用户名: 密码: 验证码:
大管电泳自动控制系统及大功率超声设备开发
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
相对于传统的毛细管电泳技术,带有内置冷机制的大管电泳由于其载样量大,目前正得到越来越广泛的研究。本文从大管电泳基础参数的控制、采样和管内缓冲溶液电导率检测两方面对其进行改进。以ARM7内核的微处理器LPC2146为基础,通过USB总线通信开发了大管电泳自动控制系统。通过开发Win32操作系统下的应用程序实现了大管电泳中高压电源的控制;高压电源输出电压、电流的采样及显示;大管进出口制冷液温度的实时采集及显示。为进一步完善大管电泳系统、研究内制冷效果搭建了实验平台。
     功率超声在新材料制备及天然药物提取领域具有广泛的应用前景。针对目前超声功率低,频率不可调的缺点,开发了大功率超声电源,实现了基于模拟器件和单片机的控制电路,通过使用带有高频隔离变压器的驱动模块,提高了系统的可靠性。该电源可通过外置旋钮调节输出频率。针对不同溶媒和天然药物的提取调整频率、激发方式和超声功率,获得最佳的超声处理参数,并为进一步研究功率超声在药物化学和分析学科的应用搭建了实验平台。
     在制作超声换能器时,需要用导纳仪或阻抗分析仪对所使用的压电陶瓷管进行一致性筛选。在低频时,模拟导纳仪测量的导纳或阻抗精度差;基于采集卡的导纳仪采集频率受限,测量的频率范围比较窄;安捷伦的4294A阻抗分析仪价格昂贵。针对以上问题,本文开发了基于LPC2146的数字式导纳仪。通过使用USB总线通信,实现了PC机应用程序对导纳仪的控制及导纳圆采集结果的实时显示。
     同时,开发的数字式导纳仪还可以应用于大管电泳中缓冲溶液的电导率测量,这是一种非接触的测量方法,测量过程不改变毛细管中溶液的电学和化学特征,实现连续测量以后还可以提供不同位置毛细管内部的电导率随时间变化规律的检测,为研究大管内部溶液的特征和新的测量方法搭建了实验平台。
Compared to traditional capillary electrophoresis (CE), wide-boreelectrophoresis (WBE) with the inner cooling mechanism is under extensive researchbecause of its sample loading capacity. This paper aims to improve WBE from thetwo aspects as follows: control and sampling of the basic parameters such as the valueof vortage and current of high-voltage power supply (HVPS); conductivity detectionof buffer solution.
     Based on the ARM7-core microprocessor LPC2146, WBE automatic controlsystem was developed via the USB bus communication. The output voltage of HVPScan be adjusted in Windows application program. Besides, the system samples theoutput voltage and current of HVPS, and diplays the above two parameters in theapplication program. For further study on inner cooling effect, the system alsosamples and displays the import and export cooling fluid temperature of WBE.
     Power ultrasound has been widely used in new materials development andnatural medicine extraction field. However, the shortcomings such as low power andunadjustable frequency had limited its further applications. New ultrasonic powerdeveloped by our laboratory has realized high power and adjustable output frequencyby an external knob. Two control circuits based on analog component and singlechiphave been achieved. The driver modules used in the ultrasonic power have highfrequency isolation transformer to improve the reliability of the system. Differentsolvents and natural medicines need to adjust the ultrasound frequency, excitationmode and power to obtain the optimum ultrasound treatment parameters. Newexperimental platform consists of the ultrasonic power and container is built up forfurther study on application of power ultrasound in pharmaceutical chemistry andpharmaceutical analysis.
     In the production of ultrasonic transducers, admittance meter or impedanceanalyzer is used to screen a series of piezoelectric ceramic tube with a goodconsistency. Currently, there are three instruments to deal with the screen work, butthey all have shortcomings more or less. At low frequencies, the analog admittancemeter has bad performance of measurement accuracy. The admittance meter based onthe acquisition card is limited by its sampling frequency, so its measuring frequencyrange is relatively narrow. Agilent4294A impedance analyzer is expensive. To solve the above problem, we developed digital admittance meter system based on LPC2146.By using the USB bus communication, real-time control and display of the admittancecircle sampling results in Windows application program is realized.
     Meanwhile, the digital admittance meter can be also applied to measureconductivity of buffer solution in WBE system, which is a non-contact measurementmethod. The measurement process does not change the electrical and chemicalcharacteristics of buffer solution. After achieving continuous measurement, therelationship of buffer solution conductivity changing with the time in the differentposition can be provided to study on the characteristics of buffer solution in WBEsystem and new measurement method.
引文
[1] Jorgenson J W, Lukacs K D, Free-zone electrophoresis in glass capillaries,Clin.Chem.,1981,27(9):1551-1553
    [2] Terabe S, Otsuka K, Ichikawa K, et al, Electrokinetic separations with micellarsolutions and open-tubular capillaries, Anal. Chem.,1984,56:111-113
    [3] Muijselaar P G H M, Claessens H A, Cramers C A, Determination of structurallyrelated phenothiazines by capillary zone electrophoresis and micellarelectrokinetic chromatography, J. Chromatogr. A,1996,735(1-2):395-402
    [4] Gibson G, Ramstad T, Mills K A, Dunn M J, A method for the determination ofminoxidil in hair-regrowth formulations by micellar electrokinetic capillarychromatography, Il Farmaco,2005,60(10):847-853
    [5] Delgado-Zamarre o M M, González-Maza I, Sánchez-Pérez A, Martínez R C,Analysis of synthetic phenolic antioxidants in edible oils by micellarelectrokinetic capillary chromatography, Food Chem.,2007,100(4):1722-1727
    [6] Hjerten S, Liao J L, Yao K, Theoretical and experimental study of high-performance electrophoretic mobilization of isoelectrically focused protein zones,J. Chromatogr. A,1987,387:127-138
    [7] Cohen A S, Karger B L, High-performance sodium dodecyl sulfatepolyacrylamide gel capillary electrophoresis of peptides and proteins, J.Chromatogr. A,1987,397:409-417
    [8] Chen N, Chrambach A, Capillary electrophoresis of DNA fragments in9to20%uncrosslinked polyacrylamide gels: unique separating capacity hypotheticallyrelated to maintenance of random-coil DNA conformation independently of gelconcentration, J. Biochem. Bioph. Methods,1997,3(3):175-184
    [9] Jeon S, Lee M J, Park J, et al, Fast molecular diagnostics of canine T-celllymphoma by PCR and capillary gel electrophoresis with laser-inducedfluorescence detector, J. Chromatogr. B,2007,854(1-2):268-272
    [10]Noll B O, Debelak H, Uhlmann E, Identification and quantification of GC-richoligodeoxynucleotides in tissue extracts by capillary gel electrophoresis, J.Chromatogr. B,2007,847(2):153-161
    [11]Nedelkov D, Bieber A L, Characterization of the two myotoxin a isomers fromthe prairie rattlesnake (Crotalus viridis viridis) by capillary zone electrophoresisand fluorescence quenching studies, Toxicon,1997,35(5):689-698
    [12]Larraín M A, Abugoch L, Quitral V, et al, Capillary zone electrophoresis as amethod for identification of golden kinglip (Genypterus blacodes) species duringfrozen storage, Food Chemistry,2002,76(3):377-384
    [13]Mato I, Suárez-Luque S, Huidobro J F, Simple determination of main organicacids in grape juice and wine by using capillary zone electrophoresis with directUV detection, Food Chem.,2007,102(1):104-112
    [14]Woolley A T, Hadley D, Landre P, et al, Functional Integration of PCRAmplification and Capillary Electrophoresis in a Microfabricated DNA AnalysisDevice, Anal. Chem.,1996,68(23):4081-4086
    [15]Cheng J, Mitchelson K R, Glycerol-Enhanced Separation of DNA Fragments inEntangled Solution Capillary Electrophoresis, Anal. Chem.,1994,66(23):4210-4214
    [16]Zhu M, Hansen D, Burd S, et al, Factors affecting free zone electrophoresis andisoelectric focusing in capillary electrophoresis, J. Chromatogr. A,1989,480:311-319
    [17]Hjertén S, Zone broadening in electrophoresis with special reference to high-performance electrophoresis in capillaries: interplay between theory and practice,Electrophoresis,1990,11:665-690
    [18]Robert L W, Gyula V, Maximization of separation efficiency in capillaryelectrophoretic chiral separations by means of mobility-matching backgroundelectrolytes, J. Chromatogr. A,1996,730:273-278
    [19]Williams R L, Childs B, Dose E V, Peak Shape Distortions in the CapillaryElectrophoretic Separations of Strong Electrolytes When the BackgroundElectrolyte Contains Two Strong Electrolyte Co-Ions, Anal. Chem.,1997,69(7):1347-1354
    [20]Williams R L, Vigh G, N-(Polyethyleneglycol monomethylether)-N-methylmorpholinium-based background electrolytes in capillary electrophoresis,J. Chromatogr. A,1997,763:253-259
    [21]Rose Jr D J, Jorgenson J W, Characterization and automation of sampleintroduction methods for capillary zone electrophoresis, Anal. Chem.,1988,60(7):642-648
    [22]Christianson J A, Transverse forced gas cooling for capillary zone electrophoresis,USP:5122253,1992
    [23]Karger B L, Nelson R J, Integrated temperature control/alignment system for highperformance capillary electrophoretic apparatus, USP:5085757,1992
    [24]You-xin Li, Yong-bo Dan, Xin Fang, James J. Bao, Preliminary studies of anovel multifunctional wide-bore electrophoresis system, Electrophoresis,2007,20(11):3412~3415
    [25]Li Y X, Dan Y B, Fang X, Preliminary studies of a novel multifunctional wide-bore electrophoresis system, Electrophoresis2010,31(19),3247-3255
    [26]Li Y X, Fang X, Zhao S B, Study on a Novel Two-dimensional HPLC and Wide-bore Electrophoresis System, Chem. Lett.2010,39,983-985
    [27]Ross A W, Andrew G E, Capillary zone electrophoresis with electrochemicaldetection, Anal. Chem.,1987,59(14):1762-1766
    [28]Odilo M, Frantisek F, Barry L K, Design of a high-precision fraction collector forcapillary electrophoresis, Anal. Chem.,1995,67(17):2974-2980
    [29]Guo Y G, Liu D N, Wang H F, Zone Electrophoresis in an Inner-cooling Wide-bore Electrophoresis System with UV Detection,ANALYTICAL SCIENCESAUGUST2008,24,1025~1030
    [30]余泽洋,谭伟明,大功率超声波焊接加工系统现状,佛山科学技术学院学报(自然科学版),2004,22(4):28~31
    [31]林书玉,功率超声技术的研究现状及其最新进展,陕西师范大学学报(自然科学版),2001,29(1):101~106
    [32]王应彪,刘传绍,赵波,功率超声技术的研究现状及其应用进展,机械研究与应用,2006,19(4):41~43
    [33]林仲茂,20世纪功率超声在国内外的发展,声学技术,2000,19(2):101~105
    [34]赵君文,吴树森,毛有武等,功率超声振动在金属材料成形中的研究及应用,材料导报,2008,22(z1):189~193
    [35]曲建俊,齐毓霖,张志谦等,超声马达摩擦学及其摩擦材料研究进展,摩擦学学报,1998,18(1):80~87
    [36]Jonathan N. Coleman, Mustafa Lotya, Arlene O’Neill, Shane D. Bergin, Paul J.King, Umar Khan, et al., Two-Dimensional nanosheets produced by liquidexfoliation of layered materials, Science, vol.331, pp.568–571, February,2011
    [37]刘世清,超声波马达原理及其应用,渭南师范学院学报:综合版,2004,19(5):13~16
    [38]李宁,陈建峰,黄建国等,各种水下声源的发声机理及其特性,应用声学,2009,28(4):241~248
    [39]王常斌,符显峰,张强等,大功率超声波处理技术的发展与展望,大庆石油地质与开发,2009,28(6):243~246
    [40]贾宝贤,边文凤,赵万生等.压电超声换能器的应用与发展.压电与声光,2004,27(2):131~135.
    [41]Jonny Johansson, Erik Martinsson, Jerker Delsing, Simulation of absoluteamplitudes of ultrasound signals using equivalent citcuits, Ultrasonics,ferroelectrics, and frequency control, vol.55, pp.1977–1983,2007
    [42]Oakley C, Mueller J, Dietz D, Kuhnke J, A minimally invasive ultrasoundtransducer using non-coax cabling, Ultrasonics Symposium, vol.2, pp:1011–1016,2001
    [43]Gabriel Thomas, Daniel Flores-Tapia, Stephen Pistorius, Synthetic apertureultrasound imaging of XLPE insulation of underground power cables, ElectricalInsulation Magazine, vol.26, pp.24–34,2010
    [44]W. H. Chen, P. J. Cao, E. Maione, Optimization of pulse transmission in a high-frequency ultrasound imaging system, Ultrasonics Symposium, vol.2, pp:995–998,2001
    [45]J. Griffith, P. Reynolds, D.Powell, G. Wojcik, Cable parameters and acousticprobe performance, Ultrasonics Symposium, vol.2, pp.1055–1059,2000
    [46]K. Masuda, A. Vilchis, J. Troccaz, Safe control of ultrasound probe on abdomenby pulling cables for robotic tele-echography system, Proceedings of the25thAnnual International Conference of the IEEE EMBS, Mexico, pp.3676–3679,2003
    [47]Michael J. Tsuk, Jin Au Kong, A hybrid method for the calculation of theresistance and inductance of transmission lines with arbitrary cross sections,Microwave Theory and Techniques, vol.39, pp.1338–1347,1991
    [48]J.A. Bargoshadia, H. Binti Abdul Rahimb, Design and manufacture an ultrasonicdispersion system with automatic frequency adjusting property, InternationalColloquium on Signal Processing and its Applications, pp.359–365,2011
    [49]Jim M. Griffith, Roland Lebender, Joachim Mueller, Crosstalk in ribbon-basedprobe cables, Ultrasonics Symposium, vol.2, pp.1143–1148,2000
    [50]常伟,李军文,桃野正等,超声波熔体处理方法对纯铝铸锭凝固组织的影响,轻合金加工技术,2007,35(03):19-22
    [51]马智龙,丁玉薇,程控功率超声发生器,声学技术,1997,16(1):36-38
    [52]刘丽华,顾煜炯,杨昆,智能化功率超声发生器的研制,电子器件,2002,25(1):67-70
    [53]Gephardt S, Schonecker A, Quasistatic and dynamic properties of1-3compositesmade by soft molding, Journal of the America ceramic society,2003,23(1):153-159
    [54]Statnikov E S, Muktepavel V O, Troufiakov V J, Comparison of ultrasonicimpact treatment and other fatigue life improvement methods, Welding in theworld,2002,46(3):20-32
    [55]Shear M D, Foster F S, The design and fabrication of high frequency polytransducers,Ultrasonic,1989,26(3):59-64
    [56]Gallego J A, Rodriguez G, Recent developments in vibrating-plate macrosonictransducers,Ultrasonics,2002,40:889-893
    [57]Hefner A R, An Investigation of the Drive Circuit Requirements for the powerIGBT.IEEE Transactions on Power Electronics,1991,6(2):208-212
    [58]Jishun Jiang, Lanlan Yu, Design of a new three-phase multi-rate watt-hour meterbase on AT89S52, Computational intelligence and design,2009,31(12):416-419
    [59]Yantao Zhang, Shuqin Li, Research and design of ultrasonic open channelflowmeter based on AT89S52, Intelligent systems and applications,2010,27(5):1-4
    [60]Tze-Chi Jao, Chip Hewette, Dava DeGona etc, Development of Fuel EconomyGear Oil Technology, Oil Research and Application,2010,25(03):11-19
    [61]Dai Hua, Luo Ercang, Hu Jianying etc, A novel coupling configuration forthermoacoustically-driven pulse tube coolers: Acoustic amplifier,2005,50(18):2112~2114
    [62]郭一军,一种可关断晶闸管(GTO)直接门极驱动电路的研究,化工自动化及仪表,2008,35(5):59~61
    [63]陈伯时,电力电子器件的发展与应用,电子与仪表,1997(5):2~4
    [64]柯励伟,浅谈电力电子电路的控制技术,科技资讯,2006,(29):154
    [65]谢勇,IGBT大功率超声波逆变电源,电子技术,1997,(9):30~32
    [66]李宏,电力电子设备用器件与集成电路应用指南(第3册),北京:机械工业出版社,2001.405~437
    [67]王志良,电力电子新器件及其应用技术,北京:国防工业出版社,1995
    [68]王兆安,黄俊,电力电子技术,北京:机械工业出版社,2004
    [69]Bayram B,Oralkan O,Ergun AS.Capacitive micromachined ultrasonic transducerdesign for high power transmission.IEEE Trans on Ultrasonics,Ferroelectrics andFrequency Control,2005.52(2):326~339
    [70]Trivedi M,John V,Lipo T A,et al.Internal dynamics of IGBT under fault currentlimiting gate control.Industry Applications Conference2000,Conference Recordof the2000IEEE,2000,5:2903~2908
    [71]邹江峰,张亚迪,吴云亮等,IGBT及其驱动模块EXB841在混合滤波器设计中的应用,电源技术应用,2007,10(9):34~37
    [72]王可恕,绝缘栅双极晶体管(IGBT),国外电子元器件,1995,(07):35~42
    [73]姚惠林,张松兰,DSP与单片计算机,洛阳工业高等专科学校学报,2003,13(04):25~26
    [74]丘凯伦,嵌入式系统调试方法的分析与比较,现代计算机(下半月刊),2005,(11):82~84
    [75]刘丽华,顾煜炯,杨昆,智能化功率超声发生器的研制,电子器件,2002,25(1):67-70
    [76]于军,翟玉文,孙陆梅,TL494脉宽调制器集成电路的研究,吉林化工学院学报,2005,22(3):47~49
    [77]周林,蒋建文,易强等,PWM控制器的控制方法,重庆邮电学院学报(自然科学版),2001,(81):112~113
    [78]杨战胜,嵌入式系统在自动化监控中的研究,硕士学位论文,华北水利水电学院,2007
    [79]马建伟,基于STM32的空气动力学数据采集系统的设计,硕士学位论文,西南交通大学,2007
    [80]郭一军,一种可关断晶闸管(GTO)直接门极驱动电路的研究,化工自动化及仪表,2008,35(5):59~61
    [81]蒋怀刚,李乔,何志伟,IGBT模块驱动及保护技术,电源技术应用,2003,6(4):132~136
    [82]李钰玺,骆光照,闫要岗等,一种新型板载式IGBT驱动器设计,测控技术,2011,30(2):51~56
    [83]胡俊达,IGBT的驱动与保护电路研究,电机电器技术,2003(6):37~40
    [84]MIZUTANI Yoko,SUZUKI Taiju.Frequency control of MOSFET fullbridgepower Inverter for maximizing output Power to megasonic transducer at3MHz,IEEE,1998(1):1644-1651
    [85]翟伟翔,智能化大功率超声电源的研制,硕士学位论文,华北电力大学,2002
    [86]曹军,2SD315AI-33型功率器件驱动器的性能及应用,电子元器件应用,2004,6(10):35~37
    [87]蒋晓春,陈洛忠,高压IGBT集成驱动模块2SD315AI-33的应用研究.国外电子元器件,2003(11):41~44
    [88]李艺,在变频器中应用2SD315AI驱动模块,电气时代,2008(9):116~117
    [89]姜奋平,尹向阳,张黎,大功率IGBT驱动器2SD315A的分析与测试,变频器世界,2009,3:51~53
    [90]孙稚,孙梅生,王磊,大功率IGBT驱动模块2SD315A的特性及其应用,电力电子技术,2002(06):120~122
    [91]徐涛,超声波发生器电源技术的发展,洗净技术,2003,(6):10~13
    [92]顾春元,虞建业,任永林等,超声波采油技术研究与应用,钻采工艺,2003,26(6):59~61
    [93]王建明,功率超声技术的现状与展望,声学技术,1997,16(1):46~48
    [94]周志敏,周纪海,纪爱华,逆变电源实用技术——设计与应用,北京:中国电力出版社,2005
    [95]廖家平,袁兆梅,张治国,基于单片机PWM控制逆变电源的设计,中国水运(理论版),2006,4(5):172~173
    [96]卢家林,苏彦民,一种新型的大功率高性能逆变电源控制方案,电工电能新技术,2002,21(1):73~77
    [97]高伯发,魏淑珍,徐志国,大功率晶闸管整流电路串联顺序控制,电气自动化,1999,(04):28~29
    [98]王荣繁,周浓,张烨,李俊飞,超声提取川楝子中阿魏酸的最佳工艺研究,湖北农业科学,2012(03):231~232
    [99]蔡全英,黄慧娟,吕辉雄,超声提取高效液相色谱法测定土壤中的4-壬基酚,分析测试学报,2012,31(02):185~189
    [100]高丽,黄行健,凌洁玉,中华秋海棠根茎中甾醇的超声提取工艺研究,安徽农业科学,2012,40(6):3274~3277
    [101]白雪松,杜鹃,谢巧英,黄花菜中总黄酮超声提取工艺研究,吉林医药学院学报,2012,33(1):3~5
    [102]陈毅挺,黄露,林棋,翻白草中熊果酸的超声提取与检测,实验室科学,2012,15(1):85~87
    [103]黄福山,赵恒田,李富恒,辽东楤木叶片皂苷超声提取工艺优化研究,食品工业科技,2012,33(6)360~362
    [104]王晓林,钟方丽,孙威,东北铁线莲总多酚的超声提取工艺研究,河北科技大学学报,2012,33(1):32~35
    [105]黄锁义,刘胜利,郭立强,正交设计优化木瓜多糖的超声提取工艺,安徽农业科学,2012,40(5):2618~2620
    [106]章斌,侯小桢,饶强,响应面优化佛手总黄酮超声提取及抗氧化研究,食品研究与开发,2012,33(2):27~30
    [107]余珊,郭立强,司珂珂,超声提取桂西生姜色素的最佳工艺及稳定性研究,安徽农业科学,2012,40(4)2323~2324
    [108]才凤,苗翠,李洪江,鹿茸多肽超声提取工艺研究,实用药物与临床,2012,15(1):32~33
    [109]贤景春,刺苋总黄酮的超声提取工艺研究,食品工业科技,2012,33(01):250~251
    [110] Flint, E. B., Suslick, K. S., The Temperature of Cavitation, Science1991,253,1397-1399
    [111]赖富饶,李臻,吴晖,甜玉米芯多酚的超声提取工艺优化,现代食品科技,2012,28(1):52~54
    [112]刘小丽,张伟,符毅文,虎杖中白藜芦醇的超声提取及其抗氧化性研究,中成药,2012,33(1):150~152
    [113]史礼貌,解成喜,新疆大蓟总黄酮的超声提取及抗氧化性研究,食品科学,2011,32(6):120~123
    [114]易运红,吴功庆,庄成建,金樱根多糖的超声提取研究,天津农业科学,2011,17(1):25~27
    [115]李明轩,超声检测用压电换能器瞬态特性可控可调,应用声学,2008,27(5):338~344
    [116]雷华明,阙沛文,电磁超声换能器的阻抗测试方法研究,仪表技术与传感器,2004,1:15~16
    [117]孙波,季远,李光军,功率超声换能器导纳特性检测及电端匹配研究,振动、测试与诊断,2002,22(4):287~290
    [118] Collino F, Tsogka C, Applications of the perfectly matched absorbing layermodel to the linear elastodynamic problem in anisotropic heterogeneous media,Geophysics,1999,66(1):294~307
    [119] Chen Y H, Chew W C, Liu Q H, A three-dimensional finite difference codefor the modeling of sonic logging tools, J Acoust Soc Am,1998,103(2):702~712
    [120]马雪花,蒋鑫元,压电换能器导纳的研究,大学物理实验,2003,16(4):1~4
    [121]沈建国,李山生,辛鹏来等,声波测井压电换能器的一致性问题,石油仪器,2002,16(6):33~35
    [122]张蕊,蔡朝鹏,沈建国,正交偶极子探头导纳圆测量系统,石油仪器,2008,22(6):45~47
    [123]陈德智,蔡文海,齐虹等,精密LCR测试技术研究,计量学报,2003,24(4):330~333
    [124]聂建华,张廷全,沈建国,压电换能器一致性筛选技术,石油仪器,2009,23(6):7~9
    [125]杨卫平,王关详,车晓波,大直径超声测井仪数据处理技术的研究,工矿自动化,2006,10(5):5~8
    [126] Porras S P, Jussila M, Sinervo K, et al, Alcohols and wide-bore capillaries innonaqueous capillary electrophoresis, Electrophoresis,1999,20:2510-2518
    [127]秦莉,岳文秀,杨伟东,基于DS18B20的多点温度测量体系的设计与仿真,实验室科学,2012,15(1):104~106
    [128]姚惠林,张松兰,DSP与单片计算机,洛阳工业高等专科学校学报,2003,13(04):25~26
    [129]孙云娟,王天意,单片机硬件抗干扰技术,自动化技术与应用,2010,29(2):129~131
    [130]夏莉英,陈雁,基于DS18B20的温度测控系统设计,微计算机信息,2011,27(1):115~117
    [131]黄金明,马秀峰,续九华,Visual C++6.0基础与实例教程,北京:中国电力出版社,2007
    [132]周立功,张华等,深入浅出ARM7LPC213x/214x(下),北京:北京航空航天大学出版社,2005
    [133]周立功,张华等,深入浅出ARM7LPC213x/214x(上),北京:北京航空航天大学出版社,2005
    [134]林书玉,张福成,功率超声换能器电声效率及辐射声功率的测量,声学技术,1999,18(4):152~155
    [135]柳彬,吴浩伟,孙朝晖等,大功率逆变电源IGBT关断电压尖峰抑制研究,舰船科学技术,2009,31(12):62-65
    [136]栾桂东,压电换能器和换能器阵,北京:北京大学出版社,2005,7:280~284
    [137]钱金川,朱守敏,电力电子器件IGBT的应用与保护,电焊机,2008,38(3):41~47
    [138]吴守箴,臧英杰,电气传动的脉宽调制控制技术,北京:机械工业出版社,1995
    [139]王化祥,自动检测技术,北京:化学工业出版社,2004
    [140]吴义华,杨俊峰,程敬原等,正弦信号四参数的高精度估计算法,中国科学技术大学学报,2006,36,(6):625~629
    [141]齐国清,贾欣乐,插值FFT估计正弦信号频率的精度分析,电子学报,2004,4:625~629
    [142]张毅刚,王丽,采用数字相关法测量相位差,计量学报,2000,21(3):216~221
    [143]谭峰,关亚风,毛细管电泳-电容耦合非接触电导检测方法,色谱,2005,23(2):152~157
    [144]苏瑞东,一种基于电涡流的电解质溶液电导率测量方法,仪器仪表学报,2010,31(3):678~681
    [145]石雄,杨加功,彭世蕤,DDS芯片AD9850的工作原理及其与单片机的接口,国外电子元器件,2001,5:53~56
    [146]彭辉生,陈永泰,DDS信号发生器中椭圆低通滤波器的设计,电子元器件应用,2007,4(9):57~58
    [147]许晓华,何春华,Multisim10计算机仿真及应用,北京:清华大学出版社,2011

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700