用户名: 密码: 验证码:
几种钒氧化物纳米材料的合成、表征及其在颜料催化降解中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纺织工业废水含有各种复杂的很难降解的染料类污染物,而这些污染物未经处理释放到我们的环境,就会导致水的严重污染。因此,合成高效的处理纺织工业染料废水的催化剂是一种挑战,而且具有重要的科学意义和应用前景。
     近几十年来,半导体光催化剂被广泛地研究,并被用于各种领域,诸如水处理、空气净化及分解水制氢等。但在光催化剂中,主要是一些宽禁带的半导体材料,而这些宽禁带的半导体如二氧化钛纳米材料只有在紫外光的照射下才有活性。因此,合成一种能有效利用如太阳能这样用之不竭的或者低廉的可见光的光催化剂是很有必要的。五氧化二钒半导体常常用于太阳能电池中,其禁带宽度为2.05eV,其电子比二氧化钛更容易被激发。然而,钒氧化物纳米材料用于污染光催化降解的研究较少。
     本文利用水热法合成了的具有几种形貌特征的钒氧化物纳米材料,并研究了其光催化特性或电化学特征。主要结果如下:
     1.通过水热法,用NH4VO3作为前体,以羧甲基纤维素钠(CMC)为软模板,在160下反应6小时,合成出具有竹席形中心的类交叉结构氧化钒铵纳米带阵列,用XRD、FE-SEM、TEM、SA-ED、HRTEM及FT-IR对合成出的产物进行了表征,并研究了CMC浓度、pH值以及温度对产物形貌的的影响。结果表明pH值对合成产物的形成起了至关重要的作用。基于随时间变化实验的结果,提出竹席形中心的类交叉结构NH4V4O10纳米带阵列的生长过程。进一步,本文通过在400下将类交叉结构氧化钒铵纳米带阵列煅烧40分钟,得到混合价态的氧化钒产物。在此基础上,研究了其在可见光的照射下催化氧化降解水溶液中罗丹明B的效果,并与其他阴离子染料进行了对比。此外,还探讨了温度对催化剂光催化的影响和重复使用效果,结果表明其在pH6.8,75下保持3小时30分钟,煅烧后的产物对罗丹明B的催化降解率达到了约95%,在同等条件下其效果明显优于二氧化钛纳米材料(P25),并且具有较好的重复使用率,这说明煅烧过的竹席形中心的类交叉结构氧化钒铵纳米带阵列是一种较为理想的可见光照射下降解罗丹明B的催化剂。
     2.利用水热反应合成出单晶MnV2O6·V2O5类交叉结构纳米带阵列,并用XRD、TEM及HRTEM对其进行了表征。并研究了各种反应条件(如pH,V5+/Mn2+比,CMC浓度及反应时间等)对产物形貌的影响,利用漫反射光谱分析计算了其禁带宽度。在此基础上,评价了其煅烧产物在可见光照射下对甲基蓝的光催化降解活性和重复使用效果。结果表明,由于Mn的掺杂,煅烧后的产物对甲基蓝的降解活性明显提高,而且具有较好重复使用率,这说明MnV2O6·V2O5类交叉结构纳米带阵列的煅烧产物是一个比较优越的可见光驱动的光催化剂。
     3.以草酸钒作为前体,苄醇为辅助剂,采用简单的一步水热法合成出了VO2(B)中空类纳米球材料,研究了草酸钒浓度、苄醇的存在和浓度以及过氧化氢的加入对产物形貌的影响,所合成产物用XRD, FE-SEM, TEM, HR-TEM及FT-IR等手段进行了表征。通过时间影响实验的结果,提出了VO2(B)中空类纳米球的晶体成长过程。对Ostwald成熟机理在球形颗粒的成长及中空类纳米球颗粒形成中的作用进行了讨论。此外,采用循环伏安法对在不同反应时间下合成出的VO2(B)中空类纳米球的电化学性质进行了评价。
Textile industry effluents contain a variety of complex and hard to degrade pollutantssuch as dyes that may cause significant water pollution when they are released to ourenvironment. Therefore, to synthesize a highly effective catalyst for treating textile dyewastewater is still a challenge and has important scientific significance and applicationprospects.
     Semiconductor photocatalysts have been extensively studied in recent decades, andhave been applied in numerous areas, such as water treatment, air purification,decomposition of water into hydrogen, etc. However, most of photocatalysts work underultraviolet light. Thereinto, nano-TiO2has been extensively studied as an effectivephotocatalyst, but it is not a good candidate under visible light irradiation. Therefore, it isstill a challenge to synthesize a highly effective catalyst for treating textile dye wastewaterunder visible light. Vanadium oxides semiconductor materials have received significantattention recently because of their distinctive structural versatility and novel applicationsin catalysis, high-energy lithium batteries, electric field-effect transistors, chemicalsensors/actuators and electrochemical devices. Nevertheless, a few studies about usingvanadium oxides in photocatalytic degradation of organic pollutants have been reported.
     In this thesis, several kinds of vanadium oxide nanomaterials were synthesized viahydrothermal method, and their photocatalytic or electrochemical properties were studied.The main results are as follows:
     1. The ammonium vanadium oxide cross-like nanobelt arrays with bamboo matcenter were synthesized via hydrothermal method using NH4VO3as precursors inpresence of sodium carboxymethyl cellulose (CMC), the soft template, at160C for6h.The synthesized-products were characterized by XRD, FE-SEM, TEM, SA-ED, HRTEM,and FT-IR. The effects of CMC concentration, pH value and temperature on the productmorphology were investigated. It showed that pH value plays a crucial role in theformation of cross-like nanobelt arrays. Based on the results of time dependentexperiments, the growth process of the cross-like NH4V4O10nanobelt arrays is proposed.Furthermore, the mixed valance state vanadium oxide nanobelt arrays were obtained bycalcination of the cross-like NH4V4O10nanobelt arrays at400°C for40min and its capability of catalytic degradation of rhodamine B with oxygen in aqueous under UV/vislight irradiation was studied and compared with anionic dyes. Besides, the influence oftemperature on the photocatalytic degradation was also investigated. The result showedthat the degradation efficiency of rhodamine B catalyzed by the calcinated product wasabout95%at pH6.8and75C for3h and30min, suggesting it is a candidate of efficientcatalysts for the photocatalytic degradation of rhodamine B under visible light irradiation.
     2. Single-crystalline MnV2O6·V2O5cross-like nanobelt arrays were successfullysynthesized by hydrothermal reaction. The products were characterized by XRD, TEMand HR-TEM. The effects of the reaction conditions such as pH, V5+/Mn2+ratio,carboxymethyl cellulose concentration and reaction time on the morphology of theproducts were studied. The band gap of the as-prepared products was calculated viadiffuse reflectance spectral analysis and their activity of photocatalytic oxidation wasevaluated by photodegradation of methylene blue under visible-light irradiation. Theresults showed that the degradation efficiency of methylene blue catalyzed by thecalcinated products is remarkably enhanced due to Mn doping, suggesting thatMnV2O6·V2O5cross-like nanobelt arrays are a good candidate for visible-light-drivenphotocatalysts.
     3. VO2(B) hollow like-nanosphere material was synthesized via a facile one-stephydrothermal process using vanadium oxalate as precursors in the presence ofwater-benzyl alcohol. Effects of vanadium oxalate concentration, existence of benzylalcohol and its concentration, and addition of hydrogen peroxide on the morphologies ofas-prepared products were investigated. The as-synthesized products were characterizedby XRD, FE-SEM, TEM, HR-TEM and FT-IR. Based on the results of time dependentexperiments, the growth process of VO2(B) hollow like-nanosphere were proposed. Theinside-out Ostwald ripening is responsible for the growth of spherical particles and theformation of hollow like-nanosphere. In addition, the electrochemical properties of VO2(B) like-nanosphere at various reaction times were compared by using cyclicvoltammogram.
引文
[1] Rao N R, Govindaraj A, Vivekchand S R C. Inorganic nanomaterials: current statusand future prospects. Annu. Reo. Chem. Sect. A2006,102:20-45.
    [2] Charles M. Lukehart, Robert A. Scott Nanomaterials: Inorganic and BioinorganicPerspectives, Marcos Fernández-Garcia, José A. Rodriguez. Metal OxideNanoparticles. Wiley2008,512-567.
    [3] Liu K, Zhao N, Kumacheva E. Self-assembly of inorganic nanorods. Chem. Soc.Rev.2011,40:656–671.
    [4] Roduner E. Size matters: why nanomaterials are different. Chem. Soc. Rev.2006,35:583–592.
    [5] Therese, H A, Rocker F, Reiber A, Li J, Stepputat M, Glasser G, Kolb U, Tremel W.VS2nanotubes containing organic-amine templates from the NT-VOx precursorsand reversible copper intercalation in NT-VS2. Angew. Chem. Int. Ed.2005,44:262–265.
    [6] Margulis L, Salitra G, Tenne R, Talianker M. Nested fullerene-like structures.Nature1993,365:113–114.
    [7] Galvan D H, Kim J H, Maple M B, Avalos-Berja M, Adem E. Formation of NbSe2nanotubes by electron irradiation. Fullerene Sci. Technol.2000,8:143–151.
    [8] Niederberger M, Muhr H, Krumeich F, Bieri F, Günther D, Nesper R. Low-costsynthesis of vanadium oxide nanotubes via two novel nonalkoxide routes. Chem.Mater.1995,12:1995–2000.
    [9] Wu J, Liu S, Wu C, Chen K, Chen L. Heterostructures of ZnO-Zn coaxialnanocables and ZnO nanotubes. Appl. Phys. Lett.2002,81:1312–1314.
    [10] Hoyer P. Formation of a titanium dioxide nanotube array. Langmuir1996,12:1411–1413.
    [11] Sha J, Niu J, Ma X, Xu J, Zhang X, Yang Q, Yang D. Silicon nanotubes. Adv. Mater.2002,14:1219–1221.
    [12] Foresti E, Hochella Jr M F, Kornishi H, Lesci IG, Madden AS, Roveri N, XueH.Morphological and chemical/physical characterization of Fe-doped syntheticchrysolite nanotubes. Adv. Func. Mater.2005,15:1009–1016.
    [13] Liu G X, Hong G Y. Synthesis and photoluminescence of Y2O3:RE3+(RE=Eu, Tb,Dy) porous nanotubes templated by carbon nanotubes. J. Nanosci. Nanotech.2006,6:120–124.
    [14] Yada M, Mihara M, Mouri S, Kuroki M, Kijima T. Rare earth (Er, Tm, Yb, Lu)oxide nanotubes templated by dodecylsulfate assemblies. Adv. Mater.2002,14:309–313.
    [15] Hacohen Y R, Grunbaum E, Tenne R, Sloan J, Hutchison J L. Cage structures andnanotubes of NiCl2. Nature1998,395:336–337.
    [16] Nath M, Mukhopadhyay K, Rao C N R. Mo1-xWxS2nanotubes. Chem. Phys. Lett.2002,352:163–168.
    [17] Bernaerts D, Amelincx S, Van Tendeloo G, Van Landuyt J. Microstructure andformation mechanism of cylindrical and conical scrolls of the misfit layercompounds PbNbnS2n+1. J. Cryst. Growth1997,172:433–439.
    [18] Li D, Wu H, Li Z, Cong X, Sun J, Ren Z, Liu L, Li Y, Fan D, Hao J. Multi-phaseequilibrium microemulsions-based routes to synthesize nanoscale BaWO4spheres,cylinders and rods. Colloids Surf. A2006,274:18–23.
    [19] Satshkumar B C, Govindaraj A, Erasmus M V, Basumallick L, Rao C N R. Oxidenanotubes prepared using carbon nanotubes as templates. J. Mater. Res.1997,12:604–606.
    [20] Stephan O, Ajayan P M, Colliex C, Redlich Ph, Lambert J M, Bernier P, Lifin P.Doping graphitic and carbon nanotube structures with boron and nitrogen. Science1994,266:1683–1685.
    [21] Sha J, Niu J, Ma X, Xu J, Zhang X, Yang Q, Yang D. Silicon nanotubes. Adv. Mater.2002,14:1219–1221.
    [22] Tourillon G, Pontonnier L, Levy J P, Langlais V. Electrochemically synthesizedCo and Fe nanowires and nanotubes. Electrochem. Solid-State Lett.2000,3:20–23.
    [23] Hutleen J C, Jirage K B, Martin C R. Introducing chemical transport selectivity intogold nanotubule membrane. J. Am. Chem. Soc.1998,120:6603–6604.
    [24] Tagliazucchi M, Sanches R D, Troiani H E, Calvo E J. Synthesis of lanthanumnickelate perovskite nanotubes by using a template-inorganic precursor. Solid StateComm.2006,137:212–215.
    [25] Lian L, Xu H, Su Q, Konishi H, Jiang Y, Wu M, Wang Y, Xia D. Hydrothermalsynthesis of prismatic NaHoF4microtubes and NaSmF4nanotubes. Inorg. Chem.2004,43:1594–1596.
    [26] Du G, Yu Y, Peng L M. Hexaniobate nanotubes with variable interlayer spacings.Chem. Phys. Lett.2004,400:536–540.
    [27] Li D, Xia Y. Direct fabrication of composite and ceramic hollow nanofibers byelectrospinning. Nano Lett.2004,4:933–938.
    [28] Wu Q, Hu Z, Wang X, Lu Y, Chen X, Xu H, Chen Y. Synthesis and characterizationof faceted hexagonal aluminum nitride nanotubes. J. Am. Chem. Soc.2003,125:10176–10177.
    [29] Pol S V, Pol V G, Gedanken A. Synthesis of WC nanotubes. Adv. Mater.2006,18:2023–2027.
    [30] Goldberger J, He R, Zhang Y, Lee S, Yan H, Choi H-J, Yang P. Single-crystalgallium nitride nanotubes. Nature2003,422:599–602.
    [31] Rao C N R, Vivekchand S R C, Biswas K, Govindaraj A. Synthesis of inorganicnanomaterials. Dalton Trans.2007,3728–3749.
    [32] Yuan J, Xu Y, Mu ller A H E. One-dimensional magnetic inorganic–organic hybridnanomaterials. Chem. Soc. Rev.2011,40,640–655.
    [33] Riedel R. Nanoscaled inorganic materials by molecular design. Chem. Soc. Rev2012,41:5029–5031.
    [34] Lam C, Zhang Y. F, Tang Y H, Lee C S, Bello I, Lee S T. Large-scale synthesis ofultrafine Si nanoparticles by ball milling. J. Cryst. Growth2000,220:466-470.
    [35] Okuyama, K, Lenggoro I W. Preparation of nanoparticles via spray route. ChemicalEngineering Science2003,58:537-547.
    [36] Heine M C, Pratsinis S E. Droplet and Particle Dynamics during Flame SpraySynthesis of Nanoparticles. Ind. Eng. Chem. Res.2005,44:6222-6232.
    [37] Colomer J-F, Stephan C, Lefrant S, Tendeloo G V, Willems I, Konya Z, Fonseca A,Laurent C, Nagy J B. Large-scale synthesis of single-wall carbon nanotubes bycatalytic chemical vapor deposition (CCVD) method. Chem. Phys. Lett.2000,317:83-89.
    [38] http://www.gitam.edu/eresource/nano/NANOTECHNOLOGY/role_of_bottomup_and_topdown_a.htm.
    [39] Cushing B L, Kolesnichenko V L, Connor C J O. Recent Advances in theLiquid-Phase Syntheses of Inorganic Nanoparticles. Chem. Rev.2004,104:3893.
    [40] Zeng H C. Synthesis and self-assembly of complex hollow materials. J. Mater.Chem.2011,21:7511-7526.
    [41] Mathur S, Shen H, Barth S, Cavelius C. Inorganic nanomaterials through chemicaldesign. The International Society for Optical Engineering. SPIE Newsroom2006.http://spie.org/x8864.xml.
    [42] Joshi R K, Schneider J. Assembly of one dimensional inorganic nanostructures intofunctional2D and3D architectures. Synthesis, arrangement and functionality. Chem.Soc. Rev.2012,41:5285–5312.
    [43] Gu J, Zhang Y W Tao F F. Shape control of bimetallic nanocatalysts throughwell-designed colloidal chemistry approaches. Chem. Soc. Rev.2012,41:8050-8065.
    [44] Klein D L, McEuen P L, Katari J E B, Roth R, Alivisatos A P. An approach toelectrical studies of single nanocrystals. Appl. Phys. Lett.1996,68:2574-2576.
    [45] Frank S, Poncharal P, Wang Z L, Heer W A. Carbon Nanotube Quantum Resistors.Science1998,280:1744-1746.
    [46] Yao Z, Postma H W, Balents L, Dekker C. Carbon nanotube intramolecularjunctions. Nature1999,402:273-276.
    [47] Zhong Z, Fang Y, Lu W, Lieber CM. Coherent Single Charge Transport inMolecular-Scale Silicon Nanowires. Nano Lett.2005,5:1143-1146.
    [48] Lu W, Xiang J, Timko B P, Wu Y, Lieber C M. One-dimensional hole gas ingermanium/silicon nanowire heterostructures. PNAS2005,102:10046-10051.
    [49] Friedman R S, Mc Alphine M C, Ricketts D S, Ham D, Lieber C M. High-speedintegrated nanowire circuits. Nature2005,434:1085-1085.
    [50] Brus L E. Quantum Crystallites and Nonlinear. Optics. Appl. Phys. A1991,53:465-474.
    [51] Johnson J C, Yan H, Schaller R D, Haber L H, Saykally R J, Yang P. SingleNanowire Lasers. J. Phys. Chem. B2001,105:11387-11390.
    [52] Klabunde K J, Richards R M. Nanoscale Materials in Chemistry. Wiley-Interscience,New York,2001,20-24.
    [53] Alivisatos A P. Nanocrystals: building blocks for modern materials design.Endeavour1997,21:56–60.
    [54] Adebajo M O, Frost R L, Kloprogge J T, Carmody O, Kokot S. Porous Materials forOil Spill Cleanup: A Review of Synthesis and Absorbing Properties. J. PorousMater.2003,10:159-170.
    [55] D. Kallo, Applications of natural zeolites in water and wastewater treatment. In Bish,D.L. and Ming, D.W.(eds) Natural Zeolites: Occurrence, Properties, Applications,Reviews in Mineralogy and Geochemistry, Miner. Soc. Am.2001,45:519-550.
    [56] Corma A. State of the art and future challenges of zeolites as catalysts. J. Catalysis2003,216:298-312.
    [57] Richards R. Surface and nanomolecular catalysis. CRC Press, Taylor&FrancisGroup2006,197-198.
    [58] Cowley S W. Introduction to Nanoscience and Nanotechnology; Hornyak G L, DuttaJ, Moore J J, Tibbals H F. CRC Press,2009,260-278.
    [59] Takehisa F, Kenji M, Satoshi O, Hiroya A, Makio N, Kiyoshi N. Morphologycontrol of Ni–YSZ cermet anode for lower temperature operation of SOFCs. Journalof Power Sources2004,1251:17–21.
    [60] Barbaro P, Liguori F. Heterogenized homogeneous catalysts for fine chemicalsproduction: materials and processes. Springer,2010,80-130.
    [61] Sergey Z, Valentine A. Pd2(dba)3as a Precursor of Soluble Metal Complexes andNanoparticles: Determination of Palladium Active Species for Catalysis andSynthesis. Organometallics2012,31:2302–2309.
    [62] Li J, Zhang J Z. Optical properties and applications of hybrid semiconductornanomaterials. Coord. Chem. Rev.2009,253:3015-3541.
    [63] Moshfegh A Z. Nanoparticle catalysts. J. Phys. D: Appl. Phys2009,42:233001
    [64] Schimpf S, Lucas M, Mohr C, Rodemerck U, Brückner A, Radnik J. Supportedgold nanoparticles: in-depth catalyst characterization and application inhydrogenation and oxidation reactions. Catalysis Today2002,72:63-78.
    [65] Mirjafary Z, Saeidian H, Sadeghi A, Moghaddam M F. ZnO nanoparticles: Anefficient nanocatalyst for the synthesis of β-acetamido ketones/esters via amulti-component reaction. Catalysis Communications2008,9:299–30.
    [66] Bonarowska M, Malinowski A, Juszczyk W, Karpinski Z. Hydrodechlorination ofCCl2F2(CFC-12) over silica-supported palladium–gold catalysts. Appl. Catal. B–Environ.2001,30:187–193.
    [67] Miyauchi M, Nakajima A, Watanabe T, Hashimoto K. Photocatalysis andphotoinduced hydrophilicity of various metal oxide thin films. Chem. Mater.2002,14:2812–2816.
    [68] Wang Z, Luo W, Yan S, Feng J, Zhao Z, Zhu Y, Li Z,, Zou Z. BiVO4nano–leaves:Mild synthesis and improved photocatalytic activity for O2production under visiblelight irradiation.CrystEngComm2011,13:2500-2504.
    [69] Yang J, Li, X, Lang J, Liu F, Yang L, Zhai H, Gao M, Zhao X. Effect of polarand non-polar surfaces of ZnO nanostructures on photocatalytic properties. Journalof Alloys and Compounds2012,528:28-33.
    [70] Zhang Y, Deng B, Zhang T, Gao D, Xu A-W. Shape effects of Cu2O poly-hedralmicrocrystals on photocatalytic activity. J. Phys. Chem. C2010,114:5073–5079.
    [71] Sayama K, Hayashi H, Arai T, Yanagida M, Gunji T, Sugihara H. Highly activeWO3semiconductor photocatalyst prepared from amorphous peroxo-tungstic acidfor the degradation of various organic compounds. Appl. Catal. B: Environ.2010,94:150–157.
    [72] Bandara J, Mielczarski J A, Lopez A, Kiwi J. Sensitized degradation ofchlorophenols on iron oxides induced by visible light. Comparison with titaniumoxide. Appl. Catal. B: Environ.2001,34:321–333.
    [73] Ai Z, Huang Y, Lee S, Zhang L. Monoclinic Bi2O3photocatalyst for efficientremoval of gaseous NO and HCHO under visible light irradiation. J. Alloys Compd.2011,509:2044–2049.
    [74] Gondal M A, Sayeed M N, Alarfaj A. Activity comparison of Fe2O3, NiO, WO3,TiO2semiconductor catalysts in phenol degradation by laser enhancedphoto-catalytic process. Chem. Phys. Lett.2007,445:325–330.
    [75] Prado A G S, Bolzon L B, Pedroso C P, Moura A O, Costa L L. Nb2O5as efficientand recyclable photocatalyst for indigo carmine degradation. Appl. Catal. B: Environ.2008,82:219–224.
    [76] Karunakaran C, Senthilvelan S. Photocatalysis with ZrO2: oxidation of aniline. J.Mol. Catal. A: Chem.2005,233:1–8.
    [77] Hernández-Alonso M D, Hungría A B, Martínez-Arias A, Fernández-García M,Coronado J M, Conesa J C, Soria J. EPR study of the photoassisted formation ofradicals on CeO2nanoparticles employed for toluene photooxi-dation. Appl. Catal. B:Environ.2004,50:167–175.
    [78] Meissner D, Memming R, Kastening B. Photoelectrochemistry of cadmium sulfide.1. Reanalysis of photocorrosion and flat-band potential. J. Phys. Chem.1988,92:3476–3483.
    [79] Tokunaga S, Kato H, Kudo A. Selective preparation of monoclinic and tetrago-nalBiVO4with scheelite structure and their photocatalytic properties. Chem. Mater.2001,13:4624–4628.
    [80] Hu X, Hu C. Preparation and visible-light photocatalytic activity of Ag3VO4powders. J. Solid State Chem.2007,180:725–732.
    [81] Tang J, Zou Z, Ye J. Photocatalytic decomposition of organic contaminants byBi2WO6under visible light irradiation. Catal. Lett.2004,92:53–56.
    [82] Lin J, Lin J, Zhu Y. Controlled synthesis of the ZnWO4nanostructure and effects onthe photocatalytic performance. Inorg. Chem.2007,46:8372–8378.
    [83] Ye D, Li D, Zhang W, Sun M, Hu Y, Zhang Y, Fu X. A new photocatalyst CdWO4prepared with a hydrothermal method. J. Phys. Chem. C2008,112:17351–17356.
    [84] Wang C, Wang X, Zhao J, Mai B, Sheng G, Peng P, Fu J. Synthesis, characterizationand photocatalytic property of nano-sized Zn2SnO4. J. Mater. Sci.2002,37:2989–2996.
    [85] Chen D, Ouyang S, Ye J. Photocatalytic degradation of isopropanol over PbSnO3nanostructures under visible light irradiation. Nanoscale Res. Lett.2009,4:274–280.
    [86] Fu H, Pan C, Zhang L, Zhu Y. Synthesis, characterization and photocatalyticproperties of nanosized Bi2WO6, PbWO4and ZnWO4catalysts. Mat. Res. Bull.2007,42:696–706.
    [87] Luan J, Zheng S, Hao X, Luan G, Wu X, Zou Z. Photophysical and photocat-alyticroperties of novel M2BiNbO7(M=In and Ga). J. Braz. Chem. Soc.2006,17:1368–1376.
    [88] Li D, Wu Y, Kim P, Shi L, Yang P, Majumdar A. Thermal conductivity ofindividual silicon nanowires. Appl. Phys. Lett.2003,83:2934-2937.
    [89] Gasparotto A, Barreca D, MaccatoC, Tondello E. Manufacturing of inorganicnanomaterials: concepts and perspectives. Nanoscale2012,4:2813-2825.
    [90] Ahmadi T S, Wang Z L, Green T C Henglien A, El-sayed M A, Shape-controlledsynthesis of colloidal platinum nanoparticles. Science1996,272:1924-1926.
    [91] Sun X, MS M, Li S R. Nanowire supported catalysts for full cell electrodes. USPatent2009,2009/004552.
    [92] Yu R, Lin Q., Leung S F N, Fan Z. Nanomaterials and nanostructures for efficientlight absorption and photovoltaics. Nano Energy2012,1:57–72.
    [93] Perera S D, Patel B, Bonso J, Grunewald M, Ferraris J P, Balkus Jr K J, VanadiumOxide Nanotube Spherical Clusters Prepared on Carbon Fabrics for Energy StorageApplications. ACS Appl. Mater. Interfaces2011,3:4512–4517.
    [94] Aggarwal S, Monga A P, Perusse S R, Ramesh R, Ballarotto V, Williams E D,Chalamala B R, Wei Y, Reuss R H. Spontaneous Ordering of Oxide Nanostructures.Science2000,287:2235-2237.
    [95] Sui N, Duan Y, Jiao X, Chen D. Large-scale preparation and catalytic properties ofone-dimensional α/β-MnO2nanostructure. J. Phys. Chem. C2009,113:8560-8565.
    [96] D. Pacifici H J, Lezec H A. Atwater, All-optical modulation by plasmonic excitationof CdSe quantum dots. Nat. Photon2007,1:402-406.
    [97] Wu M-H, Park C, Whiteside G M. Fabrication of arrays of microlenses withcontrolled profiles using gray-scale microlens projection pholithography. Langmuir2002,18:9312-9318.
    [98] Li M, Tang H X, Roukes M L. Ultra-sensitivity NEMS-based cantilers for sensing,scanned probed and very high-frequency applications. Nat. Nanotech.2007,2:114-120
    [99] Goldberger J, Fan R, Yang P D. Inorganic Nanotube: A novel platform fornanofluidics. Acc. Chem. Res.2006,39:239-248.
    [100]Khoo E, Wang J M, Ma J, Lee P S. Electrochemical energy storage in aβ-Na0.33V2O5nanobelt network and its application for supercapacitors. J. Mater.Chem.2010,20:8368–8374.
    [101]Peralta-Videa J R, Zhao L, Lopez-Moreno M L, Rosa G, Hong J, Gardea-TorresdeyJ L. Nanomaterials and the environment: A review for the biennium2008–2010. J.Hazard. Mater.2011,186:1–15.
    [102]Xu P, Zeng G M, Huang D L, Feng C L, Hu S, Zhao M H, Lai C, Wei Z, Huang C,Xie G X, Liu Z F. Use of iron oxide nanomaterials in wastewater treatment: Areview. Science of the Total Environment2012,424:1–10.
    [103]Zhang L, Chen D, Jiao X. Monoclinic Structured BiVO4Nanosheets: HydrothermalPreparation, Formation Mechanism, and Coloristic and Photocatalytic Properties. J.Phys. Chem. B2006,110:2668-2673.
    [104]Huang X, Han S, Huang W, Liu X. Enhancing solar cell efficiency: the search forluminescent materials as spectral converters. Chem. Soc. Rev.2013,42:173-201.
    [105]Chen H M, Chen C K, Liu R S, Zhang L, Zhang J, Wilkinson D P. Nano-architectureand material designs for water splitting photoelectrodes. Chem. Soc. Rev.2012,41:5654–5671.
    [106]Khot L R, Sankaran S, Maja J M, Ehsani R, Schuster E W. Applications ofnanomaterials in agricultural production and crop protection: A review. CropProtection2012,35:64-70.
    [107]Yang F, Jin C, Subedi S, Lee C L, Wang Q, Jiang Y, Li J, Di Y, Fu D. Emerginginorganic nanomaterials for pancreatic cancer diagnosis and treatment. CancerTreatment Reviews2012,38:566–579.
    [108] Drescher D, Kneipp J. Nanomaterials in complex biological systems: insights fromRaman spectroscopy. Chem. Soc. Rev2012,41:5780–5799.
    [109]Nagarajan R, Hatton T A. Nanoparticles: Synthesis, Stabilization, Passivation, andFunctionalization. Oxford University Press2008,31-32.
    [110]Hannink R H J, Hil A J. Nanostructure control of materials, Woodhead PublishingLimited2006,150-154
    [111]Beke S. A review of the growth of V2O5films from1885to2010. Thin Solid Films2011,519:1761–1771.
    [112]Lockwood D J. Nanostructured Materials for Electrochemical Energy Productionand Storage. Springer Science2009,50-52.
    [113]Klabunde K J, Richards R M. Nanoscale Materials in Chemistry. Second Edition.John Wiley2009,100-130.
    [114] Chirayil T G, Boylan E A, Mamak M. Critical role of pH in hydrothermal synthesisof vanadium oxides NMe4V3O7. Chem. Comm.1997,0:33-34.
    [115]Schoiswohl J, Surnev S, Sock M, Ramsey M G, Kresse G, Netzer F P.Thermodynamically Controlled Self-Assembly of Two-Dimensional OxideNanostructures. Angew.Chem. Int. Ed.2004,43,5546-5549.
    [116] Wang Z L. Nanowires and nanobelts: materials properties and devices-Nanowiresand Nanobelts of Functional Materials. Springer Science-Business Media, Inc,2006, Vol2,69-75.
    [117]Li G, Pang S, Wang Z, Peng H, Zhang Z. Synthesis of H2V3O8Single-CrystalNanobelts. Eur. J. Inorg. Chem.2005,11:2060-2063.
    [118]Silva D L, Viegas A C, Acu a J J, Pasa A A. Nanofiber-to-nanorod transformationduring annealing of electrochemically deposited vanadium oxide nanofibers.Materials letters2012,68:303–306.
    [119]Wang Y, Su Q, Chen C H, Yu M L, Han G J, Wang G Q, Xin K, Lan W, Liu X Q.Low temperature growth of vanadium pentoxide nanomaterials by chemical vapourdeposition using VO(acac)2as precursor. J. Phys. D: Appl. Phys.2010,43:185102.
    [120]Krumeich F, Muhr H-J., Niederberger M, Bieri F, Schnyder B, Nesper R.Morphology and Topochemical Reactions of Novel Vanadium Oxide Nanotubes. J.Am. Chem. Soc.1999,121:8324-8331.
    [121] Odwyer C, Lavayen V, Fuenzalida D, Newcomb S B, Santa Ana M A, Benavente E,González G, Torres C M S. Six-fold rotationally symmetric vanadium oxidenanostructures by a morphotropic phase transition. Phys. Stat. Sol. B2007,244:4157-4160.
    [122]Gu Y, Chen D, Jiao X, Liu F. Linear attachment of Li1+αV3O8nanosheets to1-dimensional (1D) arrays: fabrication, characterization, and electrochemicalproperties. J. Mater. Chem.2006,16,4361-4366.
    [123]Hu C C, Chang K H, Huang C M, Li J M. Anodic Deposition of Vanadium Oxidesfor Thermal-Induced Growth of Vanadium Oxide Nanowires. J. Electrochem. Soc.2009,156: D485-D4895.
    [124]ODwyer C, Navas D, Lavayen V, Benavente E, Santa Ana M A, Gonzalez G,Newcomb S B, Torres C S. Nano-Urchin: The Formation and Structure ofHigh-Density Spherical Clusters of Vanadium Oxide Nanotubes. Chem. Mater.2006,18:3016-3022.
    [125]Zhang S, Li Y, Wu C, Zheng F, Xie Y. Novel Flowerlike Metastable VanadiumDioxide (B) Micronanostructures: Facile Synthesis and Application in AqueousLithium Ion Batteries., J. Phys. Chem. C2009,113:15058-15067.
    [126] Cao A-M, Hu J., Liang H-P, Wan L-J. Self-Assembled Vanadium Pentoxide (V2O5)Hollow microspheres from Nanorods and Their Application in Lithium-Ion Batteries.Angew. Chem. Int. Ed.2005,44:4391-4395.
    [127]Liu J, Xia H, Xue D, Lu L. Double-Shelled Nanocapsules of V2O5-BasedComposites as High-Performance Anode and Cathode Materials for Li Ion Batteries,J. Am. Chem. Soc2009,131:12086–12087.
    [128]Li M, Kong F, Zhang Y, Li G. Hydrothermal synthesis of VO2(B) nanorings withinorganic V2O5sol. CrystEngComm2011,13:2204-2207.
    [129]Mai L, Xu L, Han C, Xu X, Luo Y, Zhao S, Zhao Y. Electrospun UltralongHierarchical Vanadium Oxide Nanowires with High Performance for Lithium IonBatteries. Nano. Lett.2010,10:4750–4755.
    [130]Catana G, R. Rao R, Weckhuysen B M, Van Der Voort P, Vansant E, SchoonheydtR A. Supported Vanadium Oxide Catalysts: Quantitative Spectroscopy, PreferentialAdsorption of V4+/5+, and Al2O3Coating of Zeolite Y. J. Phys. Chem. B1998,102:8005-8012.
    [131]Zaheer M, Schmalz T, Motzb G, Kempe R. Polymer derived non-oxide ceramicsmodified with late transition metals. Chem. Soc. Rev.2012,41:5102–5116.
    [132]Gazit E. Use of biomolecular templates for the fabrication of metal nanowires. FEBSJournal2007,274:317–322.
    [133]Liu Y, Goebla J, Yin Y. Templated synthesis of nanostructured materials. Chem. Soc.Rev2013, DOI:10.1039/C2CS35369E.
    [134]Spahr M E, Bitterli P, Nesper R, Müller M, Krumeich F, Nissen H U.Redox-Active Nanotubes of Vanadium Oxide. Angew. Chem. Int. Ed.1998,37:1263–1265.
    [135]Li G, Pang S, Jiang L, Guo Z, Zhang Z. Environmentally friendly chemical route tovanadium oxide single-crystalline nanobelts as a cathode material for lithium-ionbatteries. J. Phys. Chem. B2006,110:9383–9386.
    [136]Liu J, Wang X, Peng Q, Li Y. Vanadium pentoxide nanobelts: Highly selectiveand stable ethanol sensor materials. Adv. Mater.2005,17:764–767.
    [137]Sides C R, Martin C R. Nanostructured electrodes and the low-temperatureperformance of Li-ion batteries. Adv. Mater.2005,17:125–128.
    [138]Hu X K, Ma D K, Liang J B, Xiong S L, Li J Y, Qian Y T. V2O5·nH2O crystallinenanosheets: Hydrothermal fabrication and structure evolution. Chem. Lett.2007,36:560–562.
    [139]Takahashi K, Wang Y, Cao G Z. Growth and electrochromic properties ofsingle-crystal V2O5nanorod arrays. Appl. Phys. Lett.2005,86:053102.
    [140]Takahashi K, Limmer S J, Wang Y, Cao G Z. Synthesis and electrochemicalproperties of single-crystal V2O5nanorod arrays by template based electrodeposition.J. Phys. Chem. B2004,108:9795–9800.
    [141]Niederberger M, Bard M H, Stucky G D. Benzyl Alcohol and Transition MetalChlorides as a Versatile Reaction System for the Nonaqueous and Low-TemperatureSynthesis of Crystalline Nano-Objects with Controlled Dimensionality. J. Am. Chem.Soc2002,124:13642-13643.
    [142]Pinna N, Wild U, Urban J, Schlogl R. Divanadium Pentoxide Nanorods. Adv. Mat.2003,15:329-331.
    [143]Patrissi C J, Martin C R. Sol-gel-based template synthesis and Li-insertion rateperformance of nanostructured vanadium pentoxide. J. Electrochem. Soc.1999,146:3176–3190.
    [144]Wang Y, Takahashi K, Shang H, Cao G Z. Synthesis and electrochemical propertiesof vanadium pentoxide nanotube arrays. J. Phys. Chem. B2005,109:3085–3088.
    [145]Liu P, Lee S, Tracy E, Yan Y, Turner J A. Preparation and lithium insertionproperties of mesoporous vanadium oxide. Adv. Mater.2002,14:27–30.
    [146]Popa A I, Vavilova E, Taschner C, Kataev V, Buchner B, Klingeler R.Electrochemical Behavior and Magnetic Properties of Vanadium Oxide Nanotubes. J.Phys. Chem. C2011,115:5265–5270.
    [147] Lausser C, Colfen H, Antonietti M. Different Pathways of Mesocrystal Synthesisfrom Tactosol Precursors. ACS NANO2011,5:107–114.
    [148]Mao C J, Pan H C, Wu X C, Zhu J J, Chen H Y. Sonochemical route for self-assembled V2O5bundles with spindle-like morphology and their novel applicationin serum albumin sensing. J. Phys. Chem. B2006,110:14709-14713.
    [149]Whittaker L, Velazquez J M, Banerjee S. A VO-seeded approach for the growth ofstar-shaped VO2and V2O5nanocrystals: facile synthesis, structural characterization,and elucidation of electronic structure. CrystEngComm2011,13:5328-5336.
    [150]Yu D, Chen Changguo, Xie S, Liu Y, Park K, Zhou X, Zhang Q, Lic J, Cao G.Mesoporous vanadium pentoxide nanofibers with significantly enhanced Li-ionstorage properties by electrospinning. Energy Environ. Sci.2011,4:858–861.
    [151]Waltersson K J, Forslund B, On the Crystal Structure of CsxV2Os (x~0.3), a NewHexagonal Vanadium Bronze Structure Type. Acta Cryst.1977, B33:780-784.
    [152]Galy J. Vanadium Pentoxide and Vanadium Oxide Bronzees-Structural of Singileand Double (D) Layer MxV2O5Phases. J. Solid State Chem.1992,100:229-245.
    [153]Banks E, wold A. In Preparative Inorganic chemistry. W. L. Joll Y, ed., Wiley, NewYork,1988,4:252-254.
    [154]Murphy D W. Christian P A, Disalvo F J, Waszczak J. V. Lithium incorporation byvanadium pentoxide. Inorg. Chem.1979,18:2800-2803,
    [155]Whittingham M S. Lithium Batteries and Cathode Materials. Chem. Rev.2004,104:4271-4301.
    [156]Riou D, Ferey G. Intercalated Vanadyl Vanadate (VIVO)[VVO4]·0.5[C3N2H12]:Hydrothermal Synthesis, Crystal Structure, and Structural Correlations with V2O5and Other Vanadyl Compounds. J. Solid State Chem.1995,120:137-145..
    [157]Nazar L F, Coene B E, Britten J F. Hydrothermal Synthesis and Crystal Structure of aNovel Layered Vanadate with1,4-Diazabicyclo[2.2.2]octane as the Structure-Directing Agent:(C6H14N2)V6O14·H2O. Chem. Mater.1996,8:327-329
    [158]Marley P. M, Banerjee S. Reversible Interconversion of a Divalent Vanadium Bronzebetween δ and β Quasi-1D Structures. Inorg. Chem.2012,51:52645269.
    [159]Xu Y, Han X, Zheng L, Yan W, Xie Y. Pillar effect on cyclability enhancementfor aqueous lithium ion batteries: a new material of β-vanadium bronze M0.33V2O5(M=Ag, Na) nanowires. J. Mater. Chem.2011,21:14466-14472;
    [160]Yamauchi, T, Ueda, Y, Mori N. Pressure-Induced Superconductivity inβ-Na0.33V2O5beyond Charge Ordering. Phys. Rev. Lett.2002,89:057002.
    [161]Patridge C J, Woo T, Jaye C, Ravel B, Takeuchi E S, Fischer D, Ganapathy S,Banerjee S. Synthesis, Spectroscopic Characterization, and Observation of MassiveMetalsInsulator Transitions in Nanowires of a Nonstoichiometric Vanadium OxideBronze. Nano Lett.2010,10:24482453.
    [162]Patridge C J, Wu T-L, Sambandamurthy G, Banerjee, S. Colossal above-room-temperature metal–insulator switching of a Wadsley-type tunnel bronze. Chem.Commun.2011,47:44844486.
    [163]Li, W, Dahn J R, Wainwright D S. Rechargeable Lithium Batteries with AqueousElectrolytes. Science1994,264:1115-1118.
    [164]Tsang C, Manthiram A. Synthesis of Nanocrystalline VO2and Its ElectrochemicalBehavior in Lithium Batteries. J. Electrochem. Soc.1997,144:520-524.
    [165]Liu J, Li Q, Wang T, Yu D, Li Y. Metastable Vanadium Dioxide Nanobelts:Hydrothermal Synthesis, Electrical Transport, and Magnetic Properties. Angew. Chem.Int. Ed.2004,43:5048–5052.
    [166]Wu C, Dai J, Zhang X, Yang J, Qi F, Gao C, Xie Y. Direct Confined-SpaceCombustion Forming Monoclinic Vanadium Dioxides. Angew. Chem. Int. Ed.2010,49:134–137.
    [167]Chen W, Peng J, Mai L, Yu H, Qi Y. Fabrication of Novel Vanadium DioxideNanorods, as Cathode Material for Rechargeable Lithium Batteries. Chem. Lett.2004,33:1366-1367.
    [168]Zhou F, Zhao X, Xu H, Yuan C. Hydrothermal Synthesis of Metastable VO2Nanorods as Cathode Materials for Lithium Ion Batteries. Chem. Lett.2006,35:1280-1281.
    [169]Leroux C, Nihoul G, Tendeloo G. From VO2(B) to VO2(R): Theoretical structuresof VO2polymorphs and in situ electron microscopy. Phys. Rev. B1998,57:5111-5121.
    [170]Kam K C, Cheetham A K. Thermochromic VO2nanorods and other vanadium oxidesnanostructures. Mater. Res. Bull.2006,41:1015-1012.
    [171]Corr S A, Grossman M, Shi Y, Heier K R, Stucky G D, Seshadri R. VO2(B)nanorods: solvothermal preparation, electrical properties, and conversion to rutileVO2and V2O3. J. Mater. Chem.2009,19:4362–4367.
    [172]Yin H, Luo M, Yu K, Gao Y, Huang R, Zhang Z, Zeng M, Cao C, Zhu Z. Fabricationand Temperature-Dependent Field-Emission Properties ofBundlelike VO2Nanostructures, ACS Appl. Mater. Interfaces2011,3:2057–2062.
    [173]Zhang S, Shang B, Yang J, Yan W, Wei S, Xie Y. From VO2(B) to VO2(A)nanobelts: first hydrothermal transformation, spectroscopic study and first principlescalculation. Phys. Chem. Chem. Phys2011,13:15873-15881.
    [174]Chae H, Nam I, Ham S, Hong S. Characteristics of vanadia on the surface ofV2O5/Ti-PILC catalyst for the reduction of NOx by NH3Original. Appl. Catal., B2004,53:117–126.
    [175]Poizot P, Grugeon S, Dupont L, Tarascon J M. Nano-sized transition-metal oxides asnegative-electrode materials for lithium-ion batteries. Nature2000,407:496–499.
    [176]Simon P, Gogotsi Y. Materials for electrochemical capacitors. Nat Mater.2008,7:845-854.
    [177]Imawan C, Steffes H, Solzbacher F, Obermeier F. Structural and gas-sensingpropertiesof V2O5–MoO3thin films for H2detection. Sens. Actuators, B2001,77:346-351.
    [178]Krusin-Elbaum L, Newns D M, Zeng H, Derycke V, Sun J Z, Sandstrom R.Room-temperature ferromagnetic nanotubes controlled by electron or hole doping.Nature2004,431:672-676.
    [179]Ancona M G, Kooi S E, Kruppa W, Snow A W, Foos E E, Whitman L J. Park D,Shirey L. Patterning of Narrow Au Nanocluster LinesUsing V2O5Nanowire Masksand Ion-Beam Milling. Nano Lett.2003,3:135-138.
    [180]Raible I, Burghard M, Schlecht U, Yasuda A, Vossmeyer T. V2O5nanofibres: novelgas sensors with extremely highsensitivity and selectivity to amines. Sensors andActuators B2005,106:730–735.
    [181]Newns D M, Misewich J A, Tsuei C C, Gupta A, Scott B A, Schrott A. Motttransition field effect transistor. Appl. Phys. Lett.1998,73:780–782.
    [182]Gu G, Schmid M, Chiu P W, Minett A, Fraysse J, Kim G T, Roth S, Kozlov M,Munoz E,Baughman R H. V2O5nanofibre sheet actuators. Nat. Mater.2003,2:316–319.
    [183]Mars P, Maessen J G H. The mechanism and the kinetics of sulfur dioxide oxidationon catalysts containing vanadium and alkali oxides. J. Catal.1968,10:1-12.
    [184]Kim Y H, Lee H I. Redox Property of Vanadium Oxide andIts Behavior in CatalyticOxidation. Bull. Korean Chem. Soc.1999,20:1457-1463.
    [185]Gracia J M, Prinsloo F F, Niemantsverdriet J W. Mars-van Krevelen-likeMechanism of CO Hydrogenation on an Iron Carbide Surface. Catal. Lett.2009,133:257–261.
    [186]Cole D J, Cullis C F, Hucknall D J. Studies of heterogeneous oxidation catalysts.Part1. The vanadium (V) oxide+titanium (IV) oxide system. J. Chem. Soc.Faraday Trans.1976,72:2185-2196.
    [187]Bystrom A, Wilhelmi K A, Brotzen O. Vanadium Pentoxide–a compound withFive-Coordinated Vanadium atoms. Acta Chem. Scand.1950,4:1119-1130.
    [188]Gasior M, Machej T. Morphological aspects in the oxidation of o-xylene on V2O5catalysts. J. Catal.1983,83:472-476.
    [189]Blasco T, Lopez Nieto J M. Oxidative dehydrogenation of short chainalkanes onsupported vanadium oxide catalysts. Appl. Catal. A1997,157:117–142.
    [190]Centi G. Nature of active layer in vanadium oxide supported on titanium oxide andcontrol of its reactivity in the selective oxidation and ammoxidation ofalkylaromatics. Appl. Catal. A1996,147:267–298.
    [191]Bauer G, Güther V, Hess H, Otto A, Roidl O, Roller H, Sattelberger S."Vanadiumand Vanadium Compounds" inUllmann's Encyclopedia of Industrial Chemistry,Wiley-VCH, Weinheim.2005.
    [192]André R, Natálio F, Humanes M, Leppin J, Heinze K, Wever R, Schr derH C, Müller W E G, Tremel W. V2O5Nanowires with an Intrinsic Peroxidase-LikeActivity. Adv. Funct. Mater.2011,21:501–509.
    [193]Pe a M A, Fierro J L G. Chemicalstructure and performance of perovskite oxides.Chem. Rev.2001,101,1981–2018.
    [194]Simard G L, Steger J F, Arnott R J, Siegel L A. Vanadium Oxides as OxidationCatalysts. Ind. Eng. Chem.1955,47;1424–1430.
    [195]Fujishima A, Honda K. ElectrochemicalPhotolysis of Water at a SemiconductorElectrode. Nature1972,37:238-239.
    [196]Kalyanasundaram K. Gratzel, M., Pelizzetti E. Interfacial electron transfer incolloidal metal and semiconductor dispersions and photodecomposition of water.Coord. Chem. Rev.1986,69:57-125.
    [197]Linsebigler A L, Lu G, Yates J T. Photocatalysis on TiO2Surfaces: Principles,Mechanisms, and Selected Results. Chemical Reviews1995,95:735-758.
    [198]Chen X, Liu L, Yu P Y, Mao S S. Increasing Solar Absorption for Photocatalysiswith Black Hydrogenated Titanium Dioxide Nanocrystals. Science.2011,331:746-750.
    [199]Lee K, Cao G Z. Enhancement of intercalation properties of V205film by TiOzaddition. J. Phys. Chem. B2005,109:11880-11885.
    [200]Kashuba E V, Lyashenko L V, Belousov V M. After-effect of light in thephotocatalytic oxidation of isobutene on immobilized vanadium oxide catalysts.Reaction Kinetics and Catalysis Letters1986,30:137-141.
    [201]Moshfegh A Z, Ignatiev A. Photo-enhanced catalytic decomposition of isopropanolon V2O5. Catal. Lett.1990,4:113–122.
    [202]Anpo M, Yamashita H, Ichihashi Y, Fujii Y, Honda M. Photocatalytic Reduction ofCO2with H2O on Titanium Oxides Anchored within Micropores of Zeolites: Effectsof the Structure of the Active Sites and the Addition of Pt. J. Phys. Chem. B1997,101:2632-2636.
    [203]Anpo M, Yamashita H, Matsuoka M, Park D-R, Shul Y-G, Park S-E. Design andDevelopment of Titanium and Vanadium Oxide Photocatalysts Incorporated withinZeoliteCavities and their Photocatalytic Reactivities. J. Indust. Engi. Chem.2000,6:59-71.
    [204]Wang Y, Zhang Z, Zhu Y, Li Z, Vajtai R, Ci L, Ajayan P M. Nanostructured VO2Photocatalysts for Hydrogen Production. ACS NANO2008,2:1492–1496.
    [205]Puangpetch T, Chavadej S, Sreethawong T. Mesoporous-assembled V2O5nanosheetsynthesized via a surfactant-modified sol-gel technique and its photocatalytic H2production activity under visible light irradiation. Powder Technology2011,208:37-41.
    [206]Shen T F R, Lai M H, Yang T C K, Fu I P, Liang N Y, Chen W T. Photocatalyticproduction of hydrogen by vanadium oxides under visible light irradiation. Journalof the Taiwan Institute of Chemical Engineers2012,43:95-101.
    [207]Schiavello M. Photocatalysis and Environment. Kluwer Academic Publishers:Dordrecht,1988.50-56.
    [208]Shahid M, Rhen D S, Shakir I, Patole S P, Yoo J B, Yang S J, Kang D J. Facilesynthesis of single crystalline vanadium pentoxidenanowires and theirphotocatalytic behavior. Mater. Lett.2010,64,2458–2461.
    [209]Li B, Xu Y, Rong G, Jing M, Xie Y. Vanadium pentoxide nanobelts and nanorolls:from controllable synthesis to investigation of their electrochemical properties andphotocatalytic activities, Nanotechnology2006,17:2560–2566.
    [210]Paola A D, García-López E, Marcìb G, Palmisano L. A survey of photocatalyticmaterials for environmental remediation. J. Hazard. Mater.2012,211:3–29.
    [211]Whittingham M S. The Role of Ternary Phases in Cathode Reactions. J. Electrochem.Soc.1976,123:315-320.
    [212]Whittingham M S, Song Y, Lutta S, Zavalij P Y, Chernov N A. Some transitionmetal (oxy) phosphates and vanadium oxides for lithium batteries. J. Mater. Chem.2005,15:362–3379.
    [213]Murphy D W, Christian P A, Disalvo F J, Carides J N. Vanadium Oxide CathodeMaterials for Secondary Lithium Cells. J. Electrochem. Soc.1979,126:497-499.
    [214]Sudant G, Baudrin E, Dunn B, Tarascon J M. Synthesis and ElectrochemicalProperties of Vanadium Oxide Aerogels Prepared by a Freeze-Drying Process. J.Electrochem. Soc.2004,151: A666-A671.
    [215]Gao S K, Chen Z J, Wei M D, Wei K M, Zhou H S.. Single crystal nanobelts ofV3O7·H2O: A lithiumintercalation host with a large capacity, Electrochim. Acta2009,54:1115-1118.
    [216]Liu H M, Wang Y G, Wang K X, Wang Y R, Zhou H S. Synthesis andelectrochemical properties of single-crystalline LiV3O8nanorods as cathodematerials for rechargeable lithium batteries. J. Power Sources2009,192:668-673.
    [217]Pan A, Zhang J-G, Nie Z, Cao G, Arey B W, Li G, Liang S, Liu J. Facile synthesizednanorod structured vanadium pentoxidefor high-rate lithium batteries. J. Mater.Chem.2010,20:9193–9199.
    [1] Siddique M, Farooq R, Khan Z M, Khan Z, Shaukat S F. Enhanced decompositionof reactive blue19dye in ultrasound assisted electrochemical reactor. Ultrason.Sonochem2011,18:190-196.
    [2] Inoue K, Yoshida M, Takahashi M, Fujimoto H, Ohnishi K, Nakashima K, ShibutaniM, Hirise M, Nishikawa A. A possible contribution of rubadin, a metabolite ofmadder color, to renal carcinogenesis in rats. Food Chem. Toxicol2009,47:752–759.
    [3] Munter R. Advanced oxidation processes–current status and prospects. Proc.Estonian Acad. Sci. Chem.2001,50:2,59–80.
    [4] Fox M A, Dulay M T. Heterogeneous photocatalysis. Chem. Rev.1993,93:341-357.
    [5] Seddigi Z S. Removal of alizarin yellow dye from water using zinc doped WO3catalyst. Bull. Environ. Contam. Toxicol2010,84:564-567;
    [6] Rauf M A, Ashraf S S. Radiation induced degradation of dyes-An overview. J.Hazard. Mater.2009,166:6-16.
    [7] Hoffmann M R, Martin S T, Choi W. Environmental applications of semiconductorphotocatalysis, Chem. Rev.1995,95:69–96.
    [8] Deshpande P A, Madras G. Photocatalytic degradation of dyes overcombustion-synthesized Ce1xFexVO4. Chem. Engi. J2010,158:571–577.
    [9] Mahapatra S, Vinu R, Saha D, Guru Row T N, Madras G. Synthesis,characterization and photocatalytic activity of MxC1xVO4(M=Li, Ca and Fe).Appl. Catal. A: Gen2009,361:32–41.
    [10] Mahapatra S, Vinu R, Guru Row T N, Madras G. Kinetics of photoconversion ofcyclohexane and benzene by LnMo0.15V0.85O4(Ln=Ce, Pr, Nd). Appl. Catal. A:Gen.2008,351:45–53.
    [11] Tokunaga S, Kato H, Kudo A. Selective preparation of monoclinic and tetragonalBiVO4with scheelite and their photocatalytic properties. Chem. Mater.2001,13:4624–4628.
    [12] Kohtani S, Hiro J, Yamamoto N, Kudo A, Tokumura K, Nakagaki R. Adsorptive andphotocatalytic properties of Ag-loaded BiVO4on the degradation of4-n-alkylphenols under visible light irradiation. Catal. Commun.2005,6:185–189.
    [13] Cao T P, Li Y J, Wang C H, Zhang Z Y, Zhang M Y, Shao C L, Liu Y C. Bi4Ti3O12nanosheets/TiO2submicron fibers heterostructures: in situ fabrication and highvisible light photocatalytic activity. J. Mater. Chem.2011,21:6922–6927.
    [14] Wang Z L. Functional Oxide Nanobelts: Materials, properties and potentialapplications in nanosystems and biotechnology. Annu. Rev. Phys. Chem.2004,55:159–96.
    [15] Pan Z W, Dai Z R, Wang Z L. Nanobelts of semiconducting oxides. Science2001,291:1947-50
    [16] Wei Y, Ding Y, Li C, Xu S, Ryo J H, Dupuis R, Sood A K, Polla D L, Wang Z L.Growth of vertically aligned ZnO nanobelt arrays on GaN substrate. J. Phys. Chem.C2008,112:18935–18937.
    [17] Huang C N, Bow J S, Zheng Y, Chen S Y, Ho N J, Shen P, Nonstoichiometric,titanium oxides via pulsed laser ablation in water. Nanoscale Res. Lett.2010,5:972–985.
    [18] Sun X W, Zhao J L, Ke Ch, Tan S T, Chen R, Sun H D, Dong Z L. A SnO2nanoparticle/nanobelt and Si heterojunction light-emitting diode. J. Phys. Chem. C2010,114:18390–18395.
    [19] Zhang Y, Li R, Zhou X, Cai M, Sun X. Hierarchical Al2O3nanobelts and nanowires:morphology control and growth mechanism. Cryst. Growth Des.2009,9:4230–4234.
    [20] Chen Z G, Li F, Liu G, Tang Y, Cong H, Lu G Q, Cheng H M, Preparation of highpurity ZnO nanobelts by thermal evaporation of ZnS. J. Nanosci. Nanotechnol2006,6:704–707.
    [21] Cheng B, Zhang Z, Han Z, Xiao Y, Lei S. SrAl2O4: Eu2+, Dy3+nanobelts: synthesisby combustion and properties of long-persistent phosphorescence. J. Mater. Res.2011,26:2311–2315.
    [22] Fan H J, Fuhrmann B, Scholz R, Himcinschi C, Berger A, Leipner H, Dadgar A,Krost A, Christiansen S, Gosele U, Zacharias M. Vapour-transport-depositiongrowth of ZnO nanostructures: switch between c-axial wires and a-axial belts byindium. Nanotechnology2006,17: S231–S239.
    [23] Zhang B, Cao C, Xiang X, Zhu H. A facile synthesis of single-crystal mullitenanobelts. Chem. Comm.2004,21:2452–2453.
    [24] Qu D, Xie F, Meng H, Gong L, Zhang W, Chen J, Li G, Liu P, Tong Y. Preparationand characterization of nanocrystalline CeO2-Tb2O3films obtained byelectrochemical deposition method. J. Phys. Chem. C2010,114:1424–1429.
    [25] Reddy C S, Edwin H J, Wen C, Mho N. Hydrothermal synthesis of MoO3nanobeltsutilizing poly(ethylene glycol). J. Power Sources2008,183:330–333.
    [26] Shi H, Qi L, Ma J, Cheng H, Zhu B. Synthesis of hierarchical superstructuresconsisting of BaCrO4nanobelts in cataninnic reverse micelles. Adv. Mater.2003,15:1647–1650.
    [27] Patzke G R, Zhou Y, Kontic R, Conrad F. Oxide nanomaterials: syntheticdevelopments, mechanistic studies, and technological innovations. Angew. Chem. Int.Ed.2011,50:826–859.
    [28] Chan K, Peng H, Twesten R D, Jarausch K, Zhang X F, Cui Y. Fast, completelyreversible li insertion in vanadium pentoxide nanoribbons. Nano Lett.2007,7:490–495.
    [29] Liu J, Wang X, Peng Q, Li Y. Vanadium pentoxide Nanobelts: Highly Selective andStable Ethanol Sensor Materials. Adv. Mater.2005,17:764-767.
    [30] Zhang Y, Liu X, Xie G, Yu L, Yi S, Hu M, Huang C. Hydrothermal synthesis,characterization, formation mechanism and electrochemical property of V3O7.H2Osingle crystal nanobelts. Materials Science and Engineering B2010,17:164-171.
    [31] Avansi Jr W, Ribeiro C, Leite E R, Mastelaro V R. Vanadium pentoxidenanostructures: an effective control of morphology and crystal structure inhydrothermal conditions. Cryst. Growth Des.2009,9:3626–3631.
    [32] Sun D, Kwon C W, Baure G, Richman E, Bruce J M, Tolbert S H. The relationshipbetween nanoscale structure and electrochemical properties of vanadium oxidenanorolls. Adv. Funct. Mater.2004,14:1197–1204.
    [33] Li M, Kong F, Wang H, Li G. Synthesis of vanadium pentoxide (V2O5) ultralongnanobelts via an oriented attachment growth mechanism. CrystEngComm2011,13:5317-5320.
    [34] Wang H, Zhang J, Lim W X, Lin J Y, Wong C C. Designed strategy to fabricate apatterned V2O5nanobelt array as a superior electrode for Li-ion. Batteries. J. Mater.Chem.2011,21:2362-2368.
    [35] Zakharova G S, Volkov V L, T schner Ch, Hellmann I, Leonhardt A, Klingeler R,Büchner B, Synthesis and characterization of V3O7.H2O nanobelts. Solid StateCommu.2009,149:814–817.
    [36] Yu D, Chen Ch, Xie S, Liu Y, Park K, Zhou X, Zhang Q, Li J, Cao G. Mesoporousvanadium pentoxide nanofibers with significantly enhanced Li-ion storage propertiesby electrospinning. Energy Environ. Sci.2011,4:858–861.
    [37] Mai L Q, Lao C S, Hu B, Zhou J, Qi Y Y, Chen W, Gu E D, Wang Z L, Synthesisand electrical transport of single-crystal NH4V3O8nanobelts. J. Phys. Chem. B2006,110:18138–18141.
    [38] Zhang K F, Zhang G Q, Liu X, Su Z X, Li H L. Large scale hydrothermal synthesisand electrochemistry of ammonium vanadium bronze nanobelts. J. Power Sources2006,157:528–532.
    [39] Wang H, Huang K, Huang C, Liu S, Ren Y, Huang X,(NH4)0.5V2O5nanobelt withgood cycling stability as cathode material for Li-ion battery. J. Power Sources2011,196:5645–5650.
    [40] Chandrappa G T., Chithaiah P, Ashoka S, Livage J, Morphological evolution of(NH4)0.5V2O5.3mH2O fibers into belts, triangles, and rings. Inorg. Chem.2011,50:7421–7428.
    [41] Dobley A, Ngala K, Yang S F, Zavalij P Y, Whittingham M S, Manganese vanadiumoxide nanotubes: synthesis, characterization, and electrochemistry. Chem. Mater.2001,13:4382–4386.
    [42] Dwyer C O, Navas D, Lavayen V, Benavente E, Santa Ana M A, Gonzalez G,Newcomb S B, C. Torresand M. Nano-Urchin: The formation and structure ofhigh-density spherical clusters of vanadium oxide nanotubes. Chem. Mater.2006,18:3016–3021.
    [43] Wang H, Huang K, Liu S, Huang C, Wang W, Ren Y. Electrochemical property ofNH4V3O8·0.2H2O flakes prepared by surfactant assisted hydrothermal. J. PowerSources2011,196:788–792.
    [44] Nguyen T D, Do T O. Solvo-hydrothermal approach for the shap-selectivitysynthesis of vanadium oxide nanocrystals and their characterization. Langmuir2009,25:5322–5332.
    [45] Kapoor R, Oyama S T. Synthesis of vanadium carbide by temperature programmedreaction. J Solid State Chem.1995,120:320–6.
    [46] Francis P S. Solution properties of water-soluble polymers. I. control of aggregationof sodium carboxymethylcellulose (CMC) by choice of solvent and/or electrolyte. J.Appl. Polym. Sci.1961,5:261–270.
    [47] Liebert T F, Heinz T J. Exploitation of reactivity and selectivity in cellulosefunctionalization using unconventional media for the design of products showing newsuperstructures. Biomacromolecules2001,2:1124–1132.
    [48] Liebert T, Hornig S, Hesse S, Heinze T. Microscopic visualization of nanostructuresof cellulose derivatives, Macromol. Symp.2005,223:253–266
    [49] Shao K, Luo H M, Cao H Q. Inducing growth of highly ordered molybdenum oxidenanoplates under ambient conditions. J. Mater. Res.2008,23:2602–2608.
    [50] Chakraborty T, Chakraborty I, Ghosh S. Sodium carboxymethyl cellulose-CTABInteraction: a detailed thermodynamic study of polymer-surfactant interaction withopposite charges Langmuir2006,22:9905–9913.
    [51] Yin J, Lu Q, Yu Z, Wang J, Pang H, Gao F d. Hierarchical ZnO nanorod-assembledhollow superstructures for catalytic and photoluminescence applications. Cryst.Growth Des.2010,10:40–43.
    [52] Teng F, Wang J, Z Tian, Wang Z, Xiong G, Xu Z, Xu Y, Lin L. Morphologytranscription process from CMC micelles to inorganogel and its effect on theproperties of alumina particle. Materials Science and Engineering B2005,116:215–220.
    [53] Wu X, Tao Y, Dong L, Hong J. Synthesis and characterization of self-assembling(NH4)0.5V2O5nanowires. J. Mater. Chem.2004,14:901–904.
    [54] Klemm D, Heublein B, Fink H, Bohn A. Cellulose: Fascinating Biopolymer andSustainable Raw Material. Angew. Chem. Int. Ed.2005,44:3358–3393.
    [55] Martha S, Das D P, Biswal N, Parida K M. Facile synthesis of visible lightresponsive V2O5/N,S–TiO2composite photocatalyst enhanced hydrogen productionand phenol degradation. J. Mater. Chem.2012,22:10695–10703.
    [56] Mukthaa B, Darrietb J, Madrasc G, Guru Row T N. Crystal structures andphotocatalysis of the triclinic polymorphs of BiNbO4and BiTaO4. J. Solid StateChem.2006,179:3919–3925.
    [57] K. M. Ahmed, H. Peng, K. B. Wu, K. X. Huang, Hydrothermal preparation ofnanostructured manganese oxides (MnOx) and their electrochemical andphotocatalytic properties. Chem. Eng. J.2011,172:531–539.
    [1] Kubacka A, García F M, Colon G. Advanced Nanoarchitectures for SolarPhotocatalytic Application. Chem. Rev.2012,112:1555-1614.
    [2] Di Paolaa A, García-López E, Marcìa G, Palmisano L. A survey of photocatalyticmaterials for environmental remediation. J. Hazard. Mater.2012,211:3-29.
    [3] Yin L. G, Shen Z Y, Gni J F, Chen J, Duan P Y. Degradation of Pentachlorophenoland2,4-Dichlorophenol by Sequential Visible-Light Driven Photocatalysis andLaccase Catalysis. Environ. Sci. Technol.2010,44:9117-9122.
    [4] Ram Boppana V B, Lobo R F. SnOx–ZnGa2O4Photocatalysts with EnhancedVisible Light Activity ACS Catal.2011,1:923-928.
    [5] Chen X, Mao S S Titanium Dioxide Nanomaterials: Synthesis, Properties,Modifications, and Applications. Chem. Rev.2007,107:2891-2959.
    [6] Chen X B, Liu L, Yu PY, Mao S S. Increasing Solar Absorption for Photocatalysiswith Black Hydrogenated Titanium Dioxide Nanocrystals. Science2011,331:746-750.
    [7] Wang D, Kako T, Ye J. Efficient Photocatalytic Decomposition of Acetaldehydeover a Solid-Solution Perovskite (Ag0.75Sr0.25)(Nb0.75Ti0.25)O3under Visible-LightIrradiation. J. Am. Chem. Soc.2008,130:2724-2725.
    [8] Shi H, Li Z, Kou J, Ye J, Zou Z. Facile Synthesis of Single-Crystalline Ag2V4O11Nanotube Material as a Novel Visible-Light-Sensitive Photocatalyst. J. Phys. Chem.C2011,115:145-151.
    [9] Shi R, Wang Y, Zhou F, Zhu Y. Zn3V2O7(OH)2(H2O)2and Zn3V2O8nanostructures: controlled fabrication and photocatalytic performance. J. Mater.Chem.2011,21:6313-6320.
    [10] Ye J, Zou Z, Oshikiri M, Matsushita A, Shimoda M, Imai M, Shishido T. A novelhydrogen-evolving photocatalyst InVO4active under visible light irradiation Chem.Phys. Lett.2002,356:221-226.
    [11] Zhou L, Wang W Z, Zhang L S, Xu H L, Zhu W. Single-Crystalline BiVO4Microtubes with Square Cross-Sections: Microstructure, Growth Mechanism, andPhotocatalytic Property. J. Phys. Chem. C2007,11:13659-13664
    [12] Huang C M, Pan G T, Li Y C M, Li M H, Yang T C K. Crystalline phases andphotocatalytic activities of hydrothermal synthesis Ag3VO4and Ag4V2O7undervisible light irradiation. Appl. Catal. A: Gen2009,358:164-172.
    [13] Mahapatra S, Nayak S K, Madras G, Guru Row T N. Microwave Synthesis andPhotocatalytic Activity of Nano Lanthanide (Ce, Pr, and Nd) Orthovanadates. Ind.Eng. Chem. Res2008,47:6509-6516.
    [14] Ahmed K A, Peng H, Wu K, Huang K. Hydrothermal preparation of nanostructuredmanganese oxides (MnOx) and their electrochemical and photocatalytic propertiesChem. Eng. J2011,172:531-
    [15] Ahmed K. A, Huang K. Synthesis, characterization and catalytic activity ofbirnessite type potassium manganese oxide nanotubes and nanorods. MaterialsChemistry and Physics2012,133:605-610.
    [16] Liang X, Zhong Y, Zhua S, Ma L, Yuan P, Zhu J, pinge H, Jiang Z. Thecontribution of vanadium and titanium on improving methylene blue decolorizationthrough heterogeneous UV-Fenton reaction catalyzed by their co-doped. J. Hazard.Mater.2012,199:247-254.
    [17] Huang W, Gao S, Ding X, Jiang L, Wei M. Crystalline MnV2O6nanobelts:Synthesis and electrochemical. Journal of Alloys and Compounds2010,495:185-188.
    [18] Zhao Y, Eley C, Hu J, Foord J S, Ye L, He H, Edman Tsang S C. Shape-DependentAcidity and Photocatalytic Activity of Nb2O5Nanocrystals with an Active TT (001)Surface. Angew. Chem. Int. Ed.2012,51,3846-3849.
    [19] Cui Z, Zeng D, Tang T, Liu J, Xie C S. Enhanced visible light photocatalyticactivity of QDS modified Bi2WO6nanostructures Catalysis Communications2010,11:1054-1057.
    [20] Dobley A, Ngala K, Yang S, Zavalij P Y, Whittingham M S. Manganese VanadiumOxide Nanotubes: Synthesis, Characterization, and Electrochemistry. Chem. Mater.2001,13:4382-4386.
    [21] Liu Y, Zhang Y, Du J, Yu W, Qian Y. Synthesis and characterization ofsingle-crystal MnV2O6nanobelts. J. Cryst. Growth2006,291:320-324.
    [22] Lei S, Tang K, Jin Y, Chen C. Preparation of aligned MnV2O6nanorods and theiranodic performance for lithium secondary battery use. Nanotechnology2007,18:175605/7-
    [23] Ding N, Liu S, Feng X, Gao H, Fang X, Xu J, Tremel W, Lieberwirth I, Chen C.Effect of Stacking Fault on the Formation of the Saw-Teeth of ZnS Nanosaws.Cryst. Growth&Des.2009,9:1723-1726.
    [24] Zhang W, Shi L, Tang K, Liu Z. Synthesis, surface group modification of3DMnV2O6nanostructures and adsorption effect on Rhodamine B. Materials ResearchBulletin2012,47:1725-1733.
    [25] Kim S, Ikuta H, Wakihara M. Synthesis and characterization of MnV2O6as a highcapacity anode material for a lithium secondary battery. Solid State Ionics2001,139:57-65.
    [26] Shi S, Cao M, He X, Xie H. Surfactant-Assisted Hydrothermal Growth ofSingle-Crystalline Ultrahigh-Aspect-Ratio Vanadium Oxide Nanobelts. CrystalGrowth&Design2007,9:1893-1897.
    [27] Francis P. S. Solution properties of water-soluble polymers. I. control of aggregationof sodium carboxymethylcellulose (CMC) by choice of solvent and/or electrolyte, J.Appl. Polym. Sci1961,5:261-270.
    [28] Liebert T F, Heinz T. Exploitation of reactivity and selectivity in cellulosefunctionalization using unconventional media for the design of products showing newsuperstructures. Biomacromolecules2001,2:1124–1132.
    [29] Kozlowski R, Ziokowski J, Mocala K, Haber J. Defect structures in thebrannerite-type vanadates. I. Preparation and study of MN1xфxV22xMo2xO6(0≤x≤0.45) J. Solid State Chem1980,35:1-9.
    [30] Chakraborty T, Chakraborty I, Ghosh S. Sodium Carboxymethylcellulose CTABInteraction: A Detailed Thermodynamic Study of Polymer Surfactant Interactionwith Opposite Charges. Langmuir2006,22:9905-9913.
    [31] Teng F, Wang J, Tian Z, Wang Z, Xiong G, Xu Z, Xu Y, Lin L. Morphologytranscription process from CMC micelles to inorganogel and its effect on theproperties of alumina particle. Materials Science and Engineering B2005,116:215-220.
    [32] Wu X, Tao Y, Dong L, Hong J. Synthesis and characterization of self-assembling(NH4)0.5V2O5nanowires. J. Mater. Chem2004,14:901-904.
    [33] Kijlstra W S, Poels E K, Bliek A, Weckhuysen B M, Schoonheydt R A.Characterization of Al2O3-Supported Manganese Oxides by Electron SpinResonance and Diffuse Reflectance Spectroscopy. J. Phys. Chem. B1997,101:309-316.
    [34] Yang X, Ma F, Li K, Guo Y, Hub J, Li W, Huo M, Guo Y. Mixed phase titaniananocomposite codoped with metallic silver and vanadium oxide: New efficientphotocatalyst for dye degradation. J. Hazard. Mater.2010,175:429-438.
    [35] Bhattacharyy K, Varma S, Tripathi A K, Bharadwaj S R, Tyagi A K. Effect ofVanadia Doping and Its Oxidation State on the Photocatalytic Activity of TiO2forGas-Phase Oxidation of Ethene. J. Phys. Chem. C2008,112:19102-19112.
    [36] Martha S., Das D P, Biswal N, Parida K M. Facile synthesis of visible lightresponsive V2O5/N,S–TiO2composite photocatalyst: enhanced hydrogenproduction and phenol degradation. J. Mater. Chem.2012,22:10695-10703.
    [37] Abbood H A, Peng H, Gao X, Tan B, Huang K. Fabrication of cross-like NH4V4O10nanobelt array controlled by CMC as soft template and photocatalytic activity of itscalcinated product. Chem. Eng. J.2012,209:245-254.
    [38] Gomathi D L, Kottam N, Narasimh Murthy B, Girish Kumar S. Enhancedphotocatalytic activity of transition metal ions Mn2+, Ni2+and Zn2+dopedpolycrystalline titania for the degradation of Aniline Blue under UV/solar light. J.Mol. Catal A: Chem.2010,328:44-52.
    [1]4.5Reference Corr S A, Grossman M, Furman J D, Melot B C, Cheetham A K,Heier K R, Seshadri R. Controlled Reduction of Vanadium Oxide Nanoscrolls:Crystal Structure, Morphology, and Electrical Properties. Chem. Mater2008,20:6396–6404.
    [2] Lopez R, Feldman L C, Haglund R F. Size-Dependent Optical Properties of VO2Nanoparticle Arrays Phys. Rev. Lett2004,93:177403/1.
    [3] Qazilbash M M, Brehm M, Chae B-G, Ho P C, Andreev G O, Kim B-J, Yun S J,Balatsky A V, Maple M B, Keilmann F, Kim H-T, Basov D N. Mott Transition inVO2Revealed by Infrared Spectroscopy and Nano-Imaging Science2007,318:1750-1753.
    [4] Baum P, Yang D-S, Zewail A H.4D Visualization of Transitional Structures inPhase Transformations by Electron Diffraction. Science2007,318,788-792.
    [5] Corr S A, Grossman M, Shi Y, Heier K R, Stuckya G D, Seshadria R. VO2(B)nanorods: solvothermal preparation, electrical properties, and conversion to rutileVO2and V2O3. J. Mater. Chem2009,19:4362–4367.
    [6] Eyert V. VO2: A Novel View from Band Theory. Phys. Rev. Lett.2011,107:016401.
    [7] Surnev S, Ramsey M G, Netzer F. P. Vanadium oxide surface studies. Prog. Surf.Sci2003,73,117-165.
    [8] Kang L, Gao Yanfeng, Zhang Z, Du J, Cao C, Chen Z, Luo H. Effects ofAnnealing Parameters on Optical Properties of Thermochromic VO2Films Preparedin Aqueous Solution. J. Phys. Chem. C2010,114:1901–1911.
    [9] Lopez, R.; Boatner, L. A.; Haynes, T. E.; Feldman, L. C.; Haglund, R. F. Currentdensity profile extraction of focused ion beams based on atomic force microscopycontour profiling of nanodots. J. Appl. Phys2002,92,4031/6.
    [10] Du J, Gao Y, Chen Z, Kang L, Zhang Z, Luo H. Enhancing thermochromicperformance of VO2films via increased microroughness by phase separation. SolarEnergy Materials and Solar Cells2013,110:1-7.
    [11] Luisa Whittaker, Cherno Jaye, Zugen Fu, Daniel A. Fischer, and Sarbajit BanerjeeDepressed Phase Transition in Solution-Grown VO2Nanostructures. J. Am. Chem.Soc.2009,131:8884–8894.
    [12] Tselev A. Budai J D, Strelcov E, Tischler J Z, Kolmakov A, Kalinin S V.Electromechanical Actuation and Current-Induced Metastable States in SuspendedSingle-Crystalline VO2Nanoplatelets. Nano Lett.2011,11:3065–3073.
    [13] Gui Z, Fan R, Chen X H, Wu T C. A new metastable phase of needle-likenanocrystalline VO2·H2O and phase transformation. J Solid State Chemistry2001,157:250254.
    [14] Douglas H, Jon Z, Christopher J W, Linda M M, Mjchael M J T, Robert H. A newpolymorph of VO2prepared by soft chemical methods. J Solid State Chemistry1998,138:178182.
    [15] Gui Z, Fan R, Mo W, Chen X, Yang L, Zhang S, Hu Y, Wang Z, Fan W. Precursormorphology controlled formation of rutile VO2nanorods and their self-assembledstructure. Chem Mater.2002,14:50535056.
    [16] Tsang C, Manthiram A. Synthesis of Nanocrystalline VO2and Its ElectrochemicalBehavior in Lithium Batteries. J. Electrochem. Soc.1997,144:520-24.
    [17] Yin H, Luo M, Yu K, Gao Y, Huang R, Zhang Z, Zeng M, Cao C, Zhu Z.Fabrication and Temperature-Dependent Field-Emission Properties of undlelike VO2Nanostructures. ACS Appl. Mater. Interfaces2011,3:2057–2062.
    [18] Gao Y, Luo H, Zhang Z, Kang L, Chen Z, Du J, Kanehira M, Cao C.NanoceramicVO2thermochromicsmartglass: A review on progress in solutionprocessing. Nano Energy2012,1:221–246.
    [19] Chen G, Zhu F, Sun X, Suna S Chen R. Benign synthesis of ceria hollownanocrystals by a template-free method, CrystEngComm2011,13:2904–2908.
    [20] Im S H, Jeong U, Xia Y N. Polymer hollow particles with controllable holes in theirsurfaces. Nat. Mater.2005,4:671-67.
    [21] Harrison G, Washburn A L, Pickett A T, Call D M. Assembly of CdSe nanoparticlesinto microsphere by a liquid droplet emulsion process. J. Mater. Chem.2008,18:3718–3722.
    [22] Xu Y, Zheng L, Xie Y. From synthetic montroseite VOOH to topochemicalparamontroseite VO2and their applications in aqueous lithium ion batteries. DaltonTrans.2010,39:10729–10738.
    [23] Liu Y, Goebla J, Yin Y. Templated synthesis of nanostructured materials. Chem.Soc. Rev2013, DOI:10.1039/C2CS35369E.
    [24] Liu B, Zeng H C. Symmetric and Asymmetric Ostwald Ripening in the Fabricationof Homogeneous Core–Shell Semiconductors. Small2005,1:566–571.
    [25] Jia F, Yu C, Ai Z, Zhang L. Fabrication of Nanoporous Gold Film Electrodes withUltrahigh Surface Area and Electrochemical Activity. Chem. Mater.2007,19:3648-3653.
    [26] Niederberger M, Pinna N, Polleux J, Antonietti M. A General Soft-Chemistry Routeto Perovskites and Related Materials: Synthesis of BaTiO3, BaZrO3, and LiNbO3Nanoparticles. Angew. Chem. Int. Ed.2004,43:2270–2273.
    [27] Niederberger M, Garnweitner G, Pinna N, Neri G. Non-aqueous routes to crystallinemetal oxide nanoparticles: Formation mechanisms and applications. Progress inSolid State Chemistry2005,33:59-70.
    [28] Liu H, Wang Y, Wang K, Hosono E, Zhou H. Design and synthesis of a novelnanothorn VO2(B) hollow microsphere and their application in lithium-ion batteriesJ. Mater. Chem.2009,19:2835–2840.
    [29] M. Wei, H. Sugihara, I. Honma, M. Ichihara and H. Zhou. A New Metastable Phaseof Crystallized V2O4·0.25H2O Nanowires: Synthesis and ElectrochemicalMeasurements. Adv. Mater.2005,17:2964–2969.
    [30] Cao C, Gao Y, kang L, Luo H. Self-assembly and synthesis mechanism of vanadiumdioxide hollow microsphere. CrystEngComm2010,12:4048–4051.
    [31] Haimei Liu, Yonggang Wang, Kaixue Wang, Eiji Hosono and Haoshen Zhou Designand synthesis of a novel nanothorn VO2(B) hollow microsphereand their applicationin lithium-ion batteries. J. Mater. Chem.2009,19:2835–2840.
    [32] Kong F Y, Li M, Yao X Y, Xu J M, Wang A D, Liu Z P, Li G H. Template-freehydrothermal synthesis of VO2hollow microsphere. CrystEngComm2012,14:3858–3861.
    [33] Pan A, Zhang J-G, Nie Z, Cao G, Arey B W, Li G, Liang S, Liu J. Facile synthesizednanorod structured vanadium pentoxide for high-rate lithium batteries. J. Mater.Chem.2010,20:9193–9199.
    [34] Roppolo M, Jacobs N A. Synthesis and characterization of layered and scrolledamine-templated vanadium oxides. J. Mater. Sci.2008,43:4742-4748.
    [35] Zhang S, Li Y, Wu C, Zheng F, Xie Y. Novel Flowerlike Metastable VanadiumDioxide (B) Micronanostructures: Facile Synthesis and Application in AqueousLithium Ion Batteries. J. Phys. Chem. C2009,113:15058-15067.
    [36] Yang H G, Zeng H. C. Preparation of Hollow Anatase TiO2Like-nanospheres viaOstwald Ripening. J. Phys. Chem. B2004,108:3492–3495.
    [37] Lou X W, Wang Y, Yuan C, Lee J Y, Archer L A. Template-Free Synthesis of SnO2Hollow Nanostructures with High Lithium Storage Capacity. Adv. Mater.2006,18:2325–2329.
    [38] Xue L, Yan X, Hua W, Hua-lin W, Wei-dong W, Xianh-ying C. Synthesis andcharacterization of uniform nanoparticales of γ-Mo2N for supercapictors. Trans.Nonferrous Met. Soc. China2009,19:620-625.
    [39] Mohamed Ahmed K A, Zeng Q, Wu K, Huang K. Mn3O4nanoplates andnanoparticles: Synthesis, characterization, electrochemical and catalytic properties. JSolid State Chemistry2010,183:744-751.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700