用户名: 密码: 验证码:
模拟地下工程应力环境梯度加载下的岩爆机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着矿业工程、水电工程和隧道工程逐步向深部岩体发展,深部硬脆岩体开挖扰动造成局部应力集中,围岩所受应力梯度增大,伴随而来的岩爆灾害也逐步增加。而对于不同应力环境和应力路径下岩体开挖扰动产生应力梯度对岩爆灾害的研究非常少,且目前岩爆试验还大多处于小尺寸试件的均布加卸载阶段,为研究梯度加载对岩体受力直至发生岩爆的影响,本文通过对在地下工程不同应力环境与应力路径下岩体的受力变化进行分析,总结深部岩体开挖引起围岩应力场分布的主要形式,采用典型的应力梯度加卸载路径,结合自主研发的岩爆加载装置对试件进行室内试验研究,以分析不同应力梯度对试件产生岩爆的影响,并通过数值模拟与室内试验验证的方法,系统研究了不同应力梯度和应力环境下的岩爆机理。论文主要取得以下研究成果:
     (1)通过对隧道开挖影响区岩体进行应力弹性理论解析解分析,并利用FLAC3D有限差分软件对不同开挖深度、不同侧压力系数下的马蹄形隧道进行开挖模拟,得到不同开挖深度和侧压力系数下,隧道开挖引起岩体应力梯度分布趋势,总结隧道开挖掌子面逐渐接近岩体监测面并随开挖进一步推进的过程中,测试面岩体受开挖影响的应力梯度变化规律,推导出对隧道围岩所受应力梯度值随开挖步骤的拟合公式。
     (2)选择满足岩爆倾向性的相似模型材料,并通过室内试验得到模型试件的基本物理力学指标。利用自主研发的YB-A型岩爆加载装置对大尺寸试件进行顶部梯度加载的四组不同加卸载路径的岩爆试验,通过改变不同侧压力系数、单面卸载时顶部不同加载力大小,对顶部进行不同速率加载的方式,对试件在四种加载路径下发生岩爆时,其卸载面的岩爆破坏形态进行分析,并得出试件产生岩爆时,其顶部所受应力梯度大小与试件经历加卸载环境和加载路径的关系。
     (3)为分析试件在四种加卸载路径下发生岩爆与试件顶部所受应力梯度分布的影响,通过采集试件在各加载路径中的应变片变形数据,对比试件在加卸载前后的CT成像分析,并对岩爆试验后的岩爆碎屑进行分形分析,得出试件发生岩爆的过程是试件卸载面附近岩体经历了:试件在受加载时能量吸收-卸载面压密-试件卸载后在其卸载面中部拉裂破坏-破裂成板的岩爆破坏过程。CT成像图直观地反应出试件卸载面附近的加载压密区和卸载后试件内部的损伤区;最后通过对岩爆碎屑的分形维数值计算,建立了岩爆烈度与试件加载路径的关系。进一步分析了试件在四种加卸载路径下的岩爆特性。
     (4)基于能量耗散原理,利用3DEC离散元软件并嵌入弹性能密度的fish语言,计算并追踪测点的弹性能密度变化的全过程,选择与室内试验相类似的加载应力梯度对模型试件进行加卸载模拟,以对室内试验结果进行验证与补充。模拟结果再现试件在高应力梯度条件下卸载时,随着试件顶部应力梯度的逐渐增加,试件卸载面呈局部剥落,乃至出现块体喷射的岩爆过程,数值模拟试验与相同路径下的室内试验结果较吻合。
With the development on mining site, hydropower engineering and tunneling project to deep rock mass gradually, deep brittle rock stress redisturbution by excavating, causing local stress concentration, stress gradient in surrounding rock increases and rock burst accompanied also gradually increases. There are few researches about the impact of stress gradient after excavation under different stress environments and stress paths on rock burst disasters, and rock burst test is also present on small size specimen uniform unloading stage. To study effect of gradient loaded on rock burst, the paper analyzes the force changes under different stress environments and stress paths on rock in the underground construction, summaries the main forms of surrounding rock stress field distribution caused by deep rock excavation, applies typical unloading paths of stress gradient, combined with independent research and development of rock burst loading device for specimens in lab, and analyses the influence of different stess gradients on rock burst. It also uses numerical simulation and experimental models validation to study mechanism of rock burst under different stress gradients and stress environments. The main achievements can be expressed as follows.
     (1) Through the stress theory analysis of rock mass elasticity solution in tunnel excavation influence area, by using the software of FLAC3D to simulating the tunnel excavation in different excavation depth and lateral pressure coefficient, the rock stress gradient distribution trends caused by tunnel excavation in different excavation depth and lateral pressure coefficient were analyze. Study showed that, when the excavating face of tunnel pass tested rock, tangential stress of tunnel wall rock increased dramatically, radial stress reduced obviously, surrounding rock under great stress gradients. Stress distribution in stable surrounding rock got by numerical simulation experiences the same trend of stress distribution derived by theoretical formulas.
     (2) The laboratory test chooses the model materials which meet the rock burst proneness options to cast specimens, uses the self-developed YB-A rock burst loading device to conduct gradient loads rock burst tests on the top of large size specimens in four different loading-unloading paths, and analyzes the rock burst morphology of unloading surface under the three conditions of specimens at different lateral pressure coefficients、different top loading when unloading and different loading rates. specimen suffers relatively lower load value at the top when one side unloading, and in the same stress gradient further loading, the specimen's top stress gradient is relatively lower when rock burst occurs; if specimen suffers higher loading rate at the same loading path, the specimen's top stress gradient is relatively lower when rock burst damage occurs.
     (3) Analyzing the influence of rock burst under the four loading-unloading paths on the stress gradient changes at the top, the characteristics of rock burst under the four loading-unloading paths have been studied. CT imaging assay pre and post of loading-unloading and clastic rock burst fractal analysis had been conducted through analyzing the strain gauge deformation of in different loading paths. Finally rock failure process had been obtained near the unloading face during process of rock burst. That was energy absorption, unloading face compaction, tension failure in the middle of unloading face and rupturing into plate. The damage zone and compaction area are clear showing by CT imaging figure. The loading velocity of the specimen in the same surrounding pressure is larger, the range of rock burst when unloading in single face is smaller, the vertical load of rock burst is smaller, the boulder yield of specimen is less, the fractal dimension is larger relatively.
     (4) Based on the principle of energy dissipation, the changing process of elastic energy density of measuring points had been calculated and tracked by using3DEC embedded the fish language. Simulation test of the specimen model in the loading-unloading process was carried out with stress gradient similar to laboratory test, in order to validate and supplement the laboratory test results. Simulation results showed that the unloading surface had been destroyed in the shape of local spalling under high confining pressure with the gradual increase of stress gradient, even block injection during the process of rock burst. The numerical experiments and the laboratory test resulted with the same path are in good agreement.
引文
[1]谢和平.深部高应力下的资源开采——现状,基础科学问题与展望[J].科学前沿与未来(第六集).北京:中国环境科学出版社,2002:179-191.
    [2]Zhao P J, Lok T S. Simplified design of rock cavern concrete lining to resist shock loading[J]. Journal of Central South University of Technology,2010,17(5):1087-1094.
    [3]He M C. Rock mechanics and hazard control in deep mining engineering in China[C]. Proceedings of the 4th Asian Rock Mechanics Symposium. Singapore:World Scientific Publishing Co., Ltd.2006:29-46.
    [4]Ortlepp W D. RaSiM comes of age a review of the contribution to the understanding and control of mine rockbursts[C]. Proceedings of the Sixth International Symposium on Rockburst and Seismicity in Mines, Perth, Western Australia.2005:9-11.
    [5]潘一山,徐秉业.考虑损伤的圆形岩爆分析[J],岩石力学与工程学报,1999,18(2):152-156.
    [6]谢和平,Parizeau W G.岩爆的分形特征和机理[J].岩石力学与工程学报,1993,12(1):28-37.
    [7]谭以安.岩爆形成机理研究[M],水文地质工程地质,1989.
    [8]PATYNSKA Renata, KABIESZ Jozef. Scale of seismic and rock burst hazard in the Silesian companies in Poland [J]. Mining Science and Technology.2009(19:604-608.
    [9]章奇峰,周春宏,周辉,等.镜屏Ⅱ水电站辅助洞岩爆灾害评价及对策研究[J].岩土力学,2009,30(2):422-427.
    [10]W.D.Ortlepp. A Review of the Construction to the Understanding and Control of Mine Rockbursts. RaSiM6, Australia,perth.2005, March,9-11. Keynote Lecture.2-10.
    [11]林景云.抚顺胜利矿的冲击矿压[M].北京:煤炭工业出版社,1959.
    [12]郭然,潘长良,于润沧.有岩爆倾向硬岩矿床采矿理论与技术[M].北京:冶金工业出版社,2003.
    [13]齐庆新,陈尚本,王怀新,等.冲击地压、岩爆、矿震的关系及其数值模拟研究[J].岩石力学与工程学报,2003,22(11):1852-1858.
    [14]徐林生,王兰生,李天斌.国内外岩爆研究现状综述[J].长江科学院院报,1999,16(4):24-31.
    [15]Russenes B F. Analysis of rock spalling for tunnels in steep valley sides[D]. M. Sc. thesis, Norwegian Institute of Technology, Department of Geology,1974.
    [16]谭以安.岩爆形成机理研究及综合评判[D].博士论文,1988.
    [17]杨小艳,王岳,黄达.大型硬岩地下硐室围岩二次应力场特征弹脆塑性分析[J].水文地质工程地质,2007,(5):6-11.
    [18]Fang W, Wickert J A. Determining mean and gradient residual stresses in thin films using micromachined cantilevers[J]. Journal of Micromechanics and Microengineering,1996,6(3): 301.
    [19]Eberhardt E. Numerical modelling of three-dimension stress rotation ahead of an advancing tunnel face[J]. International Journal of Rock Mechanics and Mining Sciences,2001,38(4): 499-518.
    [20]刘立鹏,汪小刚,贾志欣,等.掌子面推进过程围岩应力及裂隙发育规律[J].中南大学学报,2013,44(2):764-771.
    [21]陈炳瑞,冯夏庭,肖亚勋,等.深埋隧洞TBM施工过程围岩损伤演化声发射试验[J].岩石力学与工程学报,2010,29(8):1562-1569.
    [22]石长岩.红透山铜矿深部地压及岩爆问题探讨[J].有色矿冶,2000,16(1):4-8.
    [23]王兰生,李天斌,徐进,等.二郎山公路隧道岩爆及岩爆烈度分级[J].公路,1999,(2):241-245.
    [24]史红光.二滩水电站左岸导流洞岩爆分析[J].水电站设计,1995,11(1):35-40.
    [25]何德平.对太平驿引水隧洞施工中岩爆问题的浅见[J].水利水电技术,1993,(3):31-33.
    [26]刘洪印.基于不良地质条件隧道施工影响因素及超前预报方法[J].城市建设理论研究,2012,(30):
    [27]张津生,陆家佑,贾愚如.天生桥二级水电站引水隧洞岩爆研究[J].水利发电,1991,10:34-37,76.
    [28]Hajiabdolmajid V, Kaiser P K, Martin C D. Modelling brittle failure of rock[J]. International Journal of Rock Mechanics and Mining Sciences,2002,39(6):731-741.
    [29]景锋.中国大陆浅层地壳地应力场分布规律及工程扰动特征研究[D].中国科学院研究生院(武汉岩土力学研究所),2009.
    [30]周春宏.某水电站长探洞的岩爆特征[J].地质灾害与环境保护,2006,1(17):78-81.
    [31]张志强,关宝树,翁汉民.岩爆发生条件的基本分析[J].铁道学报,1998,20(4):82085.
    [32]Tonon F, Amadei B. Stresses in anisotropic rock masses:an engineering perspective building on geological knowledge[J]. International Journal of Rock Mechanics and Mining Sciences, 2003,40(7):1099-1120.
    [33]张宏伟,张建国.矿井动力现象区域预测研究[J].煤炭学报,1999,24(4):383-387.
    [34]Stacey T R, Wesseloo J. The in-situ stress regime in Southern Africa[C].Proc.9th International Congress on Rock Mechanics. Rotterdam:AA Balkema.1999,1:189-1.
    [35]Brown E T, Hoek E. Trends in relationships between measured in-situ stresses and depth[C].International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts. Pergamon,1978,15(4):211-215.
    [36]吴世勇,王鸽.锦屏二级水电站深埋长隧洞群的建设和工程中的挑战性问题[J].岩石力学与工程学报,2010,29(11):2161-2171
    [37]Martin C D. Seventeenth Canadian Geotechnical Colloquium:The effect of cohesion loss and stress path on brittle rock strength[J]. Canadian Geotechnical Journal,1997,34(5): 698-725.
    [38]Abel J F, Lee F T. Stress changes ahead of an advancing tunnel[C].International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts. Pergamon,1973,10(6): 673-697.
    [39]Samuel A E, Joubert P N. A boundary layer developing in an increasingly adverse pressure gradient[J]. Journal of Fluid Mechanics,1974,66(3):481-505.
    [40]Maleki H, Dolinar DR, Dubbert J. Rock mechanics study of lateral distressing for the advance and relieve mining method. In:Proceedings of the 22nd international conference on ground control in mining. Morgantown, WV,2003. p:105-110.
    [41]Hoke E, Brown ET. Underground excavations in rock. London:Institute of Minerals and Metallurgy,1980
    [42]Kastner H. Static des Tunnel-und Stollenbaues. Berlin:Springer,1971.
    [43]Li X, Ma C. Experimental study of dynamic response and failure behavior of rock under coupled static-dynamic loading[A]. In:Aoki O ed. Proceedings of the ISRM International Symposium 3rd ARMS[C],891-895. Rotterdam:Mill Press,2004.
    [44]William David Ortlepp. The behavior of tunnels at great depth under large static and dynamic pressures [J]. Tunnelling and Underground Space Technology,2001,16:41-48.
    [45]Salomon, M. D. G. Stability, Instability and design of pillar workings. International Journal of Rock Mechanics and Mining Science & Geo-mechanics,1970,7(6):613-631.
    [46]Pettit, WS, King MS. Acoustic emission and velocities associated with the formation of sets of parallel fractures in sandstones. International journal of Rock Mechanics & Mining Sciences,2004,41(Suppl.1):1-6.
    [47]唐宝庆,曹平.引起岩爆因素的探讨[J].江西有色金属,1995,9(4):4-8.
    [48]陈宗基.复杂岩体若干岩石力学问题[M].中国水利水电出版社,1998.
    [49]陆菜平,窦林名,曹安业,等.深部高应力集中区域矿震活动规律研究[J].岩石力学与工程学报,2008,27(11):2302-2308.
    [50]李铁,蔡美峰,蔡明.分层开采煤矿的矿震能量释放模型与能量释放谱[J].煤炭学报,2007,32(12):1258-1263.
    [51]姜福兴,杨淑华,成云海,等.煤矿冲击地压的微地震监测研究[J].地球物理学报,2006,49(5):1511-1516.
    [52]S.H. Cho, Y. Ogata, K. Kaneko. A method for estimating the strength properties of a granite rock subjected to dynamic loading. International Journal of Rock Mechanics & Mining Science,2005,42:561-568.
    [53]LI Zhihua, DOU Linming, LU Caiping, MU Zonglong, CAO Anye. Study on fault induced rock bursts [J]. J. China University Mining & Technology.2008,18:321-326.
    [54]冯涛,王文星,潘长良.岩石应力松弛试验及两类岩爆研究[J].湘潭矿业学院学报,2000,15(1):27-31.
    [55]姚宝魁,张承娟.高地应力坝区硐室围岩岩爆及其断裂破坏机制.水文地质工程地质,1995,6:17-20.
    [56]刘小明,李焯芬.脆性岩石损伤力学分析与岩爆损伤能量指数[J].岩石力学与工程学报,1997,16(2):140-147.
    [57]罗先启,舒茂修.岩爆的动力断裂判据-D判据[J].中国地质灾害与防治学报,1996,7(2):1-5.
    [58]费鸿禄,徐小荷.岩爆突变理论分析[C].第三届全国岩石动力学学术会议文集,412-421,桂林,1992.
    [59]章梦涛.冲击地压失稳理论与数值模拟计算[J].岩石力学与工程学报,1987,6(3):197-204.
    [60]何满潮,苗金丽,李德建,等.深部花岗岩试样岩爆过程实验研究[J].岩石力学与工程学报,2007,26(5):865-876.
    [61]张春生,侯靖,朱永生,朱焕春.深埋隧洞围岩应力分布与破坏机理[J].现代隧道技术,2011,3(48):7-13.
    [62]徐泽明,吴培关,王苏达,唐正光.岩爆过程释放的能量分析[J],2003,12(3):104-110.
    [63]蔡美峰,王金安,王双红.玲珑金矿深部开采岩体能量分析与岩爆综合预测[J].岩石力学与工程学报,2001,20(1):38-42.
    [64]Kwasniew skim, Szutkow ski I, Wang J A. Study of ability of coal from seam 510 for storing elastic energy in the aspect of assessment of hazard in PORABKA-KL MONOTOW Colliery[R]. Silesian Technical university,1994.
    [65]吕森鹏.高地应力下地下工程岩爆机理及应用研究[D].武汉:中国科学院武汉岩土力学研究所,2009.
    [66]蔡朋,汪安全,汪斌,邬爱清.用能量准则分析岩石应力-应变Ⅱ型全过程曲线的合理性[J].长江科学院院报,2010,27(3):42-45.
    [67]陈卫忠,吕森鹏,郭小红,等.基于能量原理的卸围压试验与岩爆判据研究[J].岩石力学与工程学报,2009,28(8):1530-1541.
    [68]Singh S P. Technical note:burst energy release index[J]. Rock Mechanics and Rock Engineering,1988,21(2):149-155.
    [69]唐礼忠,王文星.一种新的岩爆倾向性指标[J].岩石力学与工程学报,2002,21(6):874-878.
    [70]许迎年,徐文胜,王元汉.岩爆模拟试验及岩爆机理研究[J].岩石力学与工程学报,2002,21(10):1462-1466.
    [71]李玉生.矿山冲击名词探讨——兼评“冲击地压”,1982,(2):89-95.
    [72]李慎刚.动力扰动诱发矿柱岩爆的数值模拟[D].东北大学硕士学位论文,2006.
    [73]Mandelbrot B B. The Fractal Geometry of Nature. W H Freeman, New York,1982.
    [74]Xie Heping. Fractals in Rock Mechanics. A A Balkema Publisher, Netherland,1993.
    [75]高峰,谢和平.脆性材料的分形统计强度理论[J].固体力学学报,1996,17(3):239-245.
    [76]NAGAHAMA H. Fractal scalings of rock fragmentation[J]. Earth Science Frontiers,2000, 7(1):169-177.
    [77]单晓云,李占金.分形理论和岩石破碎的分形研究[J].河北理工学院学报,2003,25(2):11-17.
    [78]李廷芥,王耀辉,张梅英,等.岩石裂纹的分形特征及岩爆机制研究[J].岩石力学与工:程学报,2000,19(1):6-10.
    [79]李德建,贾雪娜,苗金丽.花岗岩岩爆试验碎屑分形特征分析[J].岩石力学与工程学报,2010,29(5):3280-3290.
    [80]谢和平.岩爆的分形特征和机理[J].岩石力学与工程学报,1991,12(1):28-37.
    [81]谢和平.岩石蠕变损伤非线性大变形分析及其微观断裂的fractal模型[D].中国矿业大学博士学位论文,1987.
    [82]谢和平,高峰,周宏伟,等.岩石断裂和破碎的分形研究[J].防灾减灾工程学报.2003,23(4):1-9.
    [83]谢勇谋,巨能攀.浅层隧洞围岩宏微观结果与岩爆[J].中国地质灾害与防治学报,2005,16(4):58-60.
    [84]梁志勇,连凌云,石豫川.岩爆机理的统计损伤解释[J],地质灾害与环境保护,2004,15(2):23-26.
    [85]Salomon, M. D. G. Stability, Instability and design of pillar workings. International Journal of Rock Mechanics and Mining Science & Geo-mechanics,1970,7(6):613-631.
    [86]Singh, S. P. The influence of rock properties on the occurrence and control of rock bursts. Mining Science and Technology,1987,5(1):11-18.
    [87]Singh, S. P. Classification of mine workings according to their rock bursts proneness. Mining Science and Technology,1989,8(3):253-262.
    [88]马春德.一维动静组合加载下岩石力学特性的试验研究[D].长沙:中南大学,2004.
    [89]Li X, Ma C. Experimental study of dynamic response and failure behavior of rock under coupled static-dynamic loading[A]. In:Aoki O ed. Proceedings of the ISRM International Symposium 3rd ARMS[C],891-895. Rotterdam:Mill Press,2004.
    [90]S.H. Cho, Y. Ogata, K. Kaneko. A method for estimating the strength properties of a granite rock subjected to dynamic loading. International Journal of Rock Mechanics & Mining Science,2005,42:561-568.
    [91]王贤能.深埋隧道工程水-热-力作用的基本原理及其灾害地质效应研究[D].成都理工大学博士学位论文,1998.
    [92]许东俊.岩爆应力状态[J].岩石力学与工程学报,2000,10(2):287-290.
    [93]张黎明,王在泉,贺俊征,等.卸荷条件下岩爆机理的试验研究[J].岩石力学与工程学报,2005,24(S1):4769-4773.
    [94]An-Zeng Hua, Mingqing You. Rock failure due to energy release during unloading and application to underground rock burst control[J]. Tunneling and Underground Space Technology,2001, (16):241-246.
    [95]张艳博,徐东强.岩爆在不同岩石中的模拟实验[J].河北理工学院学报,2002,24(4):8-11.
    [96]左宇军,李夕宾,唐春安.受静载荷的岩石在周期载荷作用下破坏的试验研究[J].岩土力学,2007,28(5):927-932.
    [97]张传庆,冯夏庭,周辉,等.深部试验隧洞围岩脆性破坏及数值模拟[J].岩石力学与工程学报,2010,10(29):263-268.
    [98]陈陆望,白世伟,殷晓羲,等.坚硬岩体中马蹄形洞石岩爆破坏平面应变模型试验[J].岩土工程学报,2008,30(10):1520-1526.
    [99]陈陆望,白世伟.坚硬脆性岩体中圆形硐室岩爆破坏的平面应变模型试验研究[J].岩石力学与工程学报,2007,26(12):2504-2509.
    [100]吴世勇,龚秋明,王鸽.锦屏Ⅱ级水电站深部大理岩板裂化破坏试验研究及其对TBM开挖的影响[J].岩石力学与工程学报,2010,29(6):1089-1096.
    [101]张永双,熊探宇,杜宇本,等.高黎贡山深埋隧道地应力特征及岩爆模拟试验[J].岩石力学与工程学报,2009,28(11):2286-2295.
    [102]R. Q. Huang, X. N. Wang, L. S.Chan. Triaxial unloading test of rocks and its implication for rock burst[J]. Bull Eng Geol Environ,2011,60:37-41.
    [103]邱士利,冯夏庭,张传庆,等.不同卸围压速率下深埋大理岩卸荷力学特性试验研究[J].岩石力学与工程学报,2010,29(9):1686-1698.
    [104]KAISER.P.K, YAZICI.S, MALONEY.S. Mining-induced stress change and consequences of stress path on excavation stability a case study[J]. International Journal of Rock Mechanics and Mining Sciences,2001,38(2):167-180.
    [105]苗金丽,何满潮,李德建,等.花岗岩应变岩爆声发射特征及微观断裂机制[J].岩石力学与工程学报,2009,28(8):1593-1604.
    [106]张晓君.高应力硬岩卸荷岩爆模式及损伤演化分析[J].岩土力学,2012,33(12):3554-3561
    [107]谭以安.岩爆特征及岩体结构效应[J].中国科学,1991,(9):985-991
    [108]Seto M, Nag D K, Vutukuril V S. Acoustic emission in coal and sand-stone under triaxial compressive stress condition[A]. In:Gibowicz S J, Lasocki S ed. Proceeding of the 4th International symposium on Rockbusts nd Seismicity in mines [C]. Rotterdam:A. Balkma,1997.56-61.
    [109]杨健,王连俊.岩爆机理声发射试验研究[J].岩石力学与工程学报,2005,20(24):3796-3802.
    [110]潘长良,祝方才,曹平,等.单轴压力下岩爆倾向岩石的声发射特征[J].中南大学学报(自然科学版),2001,32(4):336-339.
    [111]逢焕东,张兴民,姜福兴.岩石类材料声发射事件的波谱分析[J].煤炭学报,2004,29(5):540-544.
    [112]李庶林,尹贤刚,王泳嘉,等.单轴受压岩石破坏全过程声发射特征研究[J].岩石力学与工程学报,2004,23(15):2499-2503.
    [113]谢和平.分形-岩石力学导论[M].北京:科学出版社,1996.
    [114]张茹,谢和平,刘建锋,邓建辉,彭琦.单轴多级加载岩石破坏声发射特性试验研究[J].岩石力学与工程学报,2006,25(12):258-2588
    [115]韩素平,岩体特性尺度效应与长细比效应的研究[D],太原理工大学,博士论文,2007.
    [116]简浩,李术才,朱维申,等.含裂隙水脆性材料单轴压缩CT分析[J].岩土力学,2002,23(5):587-591.
    [117]简浩,朱维申,李术才,等.模拟节理岩体水压致裂的CT实时试验初探[J].岩石力学与工程学报,2002,21(11):1655-1662.
    [118]Boland, J. N., Hobbs, B.E. (148,174), Int. j Rock Mech. Min. Sci.10,623(1973).
    [119]张梅英,李延芥,尚嘉兰,孔常静.岩爆形成机制的细观力学实验分析[J].内蒙古工业大学学报,1997,16(3):112-117.
    [120]朱江鹏.长达引水隧洞岩爆机理分析及防治研究[D].河海大学硕士学位论文,2007.
    [121]X. Y. Wei, Z. Y. Zhao, J. Gu. Numerical simulation of rock mass damage induced by underground explosion [J]. International Journal of Mechanics & Mining Science.2009,49: 1206-1213.
    [122]S. Y. Wang, S. W. Sloan, H. Y. Liu, C. A. Tang. Numerical simulation of the rock fragmentation process induced by two drill bits subjected to static and dynamic (impact) loading [J]. Rock Mech Rock Eng,2011,44:317-332.
    [123]Jakub Gajewski, Jerzy Podgorski, Jozef Jonak, Zbigniew Szkudlarek. Numerical simulation of brittle rock loosening during mining process [J]. Computational Materials Science,2008,43:115-118.
    [124]张小涛,窦林名.煤层硬度与厚度对冲击矿压影响的数值模拟[J].采矿与安全工程学报,2006,23(3):277-280.
    [125]熊祖强,贺怀建.冲击地压应力状态及卸压治理数值模拟[J].采矿与安全工程学报,2006,23(4):489-493.
    [126]李宪章,王利,李宏武,等.巷道岩爆孕育过程的数值模拟[J].辽宁工程技术大学学报(自然科学版),2011,30(3):369-372.
    [127]傅宇方,黄明利,任凤玉,等.不同围压条件下孔壁周边裂纹演化的数字模拟分析[J].岩石力学与工程学报,2009.19(5):577-583.
    [128]朱万成,左宇军,尚世明,等.动态扰动触发深部巷道发生失稳破裂的数值模拟[J].岩石力学与工程学报,2007,26(5):915-921.
    [129]吴顺川,周喻,高斌.卸载岩爆试验及PFC3D数值模拟研究[J].岩石力学与工程学报,2010,29(S2):4082-4088.
    [130]徐涛,唐春安,张哲,等.单轴压缩条件下脆性岩石变形破坏的理论、试验与数值 模拟[J].东北大学学报(自然科学版),2003,24(1):87-90.
    [131]SUN Jinshan, ZHU Qihu LU Wenbo. Numerical simulation of rock burst in circular tunnels under unloading conditions [J]. Journal China University of Mining & Technology, 2007,17(4):552-556.
    [132]隋斌,朱维申,李树枕.深部岩柱在动态扰动下力学响应的数值模拟[J].岩土力学,2009,30(8):2501-2505.
    [133]王耀辉,陈莉雯,沈峰.岩爆破坏过程能量释放的数值模拟[J].岩土力学,2008,28(3):790-794.
    [134]Dhawan K R, Singh D N, Gupta I D.2D and 3D finite element analysis of underground openings in an inhomogeneous rock mass[J]. International Journal of Rock Mechanics and Mining Sciences,2002,39(2):217-227.
    [135]Hock E, Brown E T. Underground excavration in Rock Institute of Mining and Metallurgy[C].London:Proceedings of the international symposium on weak rock London. 1980,72.
    [136]Maleki H, Dolinar DR, Dubbert J. Rock mechanics study of lateral distressing for the advance and relieve mining method. In:Proceedings of the 22nd international conference on ground control in mining. Morgantown, WV,2003. p:105-110.
    [137]Carter B J. Size and stress gradient effects on fracture around cavities[J]. Rock Mechanics and Rock Engineering,1992,25(3):167-186.
    [138]陆菜平,刘海顺,刘彪,等,深部高应力异常集中区冲击矿压动态防治实践[J].煤炭学报,2010,35(12):1984-1989.
    [139]Martin C D, Kaiser P K, Christiansson R. Stress, instability and design of underground excavations[J]. International Journal of Rock Mechanics and Mining Sciences,2003,40(7): 1027-1047.
    [140]孟召平,程浪洪,雷志勇.淮南矿区地应力条件及其对煤层顶底板稳定性的影响[J].煤田地质与勘探,2007,35(1):21-25.
    [141]周宏伟,谢和平,左建平.深部高地应力下岩石力学行为研究进展[J].力学进展,2005,35(1):91-99.
    [142]刘立鹏.锦屏二级水电站施工排水洞岩爆问题研究[D].北京:中国地质大学(北京)工程技术学院,2011.
    [143]Obara Y, Ishiguro Y. Measurements of induced stress and strength in the near-field around a tunnel and associated estimation of the Mohr-Coulomb parameters for rock mass strength[J]. International journal of rock mechanics and mining sciences,2004,41(5): 761-769.
    [144]Mark Stephen Diederichs. Instability of hard rockmasses the role of tensile damage and relaxation[M]. thesis of the University of Waterloo in fulfillment of the thesis requirement [doctor of Philosophy.
    [145]苗金丽.岩爆能量特征实验分析[D].中国矿业大学博士学位论文.2009.
    [146]王学滨,潘一山.不同测压系数条件下圆形巷道岩爆过程模拟[J].岩土力学,2010,31(6):1937-1942.
    [147]左宇军,李夕兵,张义平.动静组合加载下的岩石破坏特性[M],北京:冶金工业出版社,2008.
    [148]李广平.岩体的压剪损伤机理及其在岩爆分析中的应用[J].岩土工程学报,1997,19(6):49-55.
    [149]Dyskin A V, Germanovich L N. Model of rockburst caused by cracks growing near free surface [A]. Rockbursts and Seismicity in Mines [C]. Rotterdam:Balkema,1993,169-174.
    [150]P. P. Prochazka. Application of discrete element methods to fracture mechanics of rock bursts [J]. Engineering Fracture Mechanics,2004,71:601-618.
    [151]高永涛,丁录董,吴顺川.高地应力隧道岩爆实验及模拟预测[J].辽宁工程技术大学学报(自然科学版)[J].2010,29(4):613-616.
    [152]Cai M, Kaiser P K, Tasaka Y, et al. Generalized crack initiation and crack damage stress thresholds of brittle rock massas near underground excavations[J]. International Journal of Rock Mechanics and Mining Sciences,2004,41:833-847.
    [153]彭祝,王元汉,李延芥Griffth理论与岩爆的判别准则[J].岩石力学与工程学报,1996,(15S):491-495.
    [154]Griffth A A. Theory of rupture[C]//Proceeding of the First Congress of Applied Mechanics. Delft,1924:55-63.
    [155]胡云华.高应力下花岗岩力学特性试验及本构模型研究[D].武汉:中国科学院武汉岩土力学研究[博士学位论文].2008
    [156]徐文胜,许迎年,王元汉,等.岩爆模拟材料的筛选试验研究[J].岩石力学与工程学报,2000,19(S):873-877.
    [157]李晓静.深埋隧洞破裂破坏形成机理的试验和理论研究[D][博士学位论文].山东:山东大学,2007.
    [158]Wong R H C, Wang S W. Experimental and numerical study on the effect of material property, normal stress and the position of joint on the progressive failure under direct shear[J]. Narms-tac2002, Mining and Tunnelling Innovation and Opportunity,2002,1: 009-1.
    [159]Fossen H, Gabrielsen R H.Experimental modeling of extensional fault systems by use of plaster [J]. Journal of Structural Geology,1996,18(5):673-687.
    [160]Scholz C H. The brittle-plastic transition and the depth of seismic faulting[J]. Geologische Rundschau,1988,77(1):319-328.
    [161]唐鑫.岩石分区碎裂化现象的现场观测数据分析,蠕变机理及模拟实验研究[D].辽宁工程技术大学,2006.
    [162]刘继国,曾亚武.岩石试件端面摩擦效应数值模拟研究[J].工程地质学报,2005,13 (2):247-251.\
    [163]胡云华.高应力下花岗岩力学特性试验及本构模型研究[D].武汉:中国科学院武汉岩土力学研究[博士学位论文].2008
    [164]郭印同,杨春和.硬石膏常规三轴压缩下强度和变形特性的试验研究[J].岩土力学,2010,31(6):1776=1780.
    [165]蔡美峰,何满潮,刘东燕.岩石力学与工程[M].北京:科学出版社,2002
    [166]PATYNSKA Renata, KABIESZ Jozef. Scale of seismic and rock burst harzard in the Silesian companies in Poland[J]. Mining Science and Technology,2009,19:604-608.
    [167]李长洪,蔡美峰,乔兰,等.岩石全应力-应变曲线与其岩爆关系[J],北京科技大学学报,1999,21(6):513-515.
    [168]谢和平.岩石混凝土损伤力学[M].徐州:中国矿业大学出版社,1990.
    [169]吝曼卿.混凝土在冲击荷载作用下的损伤效应研究[硕士论文D].绵阳.西南科技大学.2010.
    [170]王挥云,李忠华,李成全.基于岩石细观损伤机制的岩爆机理研究[J].辽宁工程技术大学学报,2004,23(2):188-190.
    [171]刘小明,李焯芬.脆性岩石损伤力学分析与岩爆损伤能量指数[J].岩石力学与工程学报,1997,16(2):140-147.
    [172]葛修润,任建喜,蒲毅彬,等.岩土损伤力学宏细观试验研究[M].北京:科学山版社,2004.]
    [173]吝曼卿,郭学彬,肖正学,等.弹性波CT在混凝土靶体冲击损伤实验中的应用[J].实验力学,2010.25(2):136-142.
    [174]王振宇,刘国华.土木工程的层析成像与广义反演研究[博士论文D].浙江.浙江大学.2003.
    [175]M.Q.Lin, Y.Y.Xia, Z.X.Xiao, X.B.Guo. Damage experiment of projectile penetration into high-strength concrete[C]. Proceedings of the 2nd ISRM International Young Scholars' Symposium on Rock Mechanics. Beijing China,14-16 October 2011.
    [176]张志呈,肖正学,蒲传金,等.爆破对岩石的损伤影响及损伤控制研究[J].中国钨业,2006,21(6):1822.]
    [177]杨小林,王树仁.岩石爆破损伤断裂的细观机理[J].爆炸与冲击,1999,20(3):247-252.
    [178]吉小明.隧道开挖的围岩损伤扰动带分析[J].隧道开挖的围岩损伤扰动带分析,岩石力学与工程学报,2005,24(10):1697-1702.
    [179]Carl E. Renshaw, Erland M. Schulson. Universal behavior in compressive failure of brittle materials. Nature,2001,412:897-900.
    [180]王敏强,侯发亮.板状破坏的岩体岩爆判据的一种方法[J].岩土力学,1993,14(3):53-60.
    [181]Krishnamurthy R, SHRINGARPUTATE S. B. Rockburst hazards in Kolar Gold Fields. Proc 2nd symp. Rockburst & Seismicity in Mines, Balkma, Rotterdam.1990:410-411.
    [182]谭以安.岩爆特征及岩体结构效应[J].中国科学,1991,(9):987-993.
    [183]Ming Tao, Xibing Li, Chengqing Wu. Characteristics of the unloading process of rocks under high initial stress[J].Computers and Geotechnics,2012, (45):83-92.
    [184]PATYNSKA Renata, KABIESZ Jozef. Scale of seismic and rock burst harzard in the Silesian companies in Poland[J]. Chinese Journal of Mining Science and Technology,2009, 19:604-608.
    [185]徐金余,范建设,吕晓聪.围压条件下岩石的动态力学特性[M].西安:西北工业大学出版社,2012.
    [186]Ming Tao, Xibing Li, Chengqing Wu. Characteristics of the unloading process of rocks under high initial stress[J].Computers and Geotechnics,2012, (45):83-92.
    [187]冯夏庭,陈炳瑞,明华军,等.深埋隧洞岩爆孕育规律与机制:即时型岩爆[J].岩石力学与工程学报,2012,31(3):433-445.
    [188]孙洪泉,谢和平.岩石断裂表面的分形模拟[J].岩土力学,2008,29(2):347-352.
    [189]Xie H. and Pariseau W. G. Fractal character and mechanism of rockbursts.33rd U. S. Symp. Rock Mech, Santa Fe.1992:745-754.
    [190]Coughlin J.and Kranz R. New approaches to studying rockburst associated seismicity in mines[C]. Proc.32nd, U. S. Sump. Rock Mech.,1991:491-500. Balkema, Rotterdam.
    [191]K.SHIVAKUMAR, M.V.M.S.RAO, C.SRINIVASAN, et al. Multifractal Analysis of the Spatial Distribution of Area Rockburst at Kolar Gold Mines[J]. Int. J. Rock Mech. Min. Sci. & Geomech.1996,33(2):167-172.
    [192]NAGAHAMA H.A Fractal scalings of rock fragmentation[J]. Earth Science Frontiers, 2000,7(1):1599-1603.]
    [193]何满潮,杨国兴,苗金丽,等.岩爆试验碎屑分类及其研究方法[J].岩石力学与工程学报,2009,28(8):1521-1530.
    [194]HE Manchao, NIE Wen, HAN Liqiang, et al. Microcrack analysis of Sanya grantite fragments from rockburst tests[J]. Mining Science and Technology,2010, (20):238-243.
    [195]Sujatha V. Chandra Kishen J M. Energy release rate due to friction at biomaterial interface in dams[J]. Journal of Engineering Mechanics, ASCE,2003,129(7):793-800.
    [196]Bernabe Y, Revil A. Pore-cale heterogeneity, energy dissipation and the transport properties of rocks[J]. Geophysical Research Letters,1995,22(12):1529-1532.
    [197]刘松玉,方磊,陈浩东.论我国特殊土粒度分布的分形结构[J].岩土力学工程学报,1993,15(1):23.
    [198]王利,高谦.基于损伤能量耗散的岩体块度分布预测[J].岩石力学与工程学报,2007,26(6):1202-1211.
    [199]邓涛,杨林德,韩文峰.加载方式对大理岩碎块分布影响的试验研究[J].统计大学学报,2007,35(1):10-14.
    [200]Rui-fu Yuan, Yuan-hui Li. Fractal analysis on the spatial distribution of acoustic emission in the failure process of rock specimens[J]. International Journal of Mineral Metallurgy and Materials.2009,16 (1):19-24.
    [201]单晓云,李占金.分形理论和岩石破碎的分形研究[J].河北理工学院学报,2003,25(2):11-17
    [202]朱泽奇,盛谦,肖培伟,等.岩石卸围压破坏过程的能量耗散分析[J].岩石力学与工程学报,2011,30(S1):2675-2681.
    [203]艾凯,孙路,刘元坤,等.对岩爆问题的探讨[J].岩土工程界,2005,8(15):2005,8(15):57-59.
    [204]徐则民,吴培关,王苏达,等.岩爆过程释放的能量分析[J].自然灾害学报,2003,12(3):104-111.]
    [205]关宝树.隧道力学概论[M].成都:西南交通大学出版社,1993.
    [206]潘岳,张勇,吴敏应,等.非对称开采矿柱失稳的突变理论分析[J].岩石力学与工程学报,2006,25(S2):3694-3702.
    [207]潘岳,王志强,张勇,等.突变理论在岩体系统动力失稳中的应用[M].北京:科学出版社,2008.
    [208]黄达,黄润秋.卸荷条件下裂隙岩体变形破坏及裂纹扩展演化的物理模型试验[J].岩石力学与工程学报,2010,29(3):502-512.
    [209]Carter B J. Size and stress gradient effect on fracture around cavities [J]. Rock Mechanics and Rock Engineering,1992,23(3):67-186.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700