用户名: 密码: 验证码:
铁氧体耐高温磁控溅射金属化膜系及产业化关键问题的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着信息通信产业的快速发展,电子元器件呈现微型化、环保绿色的发展趋势。铁氧体片式电感作为难以集成化的电子元件,其表面金属化工艺过去一直采用着手工涂刷—高温烧结银浆—电镀的落后工艺,不仅效率低下,生产成本高,生产过程存在严重污染,而且其金属化电极层也难以经受无铅焊料的高温熔蚀。本文从理论到生产实践,系统地研究了铁氧体陶瓷表面金属化技术,并进行了产业化的研究,成功实现了铁氧体磁芯磁控溅射金属化的产业化生产。
     论文的主要研究成果如下:
     1.采用磁控溅射沉积方法实验制备了大量铁氧体金属化的样品,优化了溅射参数,并对其进行了详细的分析表征;深入研究了420℃高温下,无铅焊料与金属化薄膜之间的反应与熔蚀过程,系统研究了生成金属间化合物的形貌特性、不同材料对耐焊性的影响等,并根据此研究结果选择了Ni-7%wt.V作为阻挡层材料。相关研究成果已发表在Journal of Electronic Materials等期刊上,具有较大的学术价值与实际应用价值,为本课题后续产业化的成功提供了理论基础。
     2.从表面物理学、金相学和薄膜生长理论出发,深入研究了电极层与铁氧体之界面反应机制,研究结果表明:选用Cr、Ni等活性金属作为过渡层电极,能在铁氧体界面生成了电极材料的氧化物,该层金属氧化物能大幅提高电极与铁氧体的结合力。
     3.铁氧体磁芯越来越微型化,难以采用掩模技术来制造微型片式电感,针对这一必然发展趋势,采用并实现了全覆盖镀膜后采用激光光刻技术来制造微型片式电感的工艺方法,提高了金属化的效率和质量。
     4.最终研究出适合铁氧体片式电感高温焊接工艺(420℃10秒)要求、能够进行产业化作业的多层复合膜系,作为项目组主要研究人员,参与设计并研制出了超大吞吐量的片式电感磁控溅射金属化的自动化生产专用设备,实现了产业化生产。实施结果表明:产品质量高,比印刷银浆-烧结-电镀的传统工艺降低生产成本60%,节电40%以上,生产过程无污染,实现了绿色制造,为企业创造了重大社会经济效益。相关的研究成果已获得了两项发明专利。
With the rapid growth of information and communication industry, electronic components as its carrier exhibit high-speed, integrated, green trends. The study on the reliability of electronic components and electric interconnect technology has become an internationally popular field of study. Inductors are considered difficulty to be integrated, and its metallization still relies on electroplating method, which is low-efficient, high-cost and unavailable for the420℃high-temperature assembly process of winded inductors. In this paper, we investigated the metallization technology for ferrite from theory to practice. Finally, this technology has been applied to the industry process and it is the first implementation of this kind.
     The main efforts are listed as follows:
     1. We proposed a design of multi-layer composite thin film suitable for high-temperature(420℃) process. Experimental samples were prepared by magnetron sputtering deposition method. Complete industry standard test was done, and to select the optimum sputtering parameters, we studied the performance of the samples in various sputtering parameters. The thin film dissolution process is covered, including the morphology and composition of the intermetallic compound generated by the surface reaction and the impact of these products on the dissolution rate. Rising of temperature can change the reaction products, speed up the dissolution. Based on the analysis, we choose Ni-V as the barrier material. The test results proved that the composite film is valid to meet the adhesive and high-temperature resistance requirements and is suitable for large-scale production. The paper on surface reaction between SnAgCu solder and metal film at420℃high temperature was published and indexed by SCI and El.
     2. We studied the film growth theory, metallography and interfacial physics. In-depth study of the reaction mechanism between the electrode layer and the ferrite, quantitative indicators of lead-free solder and the metal electrode dissolution mechanism has been done. Researches show that:active metals like Cr and Ni, are capable of capturing oxygen atoms from substrate, and they are chosen as the transition material, there will be an oxide of the material at the metal-ferrite interface, it is this layer of metal oxide greatly improve the adhesion of the film. A well-designed metallization is required to provide necessary adhesion, high-temperature treatment.
     3. Auxiliary laser etching was first proposed to solve the problem of small-sized inductor metallization. Results of its application showed great advantages over original mask sputtering method:both in producing rate and metallization quality.
     4. Based on Experimental results, we designed and installed a magnetron sputtering metallization production line, completed PLC controller programming and monitoring software. The production line has been successfully put into manufacturing. The implementation showed that it has reduced costs by more than60%, and saved more than40%of the electricity compared to electrode coating. Product quality has reached the international advanced level, created significant economic benefits. Two invention patent has been published.
引文
[1]. C.B. Carter, M.G. Norton. Ceramic Materials:Science and Engineering.2007: Springer.
    [2]. R.C. Buchanan. Ceramic Materials for Electronics; Processing, Properties, and Applications.1986:Marcel Dekker Inc.
    [3]. D. Shriver, P. Atkins. Inorganic Chemistry.2009:W. H. Freeman.
    [4]. 周志刚.铁氧体磁性材料.1981:科学出版社.
    [5]. 高陇桥.陶瓷-金属材料实用封接技术.2005:化学工业出版社.
    [6]. 董笑瑜,顾献林,范爱华,等.浅谈陶瓷金属化质量的可靠性控制.真空电子技术,2006(4):p.17-19.
    [7]. 刘征,王洪军,陈新辉,等.氧化铝陶瓷金属化及镍化技术研究.真空电子技术,2007(3):p.52-55.
    [8]. 王德苗,董树荣,任高潮.铁氧体磁芯的磁控溅射金属化工艺的研究.真空科学与技术学报,2006.26(增刊):p.87-90.
    [9]. J.Q. Li, W. Pan. Reaction mechanism of ceramic metallization by molten salt reaction. Rare Metal Materials and Engineering,2003.32(S1):p.237-240.
    [10]. A. Brenner, G.E. Riddell. Nickel plating on steel by chemical reduction. Journal of Research of the National Bureau of Standards,1946.37(1):p.31-34.
    [11]. R.C. Agarwala, V. Agarwala. Electroless alloy/composite coatings:A review. Sadhana-Academy Proceedings in Engineering Sciences,2003.28(3-4):p.475-493.
    [12].夏庆水,李海波,曹坤.多层共烧氮化铝陶瓷金属化工艺研究.电子与封装,2009.9(11):p.34-36.
    [13].中华人民共和国信息产业部.电子信息产品中有毒有害物质的限量要求.2006.SJ/T11363—2006
    [14].中华人民共和国信息产业部.电子信息产品污染控制标识要求.2006.SJ/T11364—2006
    [15]].中华人民共和国信息产业部.电子信息产品中有毒有害物质的检测方法.2006.SJ/T11365-2006
    [16].中华人民共和国信息产业部.电子信息产品污染控制重点管理目录(第一批).2009.CN-013
    [17]. I. Karakaya, W.T. Thompson. The Ag-Sn (Silver-Tin) system. Bulletin of Alloy Phase Diagrams,1987.8(4):p.340-347.
    [18]. M. Schaefer, R.A. Fournelle, J. Liang. Theory for intermetallic phase growth between Cu and liquid Sn-Pb solder based on grain boundary diffusion control. Journal of Electronic Materials,1998.27(11):p.1167-1176.
    [19]. K. Suganuma. Advances in lead-free electronics soldering. Current Opinion in Solid State and Materials Science,2001.5(1):p.55-64.
    [20]. W.K. Choi, H.M. Lee. Effect of soldering and aging time on interfacial microstructure and growth of intermetallic compounds between Sn-3.5 Ag solder alloy and Cu substrate. Journal of Electronic Materials,2000.29(10):p.1207-1213.
    [21]. X. Deng, G. Piotrowski, J. Williams, et al. Influence of initial morphology and thickness of Cu6Sn5 and Cu3Sn intermetallics on growth and evolution during thermal aging of Sn-Ag solder/Cu joints. Journal of Electronic Materials,2003. 32(12):p.1403-1413.
    [22]. D. Yu, C. Wu, C. Law, et al. Intermetallic compounds growth between Sn-3.5 Ag lead-free solder and Cu substrate by dipping method. Journal of alloys and compounds,2005.392(1):p.192-199.
    [23]. Y.G. Lee, J.G. Duh. Characterizing the formation and growth of intermetallic compound in the solder joint. Journal of Materials Science,1998.33(23):p.5569-5572.
    [24]. H.K. Kim, K.N. Tu. Kinetic analysis of the soldering reaction between eutectic SnPb alloy and Cu accompanied by ripening. Physical Review B,1996.53(23):p. 16027-16034.
    [25]. L.M. Yin, X.P. Zhang, C.S. Lu. Size and Volume Effects on the Strength of Microscale Lead-Free Solder Joints. Journal of Electronic Materials,2009. 38(10):p.2179-2183.
    [26]. C.K. Wong, J.H.L. Pang, J.W. Tew, et al. The influence of solder volume and pad area on Sn-3.8Ag-0.7Cu and NiUBM reaction in reflow soldering and isothermal aging. Microelectronics Reliability,2008.48(4):p.611-621.
    [27]. M. Zhou, X. Ma, X. Zhang. The interfacial reaction and intermetallic compound growth behavior of BGA structure Sn-3.OAg-O.5Cu/Cu solder joint at low reflow temperatures. Acta Metallurgica Sinica,2013.49(3):p.341-350.
    [28]. C.E. Ho, Y.W. Lin, S.C. Yang, et al. Effects of limited Cu supply on soldering reactions between SnAgCu and Ni. Journal of Electronic Materials,2006.35(5): p.1017-1024.
    [29]. S.C. Yang, C.C. Chang, M.H. Tsai, et al Effect of Cu concentration, solder volume, and temperature on the reaction between SnAgCu solders and Ni. Journal of Alloys and Compounds,2010.499(2):p.149-153.
    [30]. K.J. Wang, J.G. Duh. Shear and Pull Testing of Sn-3.0Ag-0.5Cu Solder with Ti/Ni(V)/Cu Underbump Metallization During Aging. Journal of Electronic Materials,2009.38(12):p.2534-2542.
    [31]. Q. Xiao, H.J. Bailey, W.D. Armstrong. Aging effects on microstructure and tensile property of Sn3.9Ag0.6Cu solder alloy. Journal of Electronic Packaging,2004. 126(2):p.208-212.
    [32]. J.W. Jang, P.G. Kim, K.N. Tu, et al. Solder reaction-assisted crystallization of electroless Ni-P under bump metallization in low cost flip chip technology. Journal of Applied Physics,1999.85(12):p.8456-8463.
    [33]. Y.-D. Jeon, K.-W. Paik, K.-S. Bok, et al. Studies on Ni-Sn intermetallic compound and P-rich Ni layer at the electroless nickel UBM-solder interface and their effects on flip chip solder joint reliability. in Electronic Components and Technology Conference,2001. Proceedings.,51st.2001. Orlando, FL.
    [34]. C.-J. Chen, K.-L. Lin. The reactions between electroless Ni-Cu-P deposit and 63Sn-37Pb flip chip solder bumps during reflow. Journal of electronic materials, 2000.29(8):p.1007-1014.
    [35]. K.C. Hung, Y.C. Chan, C.W. Tang, et al Correlation between Ni,Sn, intermetallics and Ni3P due to solder reaction-assisted crystallization of electroless Ni-P metallization in advanced packages. Journal of Materials Research,2000.15(11): p.2534-2539.
    [36]. K. Hung, Y. Chan. Study of Ni3P growth due to solder reaction-assisted crystallization of electroless Ni-P metallization. Journal of materials science letters,2000.19(19):p.1755-1757.
    [37]. K.-J. Wang, J.-G. Duh, B. Sykes, et al. Impact Testing of Sn-3.0Ag-0.5Cu Solder with Ti/Ni(V)/Cu Under Bump Metallization After Aging at 150℃. Journal of Electronic Materials,2010.39(12):p.2558-2563.
    [38].马元远,王德苗,金浩,等.工艺参数对磁控溅射金属化薄膜性能的影响.真空,2008.45(4):p.70-74.
    [39].马元远.铁氧体陶瓷无害金属化技术的研究.硕士学位论文.2008:浙江大学.
    [40].王德苗,岑嘉宝.钛酸钡基PTC陶瓷溅射金属化研究.算空,2010.47(4):p.36-38.
    [41]. R. Novakovic, T. Lanata, S. Delsante, et al. Interfacial reactions in the Sb-Sn/(Cu, Ni) systems:Wetting experiments. Materials Chemistry and Physics,2012. 137(2):p.458-465.
    [42]. Y.-W. Lin, K.-L. Lin. Nucleation behaviors of the intermetallic compounds at the initial interfacial reaction between the liquid Sn3.0Ag0.5Cu solder and Ni substrate during reflow. Intermetallics,2013.32:p.6-11.
    [43]. S.A. Belyakov, C.M. Gourlay. NiSn4 Formation in As-Soldered Ni-Sn and ENIG-Sn Couples. Journal of Electronic Materials,2012.41(12):p.3331-3341.
    [44]. S.H. Wu, Y.J. Hu, C.T. Lu, et al. Electromigration Study on Sn(Cu) Solder/Ni(P) Joint Interfaces. Journal of Electronic Materials,2012.41(12):p.3342-3347.
    [45]. C.-P. Lin, C.-M. Chen. The cross-interactions in the Ni/Sn/Cu diffusion couples with an electroless palladium surface finish. Journal of Alloys and Compounds, 2013.547:p.37-42.
    [46]. V. Vuorinen, H. Yu, T. Laurila, et al. Formation of Intermetallic Compounds Between Liquid Sn and Various CuNi x Metallizations. Journal of Electronic Materials,2008.37(6):p.792-805.
    [47]. A.V. Belyakov, I.G. Kuznetsova, R.Y. Kuftyrev, et al. Metallization of aluminun nitride ceramic (Review). Glass and Ceramics,2012.69(7-8):p.270-273.
    [48]. D.M. Mattox. The Historical Development of Controlled Ion-Assisted and Plasma-Assisted PVD Process. in Proceedings of the 40th Annual Technical Conference, Society of Vacuum Coaters.1997. New Orleans, LA.
    [49]. P.S. McLeod, L.D. Hartsough. High-rate sputtering of aluminum for metallization of integrated-circuits. Journal of Vacuum Science & Technology,1977.14(1):p. 263-265.
    [50]. R.K. Waits. Planar magnetron sputtering. Journal of Vacuum Science & Technology,1978.15(2):p.179-187.
    [51]. P.J. Kelly, R.D. Arnell. Magnetron sputtering:a review of recent developments and applications. Vacuum,2000.56(3):p.159-172.
    [52]. S. Schiller, K. Goedicke, J. Reschke, et al. Pulsed magnetron sputter technology. Surface & Coatings Technology,1993.61(1-3):p.331-337.
    [53]. W.D. Sproul, M.E. Graham, M.S. Wong, et al. Reactive direct-current magnetron sputtering of aluminum-oxide coatings. Journal of Vacuum Science & Technology a-Vacuum Surfaces and Films,1995.13(3):p.1188-1191.
    [54]. D. Depla, R. De Gryse. Target poisoning during reactive magnetron sputtering: Part Ⅰ:the influence of ion implantation. Surface and Coatings Technology,2004. 183(2):p.184-189.
    [55]. D. Depla, R. De Gryse. Target poisoning during reactive magnetron sputtering: Part Ⅱ:the influence of chemisorption and gettering. Surface and Coatings Technology,2004.183(2):p.190-195.
    [56]. D. Guttler, B. Abendroth, R. Grotzschel, et al. Mechanisms of target poisoning during magnetron sputtering as investigated by real-time in situ analysis and collisional computer simulation. Applied physics letters,2004.85(25):p.6134-6136.
    [57]. S. Schiller, K. Goedicke, J. Reschke, et al. Pulsed magnetron sputter technology. Surface and Coatings Technology,1993.61(1):p.331-337.
    [58]. P. Kelly, R. Arnell. Magnetron sputtering:a review of recent developments and applications. Vacuum,2000.56(3):p.159-172.
    [59]. J.T. Gudmundsson, N. Brenning, D. Lundin, et al. High power impulse magnetron sputtering discharge. Journal of Vacuum Science & Technology A,2012.30(3).
    [60]. A.W. Adamson, A.P. Gast. Physical chemistry of surfaces.6th ed.1997:Wiley-Interscience.
    [61]. H.E. Stanley, P. Meakin. Multifractal phenomena in physics and chemistry. Nature, 1988.335(6189):p.405-409.
    [62]. G.A. Somorjai, Y. Li. Introduction to surface chemistry and catalysis.2nd ed. 2010:Wiley.
    [63]. K. Zeng, K.N. Tu. Six cases of reliability study of Pb-free solder joints in electronic packaging technology. Materials Science & Engineering R-Reports, 2002.38(2):p.55-105.
    [64]. Y. Kariya, C. Gagg, W.J. Plumbridge. Tin pest in lead-free solders. Soldering and Surface Mount Technology,2001.13(1):p.39-40.
    [65]. A.A. El-Daly, A.M. El-Taher. Improved strength of Ni and Zn-doped Sn-2.0Ag-0.5Cu lead-free solder alloys under controlled processing parameters. Materials & Design,2013.47:p.607-614.
    [66]. L. Yin, S. Wei, Z. Xu, et al. The effect of joint size on the creep properties of microscale lead-free solder joints at elevated temperatures. Journal of Materials Science-Materials in Electronics,2013.24(4):p.1369-1374.
    [67]. S. Narayan, K.N. Prabhu. Comparison of spreading behaviour and interfacial microstructure in Sn-0.7Cu, Sn-0.3Ag-0.7Cu and Sn-2.5Ag-0.5Cu lead free solder alloys on Fe-42Ni substrate. Materials Science and Technology,2013. 29(4):p.464-473.
    [68]. J. Glazer. Metallurgy of low-temperature Pb-free solders for electronic assembly. International Materials Reviews,1995.40(2):p.65-93.
    [69]. M. Abtew, G. Selvaduray. Lead-free solders in microelectronics. Materials Science & Engineering R-Reports,2000.27(5-6):p.95-141.
    [70]. T. Laurila, V. Vuorinen, J.K. Kivilahti. Interfacial reactions between lead-free solders and common base materials. Materials Science & Engineering R-Reports, 2005.49(1-2):p.1-60.
    [71]. K.S. Kim, S.H. Huh, K. Suganuma. Effects of intermetallic compounds on properties of Sn-Ag-Cu lead-free soldered joints. Journal of Alloys and Compounds,2003.352(1-2):p.226-236.
    [72]. K. Suganuma. Advances in lead-free electronics soldering. Current Opinion in Solid State & Materials Science,2001.5(1):p.55-64.
    [73]. K.N. Tu, F. Ku, T.Y. Lee. Morphological stability of solder reaction products in flip chip technology. Journal of Electronic Materials,2001.30(9):p.1129-1132.
    [74]. Y. Tian, J. Chow, X. Liu, et al. Study of Intermetallic Growth and Kinetics in Fine-Pitch Lead-Free Solder Bumps for Next-Generation Flip-Chip Assemblies. Journal of Electronic Materials,2013.42(2):p.230-239.
    [75]. C.-c. Chen, Y.-t. Chen. Alternating reaction phases in Sn-Cu/Ni-Co solid-state reactions. Journal of Alloys and Compounds,2012.545:p.28-31.
    [76]. J.H. Lee, J.H. Park, Y.H. Lee, et al. Stability of channels at a scalloplike Cu6Sn5 layer in solder interconnections. Journal of Materials Research,2001.16(5):p. 1227-1230.
    [77]. J.F. Li, P.A. Agyakwa, C.M. Johnson. Effect of trace Al on growth rates of intermetallic compound layers between Sn-based solders and Cu substrate. Journal of Alloys and Compounds,2012.545:p.70-79.
    [78]. S. Kumar, J. Jung. Mechanical and electronic properties of Ag3Sn intermetallic compound in lead free solders using ab initio atomistic calculation. Materials Science and Engineering B-Advanced Functional Solid-State Materials,2013. 178(1):p.10-21.
    [79]. J. Glazer. Metallurgy of low temperature Pb-free solders for electronic assembly. International Materials Reviews,1995.40(2):p.65-93.
    [80]. C.E. Ho, C.W. Fan, W.H. Wu, et al. Reliability evaluation on a submicron Ni(P) thin film for lead-free soldering. Thin Solid Films,2013.529:p.364-368.
    [81]. G. Zeng, S. Xue, L. Zhang, et al. Recent advances on Sn-Cu solders with alloying elements:review. Journal of Materials Science-Materials in Electronics,2011. 22(6):p.565-578.
    [82]. C.M. Gourlay, K. Nogita, A.K. Dahle, et al. In situ investigation of unidirectional solidification in Sn-0.7Cu and Sn-0.7Cu-0.06Ni. Acta Materialia,2011.59(10): p.4043-4054.
    [83]. T. Ventura, Y.-H. Cho, C. Kong, et al. Formation of Intermetallics in Sn-0.9Cu and Sn-0.7Cu-0.08Ni Solders. Journal of Electronic Materials,2011.40(6):p. 1403-1408.
    [84]. C.E. Ho, C.C. Wang, M.A. Rahman, et al. Field-emission transmission electron microscopy study of the reaction sequence between Sn-Ag-Cu alloy and an amorphous Pd(P) thin film in microelectronic packaging. Thin Solid Films,2013. 529:p.369-373.
    [85]. T. Ventura, S. Terzi, M. Rappaz, et al. Effects of Ni additions, trace elements and solidification kinetics on microstructure formation in Sn-0.7Cu solder. Acta Materialia,2011.59(10):p.4197-4206.
    [86]. J.-W. Yoon, S.-W. Kim, S.-B. Jung. Effects of reflow and cooling conditions on interfacial reaction and IMC morphology of Sn-Cu/Ni solder joint. Journal of Alloys and Compounds,2006.415(1-2):p.56-61.
    [87]. P.G. Kim, J.W. Jang, T.Y. Lee, et al. Interfacial reaction and wetting behavior in eutectic SnPb solder on Ni/Ti thin films and Ni foils. Journal of Applied Physics, 1999.86(12):p.6746-6751.
    [88]. Y.D. Jeon, S. Nieland, A. Ostmann, et al. A study on interfacial reactions between electroless Ni-P under bump metallization and 95.5Sn-4.0Ag-0.5Cu alloy. Journal of Electronic Materials,2003.32(6):p.548-557.
    [89]. K. Zeng, V. Vuorinen, J.K. Kivilahti, et al. Intermetallic reactions between lead-free SnAgCu solder and Ni(P)/Au surface finish on PWBs. in 51st Electronic Components & Technology Conference.2001. Orlando, FL.
    [90]. M. Li, F. Zhang, W.T. Chen, et al. Interfacial microstructure evolution between eutectic SnAgCu solder and Al/Ni(V)/Cu thin films. Journal of Materials Research,2002.17(7):p.1612-1621.
    [91]. W.T. Chen, C.E. Ho, C.R. Kao. Effect of Cu concentration on the interfacial reactions between Ni and Sn-Cu solders. Journal of Materials Research,2002. 17(2):p.263-266.
    [92]. B.M. Chung, J. Choi, J.Y. Huh. Fast Concurrent Growth of Ni3Sn4 and Voids During Solid-State Reaction Between Sn-Rich Solder and Ni Substrates. Journal of Electronic Materials,2012.41(1):p.44-52.
    [93]. S.W. Chen, C.C. Chen, C.H. Chang. Interfacial reactions in Sn/Ni-7 wt.%V couple. Scripta Materialia,2007.56(6):p.453-456.
    [94]. G. Janssen. Stress and strain in polycrystalline thin films. Thin Solid Films,2007. 515(17):p.6654-6664.
    [95]. D. Winau, R. Koch, A. Fuhrmann, et al. Film growth studies with intrinsic stress measurement:Polycrystalline and epitaxial Ag, Cu, and Au films on mica (001). Journal of applied physics,1991.70(6):p.3081-3087.
    [96]. J.A. Floro, E. Chason, R.C. Cammarata, et al. Physical origins of intrinsic stresses in Volmer-Weber thin films. MRS bulletin,2002.27(01):p.19-25.
    [97]. M.H.D. Bassani, J.H. Perepezko, A.S. Edelstein, et al. Initial phase evolution during interdiffusion reactions. Scripta Materialia,1997.37(2):p.227-232.
    [98]. M.H.D. Bassani, J.H. Perepezko, A.S. Edelstein, et al. Phase selection and sequence of phase formation in Al/Ni multilayers. Materials Science Forum,1996. 225:p.135-140.
    [99]. B.M. Khusid. B.B. Khina. Kinetic-model for intermetallic-compound formation during interdiffusion in a binary-system. Physical Review B,1991.44(19):p. 10778-10793.
    [100].D.M. Mattox. Handbook of physical vapor deposition (PVD) processing.2010: William Andrew.
    [101]. J.-c. Zhou, H.-b. Chen, Y.-z. Li. Diffusion barrier performance of nanoscale TaNx thin-film. Transactions of Nonferrous Metals Society of China,2007.17(4):p. 733-738.
    [102].W. Qingxiang, L. Shuhua, W. Xianhui, et al. Diffusion barrier performance of amorphous W-Ti-N films in Cu metallization. Vacuum,2010.84(11):p.1270-1274.
    [103].H. Yan, Y.Y. Tay, Y. Jiang, et al. Copper diffusion barrier performance of amorphous Ta-Nithin films. Applied Surface Science,2012.258(7):p.3158-3162.
    [104].H. Xu, C. Liu, V.V. Silberschmidt, et al. Intermetallic phase transformations in Au-Al wire bonds. Intermetallics,2011.19(12):p.1808-1816.
    [105].F. Chang, M. Levy, B. Jackman, et al. Assessment of corrosion resistant coatings for a depleted U-0.75 Ti alloy. Surface and Coatings Technology,1989.39-40, Part 2(0):p.721-731.
    [106].S. Shaikhutdinov, H.J. Freund. Ultrathin Oxide Films on Metal Supports: Structure-Reactivity Relations. Annual Review of Physical Chemistry,2012.63: p.619-633.
    [107].Z. Zhu, F. Tao, F. Zheng, et al. Formation of Nanometer-Sized Surface Platinum Oxide Clusters on a Stepped Pt(557) Single Crystal Surface Induced by Oxygen: A High-Pressure STM and Ambient-Pressure XPS Study. Nano Letters,2012. 12(3):p.1491-1497.
    [108].C.T. Campbell. Transition metal oxides:Extra thermodynamic stability as thin films. Physical Review Letters,2006.96(6).
    [109].I. Spolveri, A. Atrei, B. Cortigiani, et al. Surface composition of the phases formed by solid state reaction at the Cr/ZnO(000(1)over-bar) interface studied by low energy ion scattering and X-ray photoelectron spectroscopy. Surface Science, 1998.412-413:p.631-638.
    [110].D. Wett, A. Demund, R. Szargan. Reactions at the interface of ultrathin Fe films deposited on ZnO (0001) and ZnO (000-1) single crystal substrates. Microchimica Acta,2006.156(1-2):p.57-60.
    [111].R.J. Lad. Interactions at metal/oxide and oxide/oxide interfaces studied by ultrathin film growth on single-crystal oxide substrates. Surface Review and Letters,1995.2(01):p.109-126.
    [112].C.Y. Liu, K.N. Tu, T.T. Sheng, et al. Electron microscopy study of interfacial reaction between eutectic SnPb and Cu/Ni(V)/Al thin film metallization. Journal of Applied Physics,2000.87(2):p.750-754.
    [113].V. Marian. The Ferromagnetic Curie Points and Absolute Saturation of Several Nickel Alloys. Ann. phys.,1937.7:p.459-527.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700