, A unique astigmatic nodal property inmisaligned Ritchey-Chrétien telescopes with misalignment coma removed[J], Opt. Express18(5),5282–5288(2010).
    [33] J. R. Rogers. Design technique for systems containing tilted components[C] SPIE,19993737:286–300
    [34]潘君骅.光学非球面的设计、加工与检验[M].苏州:苏州大学出版社2004:130~140
    [1]杨力.现代光学制造工程[M].北京:科学出版社,2009:139-168.
    [2]陈世平.空间相机设计与实验[M].北京:中国宇航出版社,2009:42-47
    [3]马文坡.航天光学遥感技术[M].北京:中国科学技术出版社,2011:66-83
    [4]韩昌元高分辨力空间相机的光学系统研究[J].光学精密工程,2008,16(11):2164~2172
    [5] Alan Johns, Bonita Seatona et al. James Webb Space Telescope–Applying LessonsLearned to I&T[C]. SPIE.2008,70160E:1-7
    [6] H. John Wood, Sanford W. Hinkal. An overview of the HST optical systemsperformance[C]. SPIE.1993,1996:134-143
    [7] Hans J. K rcher, Alfred Krabbe, Thomas Wegmann. The SOFIA Telescope: Preparing forEarly Science[C]. SPIE.2008,70123T:1-9
    [8] Philippe Martin, Siegmund Idler. Herschel payload: Straylight design and performance[C].SPIE.2008,701007:1-11
    [9]潘君骅.光学非球面的设计、加工与检验[M].苏州:苏州大学出版社2004:130~140
    [10]郭永祥,李英才,吕保斌.一种新型无遮拦三反射光学系统研究[J].光学学报,2010,30(4):1144~1147
    [11]郭永祥,李英才,梁天梅等.一种大视场离轴三反光学系统研究[J].光学学报,2010,30(9):2680~2683
    [12] Roland Geyl. Design and fabrication of a three mirror flat field anastigmat for highresolution earth observation[C].SPIE,1994,2210:739‐749.
    [13] Marie Therese Velluet, et al. Automatical alignment system for telescope[C]. SPIE,1994,2210:747‐751
    [14]常军,翁志成,姜会林,等.长焦距空间三反射镜光学系统的设计[J].光学精密工程,2001,9(4):315-318.
    [15]宋岩峰,邵晓鹏,徐军.离轴三反射镜光学系统研究[J].红外与激光工程,2008,37(4):706-709
    [16]姚罡,黄颖,傅丹膺.一种易于制造、较大视场离轴三反光学系统设计[J].航天返回与遥感,2010,31(5):44-48
    [17]李旭阳,李英才,马臻等.大F数长焦距空间相机光学系统设计[J].光学学报,2010,30(7):2093-2097
    [18]樊学武,马臻,陈荣利等.具有二次像面的三反射光学系统的研究[J].光子学报,2003,32(8):1001-1003
    [19]薛庆生,黄煜,林冠宇.大视场高分辨力星载成像光谱仪光学系统设计[J].光学学报,2011,31(8):08220011~08220016
    [20]李欢,向阳.成像光谱仪离轴三反望远系统的光学设计[J].红外与激光工程,2009,38(3):500~504
    [21]李欢,向阳.10°远心离轴三反消像散望远系统的光学设计[J].光子学报,2009,38(9):2256~2260
    [22]刘晓梅,向阳.宽视场成像光谱仪前置远心离轴三反光学系统设计[J].光学学报,2011,31(6):06220041~06220044
    [23] Salvador Bará, Justo Arines, Jorge Ares, and Paula Prado. Direct transformation of Zernikeeye aberration coeffcients between scaled, rotated, and/or displacedpupils[J],J.O.S.A,2006,23(9):2061-2066
    [24] Antonio Guirao, David R. Williams, Ian G. Cox. Effect of rotation and translation on theexpected beneft of an ideal method to correct the eye’s higher-orderaberrations[J],J.O.S.A,2001,18(5):1003-1015
    [25] Charles E. Campbell. Matrix method to fnd a new set of Zernike coeffcients from anoriginal set when the aperture radius is changed [J], J.O.S.A,2003,20(2):209-217
    [26]陈钦芳,离轴非球面反射镜检测技术研究[D],西安:中国科学院西安光学精密机械研究所,2011
    [27]庞志海,樊学武,陈钦芳等.大口径反射镜面形误差对光学系统像差特性的影响[J],光学学报,2013,33(4):04220021-04220025
    [28]李荣彬,张志辉,杜雪等.自由曲面光学的超精密加工技术及其应用[J],红外与激光工程,2012,39(1):111-115
    [29]张新付强.空间光学系统技术发展探讨[J],航天返回与遥感,2011,32(5):29-35
    [30]薛栋林,郑立功,张峰.基于光学自由曲面的离轴三反光学系统.[J].光学精密工程,2011,19(12):2813~2820
    [31]王灵杰,张新,张建萍,史广维.自由曲面空间光学系统设计研究[J].应用光学,2012,33(6):1040~1046
    [32]刘明星,孟中,孙文军.泽尼克多项式曲面投影显示系统[J].光学技术,2011,37(2):158~161
    [33] Kyle H. Fuerschbach, Kevin P. Thompson, Jannick P. Rollanda. A New Generation ofOptical Systems with-polynomial Surfaces[C] SPIE,2010,7652:0C1-0C7
    [34] Kyle Fuerschbach, Jannick P. Rolland, Kevin P. Thompson. A new family of optical systemsemploying φ-polynomial surfaces[J], Optics Express,200919(22):21919-21928
    [35] Kyle H. Fuerschbach, Jannick P. Rollanda, Kevin P. Thompson. Designing with-polynomial Surfaces[C] SPIE,2011,8167:0Z1-0Z6
    [36] Kyle H. Fuerschbach, Jannick P. Rollanda, Kevin P. Thompson. Interferomtric Nullconfigurations for mearsuring-polynomial Surfaces [J] Imaging and Applied OpticsTechnical Digest,2012, OW2D.2
    [37]任要正,廖月明,朱派龙,孙伟.数控单点金刚石切削非轴对称光学镜面[J].北京理工大学学报,1998,18(1):119~124
    [38]廖月明,任要正,朱派龙等.非轴对称光学镜面的数控SPDT加工[J].中国机械工程,1997,8(6):47~51
    [39]任要正,廖月明,陈懋圻,. SPDT法控制非轴对称光学镜面的加工[J].大连理工大学学报,1997,37(5):581~585
    [40]李池娟,孙昌峰,孟凡波,孟小龙.单点金刚石车削技术的研究[J].激光与红外,2009,39(12):1341~1343
    [41]李荣彬,张志辉,李健广.单点金刚石车削加工的动态特性研究[J].机械工程学报,2003,39(10):136~140
    [42]巩岩,赵磊.单点金刚石机床及其在光学工程领域的应用[J].中国光学,2011,4(6):537~545
    [43]翁志成,马文生,韩荣久等.用SPDT法制造大功率CO2激光反射镜[J].中国激光,1995,22(1):23~26
    [44]董国军,董申,孙涛.单点金刚石车削加工切削距离的计算[J].光学技术,2008,34:1~2
    [45]吴丹,孙京海,王先逵.非轴对称车削成型方法探讨[J].清华大学学报(自然科学版),2006,46(11):1832-1835
    [46]李圣怡,戴一帆.超精密加工机床新进展[J].机械工程学报,2003,39(8):7-14
    [47]康战,聂凤明,刘劲松等.单点金刚石精密数控车削加工技术及发展前景分析[J]光学技术,2010,36(2):163-167
    [48]周海宪,程云芳译.光机系统设计[M]北京:机械工业出版社2010:590-600
    [49]辛企明,孙雨南,谢敬辉.近代光学制造技术[M]北京:国防工业出版社1997:26-41
    [50]刘庆京金刚石车削在红外衍射光学元件加工中的应用[J].激光与红外,2002,32(2):107~109
    [51] John F. Silny, Eugene D. Kim, et al. Optically fast, wide field-of-view, five-mirroranastigmat (5MA) imagers for remote sensing applications [C]. SPIE.2011,815804:1-13
    [52] Kristof Seidl, Jens Knobbe, et al. Design of an all-reflective unobscured optical-powerzoom objective [J]. Applied Optics,2009,48(21):4097-4107
    [53] Sebastian Scheiding, Christoph Damm, Wolfgang Holota et al. Ultra precisely manufacturedmirror assemblies with well defined reference structures[C]. SPIE.2010,7739:081-0810
    [1]林妩媚.光学系统计算机辅助装调(CAA)机理的研究[J].光电工程.1999,26:49‐52.
    [2]张斌,张晓辉,等.光学系统计算机辅助装调中的一种优化算法[J].光学精密工程.2000,8(3):273‐277.
    [3]张斌.复杂光学系统的计算机辅助装调技术研究[D].长春光学精密机械与物理研究所,2000.
    [4]张斌,韩昌元.离轴非球面三反射镜光学系统装调中计算机辅助优化方法的研究[J].光学学报.2001,21(1):54‐58.
    [5]杨晓飞.三反射镜光学系统的计算机辅助装调技术研究[D].长春光学精密机械与物理研究所,2004.
    [6]杨晓飞,张晓辉,韩昌元.Zemax软件在离轴三反射镜系统计算机辅助装调中的应用[J].光学精密工程,2004,12(3):270‐274.
    [7]杨晓飞,张晓辉,韩昌元.用像差逐项优化法装调离轴三反射镜光学系统[J].光学学报.2004,24(1):115‐120.
    [8]刘剑峰,龙夫年,等.离轴三镜系统计算机辅助装调方法研究[J].光学技术.2004,30(5):571‐576.
    [9] Eugene D.Kim, Young-Wan Choi, Myung-Seok Kang. Reverse-optimization AlignmentAlgorithm using Zernike Sensitivity[J], Journal of Optical Society of Korea, Vol.9, No.268-73(2005)
    [10]张伟,刘剑峰,龙夫年.离轴三镜系统光学元件间补偿关系研究[J].光子学报.2005,34(8):1160‐1164.
    [11]罗森,朱永田.计算机辅助装调方法在离轴卡塞格林系统中的应用[J].光学技术.2008,34(4):514‐517.
    [12] CODE V Reference Manual.Copyright(c)2004,Chapter17.
    [13]李庆扬,王能超,易大义.数值分析[M].武汉:华中科技大学出版社,2004.165~198
    [14]程云鹏,张凯院,徐仲.矩阵论[M]西安:西北工业大学出版社,2001.109~233

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700