用户名: 密码: 验证码:
高产辅酶Q_(10)工程菌的构建及发酵工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
辅酶Q10对生物体具有多重生理功能,其在医药、化妆品、食品、保健品等领域的应用十分广泛,但由于缺乏高产辅酶Q10的菌种,长期限制了辅酶Q10及其相关产业的发展壮大。
     本实验克隆了辅酶Q10合成过程的关键酶基因并对各酶的保守结构进行了分析。克隆的基因包括放射型根瘤菌(R. radiobacter)聚十异二烯基焦磷酸合成酶基因(ddsA)、1-脱氧-D-木酮糖-5-磷酸合成酶基因(dxs)、对羟基苯甲酸聚异戊烯基焦磷酸转移酶基因(ubiA)和大肠杆菌(E. coli)法呢基焦磷酸合成酶基因(ispA)、异戊二烯焦磷酸异构酶基因(idi)。并在此基础上,对这些基因表达产物的保守结构进行了分析。聚十异戊二烯焦磷酸合成酶与法呢基焦磷酸合成酶同属于反式聚异戊二烯焦磷酸合成酶超家族,二者拥有相似保守结构,不同的是二者的链长决定区域的结构相差较大。R. radiobacterDXP合酶的保守结构分析表明,该酶具有两个焦硫胺素结合结构域,且该酶的N端与转酮醇酶N-端及丙酮酸脱氢酶E1亚单位具有的高度保守性。E. coli IDI属于Nudix水解酶超家族成员,含有Nudixmotif结构GHPQLGESNEDAVIRRCRYELGV。通过强化E. coli DE3Q10CoQ10合成过程中的关键酶ddsA、ubiA、ispA、idi等,可以使大肠杆菌CoQ10合成能力由出发菌株的0.52mg/g(干菌体),提高至1.18mg/g(干菌体),提高达126%。
     对R. r DPS的热稳定性进行了改造。对ddsA基因表达产物DPS催化的聚异戊二烯焦磷酸链长不专一的现象进行了重点研究。利用基因敲入技术,使ddsA置换大肠杆菌DE3ispB基因构建合成辅酶Q10的菌种E. coli DE3Q10。通过探索温度、溶氧、pH和限制性营养基质浓度(蛋白胨)四者对E. coli DE3Q10产辅酶Q种类的影响,发现R.radiobacter DPS的催化专一主要受温度影响显著。由此推测该酶的链长决定机理除受传统的“空腔”结构理论影响之外,还受其结构热稳定性的影响。在此基础上,通过同源建模分析其结构中热稳定因子(B-Factor)高的氨基酸残基,并与已知稳定的DPS序列等位对比,确定了Q64P、M92L、W342L、K343R四个潜在的热稳定性增加突变点。经过将突变体基因敲入E. coli DE3,置换其ispB,用HPLC检测其合成的辅酶Q种类发现,M92L、W342L与K343R形成的突变体,即使在高温下,其合成产物也只有辅酶Q10,而无辅酶Q9。通过结构比较发现,其热稳定性增强的原因是突变后减少了空间位阻,增加了氢键数量,使局部能量更合理。
     构建了受溶氧调控的辅酶Q10高产工程菌E.coli DE3104。通过同源重组的原理,以辅酶Q合成的关键酶基因ddsA、ubiA和idi、ispA依次取代nirB操纵子的nirB、nirD、nirC结构基因,相应构建菌种E. coli DE3Q101、Q102、Que103;以dxs取代E. coliDE3Q103的narG调控操纵子中的结构基因narG构建菌种E. coli DE3Q104。构建了受溶氧和硝酸盐协同诱导的辅酶Q10关键酶强化系统,以增强其辅酶Q10合成能力。并对构建的菌种DE3Q104,通过PCR扩增和A-T克隆,进行测序确认其结构正确无误。对比E. coli DE3Q10、DE3Q101、DE3Q102、DE3Q103、DE3Q104,其与各自的出发菌株相比,DE3Q101辅酶Q10产量平均提高63.8%,DE3Q102平均提高19.9%,DE3Q103平均提高50.0%,DE3Q104平均提高52.9%。与原始出发菌株DE3Q10相比,则分别提高了63.8%、96.5%、194.7%、350.7%。这表明,通过在nirB和narG两个受限制性溶氧和硝酸盐双重调控操纵子中,以辅酶Q10合成的关键酶基因替换其结构基因,并以限制性溶氧和硝酸盐进行诱导,可以正确表达这些基因的产物,并可以在后续的有氧条件下,正常催化合成辅酶Q10。
     确立了E. coli DE3Q104高产辅酶Q10的工艺路线和条件。工艺路线为先将构建的大肠杆菌培养至OD600至0.3左右,然后通过厌氧环境和硝酸盐对整合入nirB和narG两个操纵子的辅酶Q10关键酶基因进行诱导表达,然后再转入好氧环境中,利用诱导所产生的酶进行催化合成辅酶Q10,反复厌氧诱导与好氧合成的过程,直至获得辅酶Q10最大产量。最佳工作条件为:4mM硝酸盐浓度结合无氧条件下诱导25min,而后在溶氧充足条件下培养2h,后重复上述诱导合成过程3次。干菌体中辅酶Q10的最高产量可达4.5mg/g以上。实验同时发现,对于构建的菌株E. coli DE3Q104,温度和pH对其合成辅酶Q10的能力没有显著影响。
     本实验通过基因敲入方式,利用大肠杆菌的nirB和narG两个操纵子进行多酶代谢途径重组和表达构建出了辅酶Q10高产菌种,建立了改造微生物菌种、增强工程菌遗传稳定性和提高产物产量的新方法,为其它代谢产物生产菌种的构建提供了有益的借鉴,具有重要的科学和适用价值。
Coenzyme Q10has multiple physiological functions of organisms, and now it is usedwidely in medicine, cosmetics, food, health products and other fields, but due to the lack ofhigh yield of coenzyme Q10strain, the developments of coenzyme Q10and its relatedindustry have been limited for a long time.
     In this experiment, based on cloning of decaprenyl pyrophosphate synthase gene (ddsA),1-deoxy-D-xylulose-5-phosphate synthase gene (dxs), p-hydroxybenzoatepolyprenylpyrophosphate transferase gene (ubiA) from Rhizobium radiobacter and farnesylpyrophosphate synthase gene (ispA), isopentenyldiphosphateisomerase gene (idi) fromEscherichia coli, the length uncertainty of polyprenyl pyrophosphate catalyzed by ddsA geneexpressed DPS was focused on. The enzymes conserved domain were analyzed bybioinformatics. Decaprenyldiphosphate synthase and farnesyldiphosphate synthase possessthe similar conserved domain, except for the chain length determination region. DXP synthasehas two thiamine binding regions. Its N-terminal is highly conserved with the N-terminal oftransketolase and E1subunit of pyruvate dehydrogenase. E. coli IDI belongs to Nudixdehydrogenase superfamily with the nudix motif GHPQLGESNEDAVIRRCRYELGV.Usinggene knock-in technology, thestrain E. coli DE3Q9was constructed with strain E. coli DE3ispB replaced by ddsA.After strengthened with key enzymes genes of CoQ10synthesis in E.coli DE3Q9, such as ddsA、ubiA、ispA、idi, production of CoQ10can be increased126%, to1.180.52mg·g-1DCM from0.52mg·g-1DCM.
     By exploring the effects of temperature, dissolved oxygen, pH and limiting nutrientsubstrate concentration (peptone) on the E. coli DE3Q9, it was found that R. radiobacterDPScatalytic specificity is mainly affected by temperature significantly.It is suggested that thepolyprenyl chain length is determined not only by the polyprenydiphosphate synthase’straditional "cavity" structure theory, but also by its structural thermal stability. Based on thehomology modeling of the R. radiobacter DPS and the analysis of the structural B-factor,four potential mutation point for increasing the thermal stability, i.e. Q64P, M92L, W342Land K343R, were determined. After the replacement ofispB in E. coli DE3by mutant genes,it was found that the mutants of M92L, W342L and K343R could synthesize only CoQ10rather than CoQ9even under high temperature. Compared with structure, the reason ofstrength of mutant thermal stability is the decreasing of stereospecific blockade and increasingof H-bond number. This made the local energy of mutant more reasonable than the wild type.
     According to the principle of homologous recombination, the key enzymes’ genes ofCoQ10biosynthesis, ddsA, ubiA andidi, ispA were knocked-in the genome of E. coli DE3Q10by the replacement of the structural genes ofnirB operon, namely nirB, nirDandnirC in turns,and correspondingly strains E. coli DE3Q101, E. coli DE3Q102and E. coli DE3Q103wereconstructed. Strain E. coli DE3Q104was constructed bydxsgene substituting for narGgen innarGoperon of E. coli DE3Q103. The key enzymes enhancement system of CoQ10biosynthesis under regulation of both limited dissolved oxygen and nitrate was constructed forincreasing the CoQ10yield. The structures of gene knock-in were determined by PCR andsequences analysis.
     Compared with them starting strain, the CoQ10products of E. coli DE3Q101, DE3Q102,DE3Q103and DE3Q104increased63.8%,19.9%,50.0%and52.9%respectively in average.Compared with the E. coli DE3Q10, the CoQ10products of E. coli DE3Q101, DE3Q102,DE3Q103and DE3Q104increased63.8%,96.5%,194.7%and350.7%respectively. Thisshows that the key enzyme genes knocked-in nirBand narGoperon could be expressed underthe induction of both anaerobic condition and nitrate correctly, and could catalyze thebiosynthesis of CoQ10in the following aerobic cultivation normally.
     The optimal process conditions for high-yield CoQ10of the strain E. coli DE3Q104areinduction under anaerobic condition and4mM nitrate for25min, then aerobic culture for2hr,and repeating the previous operation3times. More than4.5mg·g-1of CoQ10DCM can beobtained. At the same time, it was found that the pH and temperature had no effects on theability of E. coli DE3Q104CoQ10biosynthesis.
     With multi-enzymes genes integrated innirB andnarG operon of E. coliandexpressedsimultaneously through gene knock-in, high-yieldCoQ10strain was constructed. Anew technology was verified for transformation of microbial strains, strength of engineeringbacteria genetic stability, improvement of products yield. It provides a useful reference for thestrains construction for other metabolites production. It has important scientific and appliedvalue.
引文
[1] Yamamoto Y., Yamashita S..Plasma ubiquinone to ubiquinol ratio in patients with hepatitis,
    [2]楚勇.辅酶Q10的立体选择性工业合成──半合成与全合成研究[D].上海:复旦大学,2004.
    [3]Collins M. D. and Jones D..Distribution of isoprenoid quinone structural types in bacteriaand their taxonomic implications[J].Microbiological Reciews,1981,(45)(3):316-354.
    [4] Rousseau G. and Varin F..Determination of ubiquinone-9and10levels in rat tissues andblood by High-Performance Liquid Chromatography with ultraviolet [J]. Journal ofchromatographic science,1998,26(5):247-252.
    [5] Suzuki M. and Nakase T..A phylogenetic study of ubiquinone-7species of the genusCandida based on18S ribosomal DNA sequence divergence [J]. Journal of General andApplied Microbiology,2002,48(1):55-65.
    [6]Ernster L and Dallner G. Biochemical, physiological and medical aspects of ubiquinonefunction[J]. Biochimica et Biophysica Acta,1995,1271(1):195-204.
    [7]Lichtenthaler H. K., Rohmer M., Schwender J..Two independent biochemical pathways forisopentenyl diphophate and isoprenoid biosythesis in higher plants[J]. Physiologia Plantarum,1997,101(3):643-652.
    [8]Rohmer M., Knani M., Simonin P., et al. Isoprenoid biosynthesis in bacteria: a novelpathway for the early steps leading to isopentenyl diphosphate[J]. Biochemical Journal,1993,295(2):517-524.
    [9] Durbecq V., Sainz G., Oudjama Y., et al. Crystal structure of isopentenyl diphosphate:dimethylallyl diphosphate isomerase [J]. The EMBO Journal,2001,15:1530-1537.
    [10]Gu W., Wu Q.N., Chao J.G., et al. Molecular cloning of farnesyl pyrophosphate synthasefrom Alisma orientale (Sam.) Juzep. and its distribution pattern and bioinformatics analysis[J]. Acta Pharmacol Sin2011,46:605-612.
    [11]Yoon S.H., Lee Y.M., Kim J.E., et al. Enhanced lycopene production in Escherichia coliengineered to synthesize isopentenyl diphosphate and dimethylallyl diphosphate frommevalonate [J]. Biotechnology and Bioengineering,2006,94:1025-1032.
    [12]Kawamukai M..Biosynthesis, Bioproduction and Novel Roles of Ubiquinone[J]. Journalof Bioscience and Bioengineering,2002,94(6):511~517.
    [13]Sanchez V.M., Crespo A., Gutkind J.S., et al. Investigation of the catalytic mechanism offarnesyl pyrophosphate synthase by computer simulation [J]. Journal of Physics andChemics B2006,110:18052-18057.
    [14]Okada K., Kainou T., Tanaka K., et al. Molecular cloning and mutational analysis of theddsA gene encoding decaprenyl diphosphate synthase from Gluconobacter suboxydans[J].European Journal of Biochemistry,1998,255(1):52-59.
    [15]Kainou T., Okada K., Suzuki K., et al. Dimer formation of octaprenyl diphosphatesynthase(IspB) is essential for chain length determination of ubiquinone[J]. Journal ofBiological Chemistry,2001,276(16):7876-7873.
    [16]Ogura K., Koyama T.. Enzymatic aspects of isoprenoid chain elongation[J]. ChemicalReviews,1998,98(4):1263-1276.
    [17]Sasaki D., Fujihashi M., Okuyama N., et al. Crystal structure of heterodimeric hexaprenyldiphosphate synthase from Micrococcus luteus B-P26reveals that the small subunit isdirectly involved in the product chain length regulation [J].The Journal of BiologicalChemistry,2011,286(9):3729-3740.
    [18]Chang H.T., Guo R.T., Ko T.P., et al. Crystalstructure of type-III geranylgeranylpyrophosphate synthase from Saccharomyces cerevisiae and the mechanism of product chainlength determination [J]. The Journal of Biological Chemistry,2006,281(22):14991-15000.
    [19]Tarshis L. C., Proteau P. J., Kellogg B. A., et al. Regulation of product chain length byisoprenyl diphosphate synthases[J]. Biochemistry,1996,93(26):15018-15023.
    [20]Guo R.T., Kuo C.J., Chou C.C., et al. Crystal structure of octaprenyl pyrophosphatesynthase from hyperthermophilic Thermotoga maritima and mechanism of product chainlength determination [J]. The Journal of Biological Chemistry,2004,279(6):4903-4912.
    [21]Suzuki N., Uefuji H., Nishikawa T., et al. Construction and analysis of EST libraries ofthe trans-polyisoprene producing plant, Eucommia ulmoides oliver [J]. Planta,2012,236(5):1405-1417.
    [22]Yoshida H., Kotani Y., Ochiai K., et al. Production of ubiquinone-10using bacteria[J].Journal of Gene Application and Microbiology,1998,44(1):19-26.
    [23]Young I. G., Stroobant P., Macdonald C. G., et al. Pathway for ubiquinone biosynthesis inEscherichia coli K-12: Gene-Enzyme relationships and intermediates[J]. Journal ofBacteriology,1973,114(1):42-52.
    [24]Mitchell P.. Protonmotive redox mechanism of the cytochrome b-c1complex in therespiratory chain: protonmotive ubiquinone cycle [J]. FEBS Letters,1975,56(1):1-6.
    [25]Hackenbrock C.R., Chazotte B., Gupte S.S. et al. The random collision model and acritical assessment of diffusion and collision in mitochondriajn l electron transport [J]. Journalof Bioenergy and Biomembrane,1986,18:331–368.
    [26]Sch gger H., Pfeiffer K..Supercomplexes in the respiratory chains of yeast andmammalian mitochondria [J]. The EMBO Journal,2000,19:1777–1783.
    [27]Lass A., Sohal R.S., Comparisons of Coenzyme Q bound to mitochondrialmembraneproteins among different mammalian species [J]. Free Radical Biology and Medicine,1999,27(1-2):220–226.
    [28]Fisher N., Rich P.R..A motif for quinone binding sites in respiratory andphotosyntheticsystems [J]. Journal of Molecular Biology,2000,296(4):1153–1162.
    [29]James A. M., Smith R. A. J., Murphy M. P..Antioxidant and prooxidant propertiesofmitochondrialcoenzyme Q [J]. Archives of Biochemstry and Biophycs,2004,423(1):47–56.
    [30]Frei B., Kim M. C., Ames B. N.. Ubiquinol-10is an effective lipid-solubleantioxidant atphysiological concentrations [J]. Proceedings of the National Academy of Sciences of theUnited States of America,1990,87(12):4879–4883.
    [31]Maroz A., Anderson R., Smith R. A. J., et al. Reactivity of ubiquinone and ubiquinol withsuperoxide and the hydroperoxyl radical: implications for in vivo antioxidant activity [J]. FreeRadical Biology and Medicine,2009,46:105-109.
    [32]Rosario B., Tito F., Laura P., et al. Concomitant effect of topical ubiquinone Q10andvitamin E to prevent keratocyte apoptosis after eximer laser photoablation in rabbits [J].Journal of Refractive Surgery,200218(2):135-139.
    [33]Kooncumchoo P., Sharma S., Porter J., et al. Coenzyme Q10provides neuroprotcetion iniron-induced apoptosis in dopaminergic nreuons [J]. Journal of Molecular Neuroscience,2005,28(2):125-141.
    [34]Chen C.C., Liou S.W., Chen C.C., et al. Coenzyme Q10reduces ethanol-inducedapoptosis in corneal fibroblasts [J]. PLoS one,2011,6(4):1-12.
    [35]Papucci L., Schiavone N., Witort E., et al. Coenzyme Q10prevents apoptosis byinhibiting mitochondrial depolarization independently of its free radical scavenging property[J]. The Journal of Biological Chemistry,2003,278(30):28220-28228.
    [36]Echtay K.S., Winkler E., Frischmuth K., et al. Uncoupling proteins2and3are highlyactive H+transporters and highly nucleotide sensitive when activated by coenzymeQ(ubiquinone)[J]. Proceedings of the National Academy of Sciences of the United States ofAmerica,2001,98:1416-1421.
    [37]Doring F., Schmelzer C., Lindner I., et al. Functional connections and pathways ofcoenzyme Q10-inducible genes: an in-silico study [J]. IUBMB Life,2007,59:628-633.
    [38]Ito K. and Inaba K..The disulfide bond formation (Dsb) system [J]. Current Opinion inStructural Biology,2008,18(4):450-458.
    [39]Xie T., Yu L., Bader M.W., et al. Identification of the ubiquinone-binding domain in thedisulfide catalyst disulfide bond protein B[J]. Journal of Biological Chemistry,2002,277(8):1649-1652.
    [40]Turunen M., Wehlin L., Sjoberg M., et al. Beta2-ingegrin and lipid modifications indicatea non-antioxidant mechanism for the anti-atherogenic effect of dietary coenzyme Q10[J].Biochemical and Biophysical Research Communications,2002,296:255-260.
    [41]Chew G.T., Hamilton S.J., Watts G.F..Therapeutic regulation of endothelial dysfunction intype2diabetes mellitus [J]. Diabetes and Vascular Research,2007,4:89-102.
    [42]Bentinger M., Brismar K., Dallner G..The antioxidant role of coenzyme Q [J].Mitochondrion,2007,7S:S41-S50.
    [43]Tiano L., Belardinelli R., Carnevali P., et al. Effect of coenzyme Q10administration onendothelial function and extracelluar superoxide dismutase in patients with ischaemic heartdisease: a double-blind, randomized controlled study [J]. European Heart Journal,2007,28(18):2249-2255.
    [44] Ogasahara, S., Angel A. G., Frens D., et al. Muscle coenzyme Q deficiency in familiarmitochondrial encephalomyopathy[J]. Proceedings of the National Academy of Science of theUnited State of America,1989,86(7):2379-2382,
    [45]Moreira P.I., Zhu X., Wang X., et al. Mitochondria: a therapeutic target inneruodegeneration [J]. Biochimica et Biophysica Acta–Molecular Basis of Disease,2010,1802(1):212-220.
    [46]Sourris K. C., Harcourt B.E., Tang P.H., et al. Ubiquinone (coenzyme Q10) prevents renalmitochondrial dysfunction in an experimental model of type2diabetes [J]. Free RadicalBiology and Medicine,2012,52(3):716-723.
    [47]Nicolson G. L., Conklin K.A.. Molecular replacement in cancer therapy: reversing cancermetabolic and mitochondrial dysfunction, fatigure and the adverse effects of cancer therapy[J]. Current Cancer Therapy Reviews,2008,4(1):66-76.
    [48]Lewin A, Lavon H.The effect of coenzyme Q10on sperm motility and function[J].Molecular Aspects of Medicine,1997,18:213-219.
    [49]Yce J W. Dehydroephiandrosterone and ubiquinone compositions for treating asthma andbronoconstriction [P]. U.S.:200060111306A1,2005.
    [50] Ruegg R.and Gliir U.. Synthese von ubichinon(45) und ubichinon(50)[J]. HelveticaChimica Acta,1959,42(7):2616-2621.
    [51] Naruta Y. and Maruyama K..Region-and sterocontrolled polyprenylation of quinines [J].Chemistry Letters,1979,25(1):885-887.
    [52]Lipshutz B.H., Bulow G., Fermandez-Lazaro F., et al. Convergent Approach to CoenzymeQ [J]. Journal of the American Chemical Society,1999,121(50):11664-11673.
    [53] Lipshutz B.H., Lower A., Berl V., et al. An improved synthesis of the “miracle nutrient”coenzyme Q10[J]. Organic Letters,2005,7(19):4095-4097.
    [54] Lipshutz B.H., Buter T., Lower A., et al. Enhancing Regiocontrol in Carboaluminationsof Terminal Alkynes. Application to the One-Pot Synthesis of Coenzyme Q10[J]. OrganicLetters,2007,9(19):3737-3740.
    [55]Matilla P. and Kumpulainen J..Coenzymes Q9and Q10: Contents in Foods and DietaryIntake [J]. Journal of Food Composition and Analysis,2001,14(4):409-417.
    [56]Wu Z., Duo G., Chen J..Effects of dissolved oxygen concentration and DO-stat feedingstrategy on CoQ10production with Rhizobium radiobacter [J]. World Journal ofMicrobiology and Biotechnology,2003,19(9):925-928.
    [57]Gu S., Yao J., Yuan Q..Kinetics of Agrobacterium tumefaciens ubiquinone-10batchproduction [J]. Process Biochemistry,2006,41(8):1908-1912.
    [58]Zahiri H.S., Noghabi K.A., Shim Y.C..Biochemical characterization of the decaprenyldiphosphate synthase of Rhodobacter sphaeroides for coenzyme Q10production [J].AppliedMicrobiology and Biotechnology,2006,73(4):796-860.
    [59]Kaplan P., Kucera I., Dadak V..Effect of oxygen on ubiquinone-10production byparacoccus denitrificans [J]. Biotechnology Letters,1993,15(10):1001-1002.
    [60]Clius C.P., Bruja A.M., Martin V.J.J..Current prospects for the production of coenzymeQ10in microbes [J]. Trends in Biotechnology,2007,25(11):514-521.
    [61]Yhshida H, Katani Y, Ochiai K, et al. Production of ubiquinone-10suing bacteria[J]. theJournal of General and Applied Microbiology,1998,44(1):19-26.
    [62]Choi J H, Ryu Y W, Seo J H. Biotechnological production and applications of coenzymeQ10[J]. Applied Microbiology and Biotechnology,2005,68(1):9-15.
    [63] Ha S J, Seo J H, Moon H J, et al. Controlling the sucrose concentration increaseescoenzyme Q10production in fed-batch culture of Agorbacterium tumefaciens[J]. AppliedMicrobiology and Biotechnology,2007,76(1):109-116.
    [64] ZHONG Weihong, FANG Jianjun, LIU Huagui, et al. Enhanced production of CoQ10bynewly isolated sphingomonas sp. ZUTEO3with a coupled fermeantation-extractionprocess[J]. Journal of Industrial Microbiology and Biotechnology,2009,36(5):687-693.
    [65]潘春梅,堵国成,陈坚.辅酶Q10高产菌Rhizobium radiobacter的选育及发酵条件优化[J].过程工程学报,2004,4(5):451-456.
    [66]潘春梅,李寅,堵国成等.利用广谱性和特异性组合诱变技术选育辅酶Q10高产菌[J].应用与环境生物学报,2005,11(3):363-367.
    [67]刘克杉,吴文芳,韩斯琴等.辅酶Q10高产菌株的选育[J].沈阳农业大学学报,2005,36(1):89-02.
    [68]王丽,郑之明,樊永红等.离子束诱变粟酒裂殖酵母产辅酶的初步研究[J].激光生物学报,2007,16(1):88-92.
    [69]武标,张千,李辉等.氩离子激光照射对类球红细菌的诱变效应及对辅酶Q10产生量的影响[J].激光生物学报,2007,16(3):364-368.
    [70]朱俊丰,郑方亮,艾海新等.微波结合紫外诱变选育辅酶Q10高产菌株[J].微生物学杂志,2010,30(2):57-62.
    [71]党磊,田菁,印红等.利用空间诱变选育辅酶Q10高产菌[J].科技导报,2010,28(14):40-43.
    [72]戚薇,李静,李剑等.高产结构类似物抗性辅酶Q10突变株的选育[J].工业微生物,2007,37(6):12-15.
    [73]李继扬,丁妍,周佩.通过耐受前体或结构类似物筛选提高辅酶Q10产量[J].复旦学报(医学版),2008,35(3):293-395,400.
    [74] Sakato K, Tanaka H, Shibata S, et al. Agitation–aeration studies on coenzyme Q10production using Rhodopseudomonas spheroids[J]. Biotechnology and Applied Biochemistry,1992,16(1):19–22.
    [75]Takahashi S, Nishino T and Koyama T. Isolation and expression of Paracoccusdenitrificans decaprenyl diphosphate synthase gene for production of ubiquinone-10inEscherichia coli[J]. Biochemical Engineering Journal,2003,16(2):183-190.
    [76]ZHU X.F., Yuasa M, Okada K, et al. Production of ubiquinone in Escherichia coli byexpression of various genes responsible for ubiquinone biosynthesis[J]. Journal ofFermentation and Bioengineering,1995,79(5):493-495.
    [77] Zhang D.W., Shrestha B, Li Z.P., et al. Ubiquinone-10production using Agrobacteriumtumefaciens dps gene in Escherichia coli by coexpression system[J]. MolecularBiotechnology,2007,35(1):1-14.
    [78]Park Y C, Kim S J, Choi J H, et al. Batch and fed-batch production of coenzme Q10inrecombinant Escherichia coli containing the decaprenyl diphosphate synthase gene fromGluconobacter suboxydans[J]. Applied Microbiology and Biotechnology,2005,67(2):192-196.
    [79]Zahiri H S, Yoon S H, Keasling J D, et al. Coezyme Q10production in recombinantEscherichia coli strains engineered with a heterologous decaprenyl diphosphate synthase geneand foreign mevalonate pathway[J]. Metabolic Engineering,2006,8(5):406-416.
    [80]叶江,马林,吴海珍等. UbiCA基因的强化表达及对大肠杆菌辅酶Q生物合成的影响[J].华东理工大学学报(自然科学版),2006,32(3):269-273.
    [81] Seo M. J., Ime M., Nam J. Y., et al. Increase of CoQ10production level by thecoexpression of decaprenyl diphosphate synthase and1-deoxy-D-xylulose-5-phosphatesynthase isolated from Rhizobium radiobacter ATCC4718in recombinant Escherichia coli[J].Journal of Microbiology and Biotechnology,2007,17(6):1045-1048.
    [82] Brauer L., Brandt W., Schulze D., et al. A structural model of the membrane-boundaromatic prenyltransferase UbiA from E.coli[J].Chemistry and Biochemistry,2008.9(6):982-992.
    [83]Brandt W., Kufka J., Schlze E., et al. The membrane bound aromatic p-hydroxynenzoicacid oligoprenyltransferase(UbiA)-how iterative improvements lead to a realistic structurethat offers new insights into functional aspects of prenyl transferases terpene synthases[J].Journal of Cheminformatics,2010,2(suppl1):O20.
    [84]Trumpower B. L., Houser R. M.,and Olson, R. E.. Studies onubiquinone:Demonstration ofthe total biosynthesis of ubiquinone-9in rat liver mitochondria [J]. The Journal of BiologicalChemistry,1974,249:3041–3048.
    [85]Elmberger P.G., Kalen A., Appelkvist E.L., et al. In vitro and in vivo synthesis of dolicholand other main mevalonate products in various organs of the rat [J]. European Journal ofBiochemistry,1987,168:1-11.
    [86]Zhang D.W., Li Z., Wang F.H., et al. Expression various genes to enhance ubiquinonemetabolic pathway in Agrobacterium tumefaciens [J].Enzyme and Microbial Technology,2007,41(6-7):772-779.
    [87]Jonassen T. and Clarke C.F.. Isolation and functional expression of human CoQ3, a geneencoding a methyltransferase required for ubiquinone biosynthesis [J]. The Journal ofBiological Chemistry,2000,28(4):12381-12387.
    [88]Jayaraman P.S., Gaston K.L., Cole J.A., et al. The nirB promoter of Escherichia coli:location of nucleotide sequences essential for regulation by oxygen, the FNR protein andnitrite [J]. Molecular Microbiology,1988,2(4):527-530.
    [89] Zhu J. and Shimizu K..The effect of pfl gene knockout on the metabolism for opticallypure D-lactate production by Escherichia coli [J]. Applied Microbiology and Biotechnology,2004,64(3):367-375.
    [90]Nesbit A.D., Fleischhacker A.S., Teter S.J., et al. ArcA and AppY antagonize IscRrepression of hydrogenase-1expression under anaerobic condition, revealing a novel mode ofO2regulation of gene expression in Escherichia coli [J]. Journal of Bacteriology,2012,194(24):6892-6899.
    [91]Wu Z.F., Du G.C., and Chen J..Effects of culture conditions on coenzyme Q10productionby Rhizobium radiobacter by metabolic flux analysis [J]. Acta Microbiologica Sinica,2005,45(2):231-235.
    [92]Yoshida H., Kotani Y., Ochiai K., et al. Production of ubiquinone-10using bacteria[J].The Journal of general and applied microbiology,1998,44(1):19-26.
    [93]吴祖芳,堵国成,陈坚.放射型根瘤菌WSH2601生产辅酶Q10的摇瓶发酵条件[J].无锡轻工大学学报,2003,22(1):65-69.
    [94] Datsenko K.A., Wanner B.L..One-step inactivation of chromosomal genes in Escherichiacoli K-12using PCR products [J]. Proceedings of the National Academy of Sciences,2000,97(12):6640-6645.
    [95]Lu W., Shi Y., He S., et al. Enhanced production of CoQ10by constitutive overexpressionof3-demethyl ubiquinone-93-methyltransferase under tac-promoter in Rhodobactersphaeroides[J]. Biochemical Engineering Journal,2013,72:42-47.
    [96]Marrero P F, Poulter C D, Edwards P A. Effects of site-directed mutagenesis of the highlyconserved aspartate residues in domain II of farnesyl diphosphate synthase activity [J].Journal of Biological Chemistry,1992,267(30):21873-21878.
    [97]Chen A, Dale Poulter C, Kroon P A. Isoprenyl diphosphate synthases: protein sequencecomparisons, a phylogenetic tree, and predictions of secondary structure[J]. Protein Science,1994,3(4):600-607.
    [98]SAWADA H, IEKI H, OYAIZU H, et al. Proposal for rejection of Agrobacteriumtumefaciens and revised descriptions for the genus Agrobacterium and for Agrobacteriumradiobacter and Agrobacterium rhizogenes [J]. International journal of systematic bacteriology,1993,43(4):694-702
    [99]Young J M, Kuykendall L D, Martinez-Romero E, et al. Classification and nomenclatureof Agrobacterium and Rhizobium–a reply to Farrand et al.(2003)[J]. International journal ofsystematic and evolutionary microbiology,2003,53(5):1689-1695.
    [100]Krushkal J, Pistilli M, Ferrell K M, et al. Computational analysis of the evolution of thestructure and function of1-deoxy-D-xylulose-5-phosphate synthase, a key regulator of themevalonate-independent pathway in plants[J]. Gene,2003,313:127-138
    [101]Matthew O J, Laura P F, Francesca P R, et al. Functional characterization of long-chainprenyl diphosphate synthases from tomato[J]. Biochemical Journal,2013,449(3):729-740.
    [102]Szkopi ska A, Plochocka D. Farnesyl diphosphate synthase; regulation of productspecificity[J]. Acta Biochim Pol,2005,52(1):45-55.
    [103]Eastman R T, Buckner F S, Yokoyama K, et al. Thematic review series: lipidposttranslational modifications.Fighting parasitic disease by blocking protein farnesylation[J].Journal of lipid research,2006,47(2):233-240.
    [104]Mildvan A S, Xia Z, Azurmendi H F, et al. Structures and mechanisms of Nudixhydrolases[J]. Archives of biochemistry and biophysics,2005,433(1):129-143
    [105]Liu X.Y., Wu H.Z., Ye J., et al. Cloning and characterization of ddsA gene encodingdecaprenyl diphosphate synthas from Rhodobacter capsulatus B10[J]. Canadian Journal ofMicrobiology,2006,52:1141-1147.
    [106]Wang K, Ohnuma S. Chain-length determination mechanism of isoprenyl diphosphatesynthases and implications for molecular evolution[J]. Trends in biochemical sciences,1999,24(11):445-451
    [107]Mann F M, Thomas J A, Peters R J. Rv0989c encodes a novel E-geranyl diphosphatesynthase facilitating decaprenyl diphosphate biosynthesis in Mycobacterium tuberculosis [J].FEBS letters,2011,585(3):549-554.
    [108]Choi J H, Han S R, Lee Y J, et al. Improvement of coenzyme Q10production by ispBknockout and dxs overexpression in recombinant Escherichia coli expressing Agrobacteriumtumefaciens decaprenyl diphosphate synthase[C]//The31st Symposium on Biotechnology forFuels and Chemicals.2009.
    [109]SEO M J, IM E M, HUR J H, et al. Production of coenzyme Q10by recombinant E. coliharboring the decaprenyl diphosphate synthase gene from Sinorhizobium meliloti[J]. Journalof microbiology and biotechnology,2006,16(6):933-938.
    [110]吴祖芳,堵国成,陈坚.放射型根瘤菌WSH2601生产辅酶Q10的摇瓶发酵条件[J].无锡轻工大学学报,2003,22(1):65-69.
    [111]Arnold K., Bordoli L., Kopp J., et al. The SWISS-MODEL workspace: a web-basedenvironment for protein structure homology modeling [J]. Bioinformatics,2006,22(2):195-201.
    [112]Guex N., Peitsch M. C., Schwede T.. Automated comparative protein structure modelingwith SWISS‐MODEL and Swiss‐PdbViewer: A historical perspective[J]. Electrophoresis,2009,30(S1): S162-S173.
    [113]Liu X., Wu H., Ye J., et al. Cloning and characterization of the ddsA gene encodingdecaprenyl diphosphate synthase from Rhodobacter capsulatus B10[J]. Canadian journal ofmicrobiology,2006,52(12):1141-1147.
    [114]张安,吴海珍,周雪峰,等.氧化葡萄糖杆菌ddsA基因的克隆及其在大肠杆菌中的表达[J].华东理工大学学报,2002.
    [115]Jordan D.B., Li X.L.. Variation in relative substrate specificity of bifunctionalβ-d-xylosidase/-l-arabinofuranosidase by single-site mutations: roles of substrate distortionand recognition[J]. Biochimica et Biophysica Acta (BBA)-Proteins&Proteomics,2007,1774(9):1192-1198.
    [116]Morris A. L., MacArthur M. W., Hutchinson E. G., et al. Stereochemical quality ofprotein structure coordinates[J]. Proteins: Structure, Function, and Bioinformatics,1992,12(4):345-364.
    [117]Guex N. and Peitsch M. C.. SWISS-MODEL and the Swiss‐Pdb Viewer: anenvironment for comparative protein modeling[J]. Electrophoresis,1997,18(15):2714-2723.
    [118]Chen P., Han K., Li X., et al. Predicting key long-range interaction sites by B-factors [J].Protein and Peptide Letters,2008,15(5):478-483.
    [119]Reetz M. T., Carballeira J. D., and Vogel A.. Iterative saturation mutagenesis on thebasis of B factors as a strategy for increasing protein thermostability [J]. Angewandte ChemieInternational Edition,2006,45(46):7745-7751.
    [120]Jochens H., Aerts D., and Bornscheuer U. T..Thermostabilization of an esterase byalignment-guided focussed directed evolution [J]. Protein Engineering Design and Selection,2010,23(12):903-909.
    [121]Zhou C., Xue Y., and Ma Y..Enhancing the thermostability of-glucosidase fromThermoanaerobacter tengcongensis MB4by single proline substitution [J]. Journal ofbioscience and bioengineering,2010,110(1):12-17.
    [122]Lovell S. C., Davis I. W., Arendall W. B., et al. Structure validation by C geometry:,ψ and Cβ deviation [J]. Proteins: Structure, Function, and Bioinformatics,2003,50(3):437-450.
    [123]Ho B. and Brasseur R..The Ramachandran plots of glycine and pre-proline [J]. BMCstructural biology,2005,5(1):14.
    [124]Goihberg E., Dym O., Tel‐Or S., et al. A single proline substitution is critical for thethermostabilization of Clostridium beijerinckii alcohol dehydrogenase [J]. Proteins: Structure,Function, and Bioinformatics,2007,66(1):196-204.
    [125]Prajapati R. S., Das M., Sreeramulu S., et al. Thermodynamic effects of prolineintroduction on protein stability [J]. Proteins: Structure, Function, and Bioinformatics,2007,66(2):480-491.
    [126]李家洲,张冬青,肖玉平等.辅酶Q10生物合成与生产研究进展[J].生物技术通报,2011,10:37-42.
    [127]吴乃虎.基因工程原理[M].北京科学出版社,2001.
    [128]Strom A. R., and Kaasen I.. Trehalose metabolism in Escherichia coli: stress protectionand stress regulation of gene expression [J]. Molecular microbiology,1993,8(2):205-210.
    [129]Hoffmann F., Weber J., Rinas U.. Metabolic adaptation of Escherichia coli duringtemperature‐induced recombinant protein production:1. Readjustment of metabolic enzymesynthesis [J]. Biotechnology and bioengineering,2002,80(3):313-319.
    [130]Weber J., Hoffmann F., Rinas U.. Metabolic adaptation of Escherichia coli duringtemperature‐induced recombinant protein production:2. Redirection of metabolic fluxes[J].Biotechnology and bioengineering,2002,80(3):320-330.
    [131]Shen Y., Muramatsu S. I., Ikeguchi K., et al. Triple transduction with adeno-associatedvirus vectors expressing tyrosine hydroxylase, aromatic-L-amino-acid decarboxylase, andGTP cyclohydrolase I for gene therapy of Parkinson's disease[J]. Human gene therapy,2000,11(11):1509-1519.
    [132] J.莎姆布鲁克(黄培堂译).分子克隆实验指南[M].北京:科学出版社,2005.
    [133]Tong C., Li P., Wu N. L., et al. Production of p53gene knockout rats by homologousrecombination in embryonic stem cells [J]. Nature,2010,467(7312):211-213.
    [134]San Filippo J., Sung P., and Klein H..Mechanism of eukaryotic homologousrecombination [J].annual review of biochemistry,2008,77:229-257.
    [135]Sharan S. K., Thomason L. C., and Kuznetsov S. G.. Recombineering: a homologousrecombination-based method of genetic engineering [J]. Nature protocols,2009,4(2):206-223.
    [136]Harborne N. R., Griffiths L., Busby S. J. W., et al. Transcriptional control, translationand function of the products of the five open reading frames of the Escherichia coli niroperon[J]. Molecular microbiology,1992,6(19):2805-2813.
    [137]Wu H., Tyson K. L., Cole J. A., et al. Regulation of transcription initiation at theEscherichia coli nir operon promoter: a new mechanism to account for co‐dependence ontwo transcription factors[J]. Molecular microbiology,1998,27(2):493-505.
    [138]Warren M J, Bolt E L, Roessner C A, et al. Gene dissection demonstrates that theEscherichia coli cysG gene encodes a multifunctional protein [J]. Biochemical Journal,1994,302(Pt3):837.
    [139]Belyaeva T, Griffiths L, Minchin S, et al. The Escherichia coli cysG promoter belongsto the'extended-10'class of bacterial promoters [J]. Biochemical Journal,1993,296(Pt3):851.
    [140]Browning D F, Lee D J, Wolfe A J, et al. The Escherichia coli K-12NarL and NarPproteins insulate the nrf promoter from the effects of integration host factor[J]. Journal ofbacteriology,2006,188(21):7449-7456.
    [141]Choe M, Reznikoff W S. Anaerobically expressed Escherichia coli genes identified byoperon fusion techniques[J]. Journal of bacteriology,1991,173(19):6139-6146.
    [142]Zumft W G. Cell biology and molecular basis of denitrification[J]. Microbiology andMolecular Biology Reviews,1997,61(4):533-616.
    [143]Blasco F, Iobbi C, Ratouchniak J, et al. Nitrate reductases of Escherichia coli: sequenceof the second nitrate reductase and comparison with that encoded by the narGHJI operon[J].Molecular and General Genetics MGG,1990,222(1):104-111.
    [144]Blattner F R, Plunkett G, Bloch C A, et al. The complete genome sequence ofEscherichia coli K-12[J].science,1997,277(5331):1453-1462.
    [145]S balle B, Poole R K. Microbial ubiquinones: multiple roles in respiration, generegulation and oxidative stress management[J]. Microbiology,1999,145(8):1817-1830.
    [146]Dallner G, Sindelar P J. Regulation of ubiquinone metabolism[J]. Free Radical Biologyand Medicine,2000,29(3):285-294.
    [147]孙艳,王长城,张玲等.重组大肠杆菌产固醇氧化酶的指数流加策略[J].化工进展,2010,29(1):130-133.
    [148] Wang H, Gunsalus R P. The nrfA and nirB nitrite reductase operons in Escherichia coliare expressed differently in response to nitrate than to nitrite[J]. Journal of bacteriology,2000,182(20):5813-5822.
    [149]Smith C J, Nedwell D B, Dong L F, et al. Diversity and abundance of nitrate reductasegenes (narG and napA), nitrite reductase genes (nirS and nrfA), and their transcripts inestuarine sediments[J]. Applied and Environmental Microbiology,2007,73(11):3612-3622.
    [150]Almeida M G, Macieira S, Gon alves L L, et al.The isolation and characterization ofcytochrome c nitrite reductase subunits (NrfA and NrfH) from Desulfovibrio desulfuricansATCC27774[J]. European Journal of Biochemistry,2003,270(19):3904-3915.
    [151]Tyson K L, Cole J A, Busby S J W. Nitrite and nitrate regulation at the promoters of twoEscherichia coli operons encoding nitrite reductase: identification of common targetheptamers for both NarP‐and NarL‐dependent regulation[J]. Molecular microbiology,1994,13(6):1045-1055.
    [152]Liu H, Fang J, Jin L, et al. Isolation, characterization and fermentation condition ofcoenzyme Q10producing strain with solanesol as precursor[J]. Wei sheng wu xue bao (Actamicrobiologica Sinica),2008,48(2):157.
    [153]Cluis C P, Ekins A, Narcross L, et al. Identification of bottlenecks in Escherichia coliengineered for the production of CoQ10[J]. Metabolic Engineering,2011,13(6):733-744.
    [154]Huang M, Wang Y, Liu J, et al. Multiple Strategies for Metabolic Engineering ofEscherichia coli for Efficient Production of Coenzyme Q10[J]. Chinese Journal of ChemicalEngineering,2011,19(2):316-326.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700