用户名: 密码: 验证码:
有机胍盐催化吗啉二酮活性及立构专一性开环聚合研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着高分子科学的发展和研究工作的深入,α-羟基酸与α-氨基酸的共聚物(Polydepsipeptides)颇受生物医用高分子科学领域科研工作者的重视。Polydepsipeptides兼具聚酯类高分子和聚氨基酸类高分子材料的优点,同时又具有较聚酯类高分子更好的亲水性和细胞黏附性,以及较聚氨基酸类高分子更好的溶解性和可加工性等。Polydepsipeptides在生物医学领域有着广阔的应用前景,例如可用作药物控释体系的载体、细胞生长载体、医用缝合线、医用敷料等。
     本论文中所报道的创新性研究工作主要是关于通过仿生型无毒无金属有机胍盐催化剂催化吗啉-2,5-二酮的开环聚合反应制备乳酸与丝氨酸、乳酸与谷氨酸的共聚物,具体内容分述如下:
     (1)通过醋酸肌酐胍催化的L-丙交酯与(3S)-苄氧甲基-(6S)-甲基-吗啉-2,5-二酮活性及立构专一性开环共聚合反应,合成出具有可控组成、高立构等规度的共聚物,后经脱保护反应获得具有生物可降解性和生物安全性的聚(L-乳酸-co-L-丝氨酸)。
     (2)通过双环胍(1,5,7-三氮杂双环[4.4.0]-癸-5-烯,TBD)分别与乙醇酸、乳酸反应合成出两种新型仿生型无毒无金属有机胍盐催化剂——乙醇酸双环胍(TBDG)和乳酸双环胍(TBDL)。
     (3)由起始原料L-谷氨酸经三步有机反应制备出一种新化合物——3-苄氧羰基亚乙基-6-甲基-吗啉-2,5-二酮(BCEMD)。
     (4)通过乙醇酸双环胍催化的3-苄氧羰基亚乙基-6-甲基-吗啉-2,5-二酮的开环均聚合反应,合成出均聚物PBCEMD,后经脱保护反应获得具有生物可降解性和生物安全性的聚(乳酸-alt-谷氨酸);通过开环聚合反应的动力学实验证明了该聚合反应具有活性聚合反应的特征;通过终止剂添加实验和大分子活性物种表征实验证明了该聚合反应的反应机理应为配位—插入机理。
     (5)通过乙醇酸双环胍催化的DL-丙交酯与3-苄氧羰基亚乙基-6-甲基-吗啉-2,5-二酮开环共聚合反应,合成出具有可控组成及结构的共聚物,后经脱保护反应获得具有生物可降解性和生物安全性的聚(乳酸-co-谷氨酸)。
     (6)通过乙醇酸双环胍或乳酸双环胍催化的丙交酯与3-苄氧甲基-6-甲基-吗啉-2,5-二酮开环共聚合反应,分别合成出具有可控组成及结构的共聚物,后经脱保护反应获得具有生物可降解性和生物安全性的聚(DL-乳酸-co-L-丝氨酸)和聚(L-乳酸-co-L-丝氨酸)。
     (7)基于相关实验数据对比并讨论了:①3-苄氧羰基亚乙基-6-甲基-吗啉-2,5-二酮(BCEMD)与(3S)-苄氧甲基-(6RS)-甲基-吗啉-2,5-二酮的单体活性[(3S,6RS)-BMMD];②乙醇酸双环胍(TBDG)和乳酸双环胍(TBDL)的催化剂活性;③聚合反应温度的选取问题。
With the development of polymer science and the deepening of research works, copolymers of a-hydroxy acid and a-amino acid (polydepsipeptides) are greatly valued by scientists and researchers in the field of biomedical polymer science. Polydepsipeptides have the advantages of both polyesters and polyamino acids, and simultaneously they also have better hydrophilicity and cell adhesion than polyesters do, have better solubility and processability than polyamino acids do, etc. Polydepsipeptides possess broad application prospects in the biomedical field, such as that they can be used as carriers for controlled release drug delivery systems, cell growth vectors, surgical sutures, medical dressings and so on.
     The innovative research works reported in this dissertation are mainly about preparation of copolymers of lactic acid and serine or copolymers of lactic acid and glumatic acid via Ring-Opening Polymerization of morpholine-2,5-diones catalyzed by biomimetic non-toxic metal-free organic guanidium salt catalysts. The specific contents are described as follows:
     (1) Copolymers with controllable composition and high isotacticity were synthesized via the living and stereospecific ring-opening copolymerization of L-lactide and (3S)-benzyloxymethyl-(6S)-methyl-morpholine-2,5-dione catalyzed by creatinine acetate, and via deprotection reactions the biodegradable and bio-safe poly(L-lactic acid-co-L-serine)s were obtained then.
     (2) Two new type biomimetic non-toxic metal-free organic guanidium salt catalysts bicyclic guanidium glycolate (TBDG) and bicyclic guanidium lactate (TBDL) were synthesized via the reaction of bicyclic guanidine (1,5,7-triaza-bicyclo-[4.4.0]-dec-5-ene, TBD) and glycolic acid or lactic acid respectively.
     (3) A new compound3-[(benzyloxycarbonyl)-ethylene]-6-methyl-morpholine-2,5-dione (BCEMD) was synthesized from the starting material L-glumatic acid via three-step organic reaction.
     (4) Homopolymers PBCEMDs were synthesized via the ring-opening homopolymerization of3-[(benzyloxycarbonyl)-ethylene]-6-methyl-morpholine-2,5-dione catalyzed by bicyclic guanidium glycolate, and via deprotection reactions the biodegradable and bio-safe poly(lactic acid-alt-glutamic acid)s were obtained then; It was proved that the polymerization possessed characteristics of living polymerization via kinetic experiments for the polymerization; It was certified that the mechanism of the polymerization should be coordination-insertion mechanism via the experiments of adding terminate agents and the characterization of macromolecular active species.
     (5) Copolymers with controllable composition and structure were synthesized via the ring-opening copolymerization of DL-lactide and3-[(benzyloxycarbonyl)-ethylene]-6-methyl-morpholine-2,5-dione catalyzed by bicyclic guanidium glycolate, and via deprotection reactions the biodegradable and bio-safe poly(lactic acid-co-glutamic acid)s were obtained then.
     (6) Copolymers with controllable composition and structure were synthesized via the ring-opening copolymerization of lactide and3-benzyloxymethyl-6-methyl-morpholine-2,5-dione catalyzed by bicyclic guanidium glycolate or bicyclic guanidium lactate respectively, and via deprotection reactions the biodegradable and bio-safe poly(DL-lactic acid-co-L-serine)s and poly(L-lactic acid-co-L-serine)s were obtained then.
     (7) Make some comparisons and discussions based on the related experimental data:①the monomer activities of3-[(benzyloxycarbonyl)-ethylene]-6-methyl-morpholine-2,5-dione (BCEMD) and (3S)-benzyloxymethyl-(6RS)-methyl-morpholine-2,5-dione [(3S,6RS)-BMMD];②the catalyst activities of bicyclic guanidium glycolate (TBDG) and bicyclic guanidium lactate (TBDL);③the problem of selecting the temperature of copolymeriztions.
引文
[1]罗祥林主编.功能高分子材料.北京:化学工业出版社,2010,141-168
    [2]马建标主编.功能高分子材料(第二版).北京:化学工业出版社,2010,274-312
    [3]李弘主编.先进功能材料.北京:化学工业出版社,2011,313-343
    [4]李孝红,袁明龙,郝建原等.生物降解聚合物的研究和产业化进展及展望.高分子通报2008,8:19-122
    [5]王晨宏,李弘,王玉琴.聚乳酸类生物降解性高分子材料研究进展.离子交换与吸附,2001,17(4):369-378
    [6]张国栋,杨继元,冯新德等.聚乳酸的研究进展.化学进展,2000,12(1):89-102
    [7]Hee-Gweon Woo, Hong Li. Advanced Functional Materials.浙江:浙江大学出版社Springer-Verlag GmbH,2011,37-64
    [8]李弘,徐杰.氨基酸类生物降解聚合物的合成研究进展.离子交换与吸附,2008,24(3):280-288
    [9]张鸿渊,万海清主编.高等学校教材生物化学(工科类专业适用).北京:化学工业出版社教材出版中心,2001,39-79
    [10]Dijkstra, P. J.; Feijen, J.. Synthetic Pathways to Polydepsipeptides. Macromol. Symp.,2000, 153:67-76.
    [11]Sun, H.; Meng, F.; Dias, A. A.; et al. α-Amino Acid Containing Degradable Polymers as Functional Biomaterials:Rational Design, Synthetic Pathway and Biomedical Applications. Biomacromolecules,2011,12:1937-1955
    [12]Feng, Y.; Lu, J.; Behl, M.; et al. Progress in Depsipeptide-Based Biomaterials. Macromol. Biosci.,2010,10:1008-1021
    [13]Feng, Y. and Guo. J.. Biodegradable Polydepsipeptides. Int. J. Mol. Sci.,2009,10:589-615
    [14]Shalaby, S. W. and Koelmel, D. F.. Surgical device with accelerated absorption characteristics-made from copolymer of p-dioxanone and 2,5-morpholine:di:one(s). US4441496-A.1984
    [15]In't Veld, P. J. A.; Shen, Z.; Takens, G A. J.; et al. Glycine/Glycolic acid based copolymers. J. Polym. Sci. A:Polym. Chem.,1994,32 (6):1063-1069
    [16]Kricheldorf, H. R. and Hauser, K.. Homo-and Copolymerization of 3-Methylmorpholine-2,5-dione Initiated With a Cyclic Tin Alkoxide. Macromol. Chem. Phys.,2001,202(7): 1219-1226
    [17]Martinez-Palau, M.; Urpi, L.; Solans, X.; et al. Morpholine-2,5-dione. Acta Cryst.,2006, C62:o262-o264
    [18]Ohya, Y.; Yamamoto, H.; Nagahama, K.; et al. Effects of Polydepsipeptide Side-chain Groups on the Temperature Sensitivity of Triblock Copolymers Composed of Polydepsipeptides and Poly(ethylene glycol). J. Polym. Sci. A:Polym. Chem.,2009,47: 3892-3903
    [19]Li, Y.; He, J.; Cui, G.; et al. Synthesis of Polymorpholine-2,5-dione-block-polylactide by Two-step Anionic Ring-Opening Polymerization. J. Appl. Polym. Sci.,2010,118: 2005-2008
    [20]Helder, J.; Kohn, F. E.; Sato, S.; et al. Synthesis of poly[oxyethylidene-carbonylimino-(2-oxoethylene)] [Poly(glycine-D, L-lactic acid)] by ring opening polymerization. Makromol. Chem., Rapid Commun.,1985,6:9-14
    [21]Helder, J. and Feijen, J.. Copolymers of D, Z-lactic acid and glycine. Makromol. Chem., Rapid Commun.,1986,7:193-198
    [22]Schakenraad, J. M.; Nieuwenhuis, P.; Molenaar, I.; et al. In vivo and in vitro degradation of glycine/D, L-lactic acid copolymers. J. Biomed. Mater. Res.,1989,23(11):1271-1288
    [23]Helder, J.; Dijkstra, P. J.; Feijen, J.. In vitro degradation of glycine/D, L-lactic acid copolymers. J. Biomed. Mater. Res.,1990,24(8):1005-1020
    [24]in't Veld, P. J. A.; Dijkstra, P. J.; van Lochem, J. H.; et al. Synthesis of alternating polydepsipeptides by ring-opening polymerization of morpholine-2,5-dione derivaties. Makromol. Chem.,1990,191:1813-1825
    [25]in't Veld, P. J. A.; Ye, W.; Klap, R.; et al. Copolymerization of ε-caprolactone and morpholine-2,5-dione derivatives. Makromol. Chem.,1992,193:1927-1942
    [26]Du, F.; Ye, W.; Gu, Z.; et al. Synthesis and In Vitro Degradation of Copolymers of Glycolide and 6(R,S)-Methylmorpholine-2,5-dione. Inc, J. Appl. Polym. Sci.,1997,63:643-650
    [27]Jorres, V.; Keul, H.; Hocker, H.. Aminolysis of a-hydroxy acid esters with a-amino acid salts; first step in the synthesis of optically active 2,5-morpholinedione. Macromol. Chem. Phys., 1998,199:825-833
    [28]Montaudo, M. S.. Is It Possible to Extend the Coleman-Fox Method for Polymer Sequence Determination by NMR to Copolycondensates?. J. Phys. Chem. B.,2004,108:6288-6294.
    [29]Feng, Y.; Klee, D.; Keul, H.; et al. Lipase-catalyzed ring-opening polymerization of morpholing-2,5-dione derivatives:A novel route to the synthesis of poly(ester amide)s. Macromol. Chem. Phys.,2000,201:2670-2675
    [30]Feng, Y.; Klee, D.; Hocker, H. Lipase-Catalyzed Ring-Opening Polymerization of 6(S)-Methyl-morpholine-2,5-dione. J. Polym. Sci. A:Polym. Chem.,2005,43:3030-3039
    [31]Fung, F. and Glowaky, R. C. Bio-absorbable poly:depsi:peptide(s) for mfg. medical implant devices-prepd. by ring-opening polymerisation of 3-substd.-2,5-morpholine:di:one(s). US4916209-A.1990
    [32]Tian, W.; Chen, Q.; Yu, C.; et al. Amino-terminated poly(ethylene glycol) as the initiator for the ring-opening polymerization of 3-methylmorpholine-2,5-dione. Eur. Polym. J.,2003,39: 1935-1938
    [33]Zhao, Y.; Li, J.; Yu, H.; et al. Synthesis and characterization of a novel polydepsipeptide contained tri-block copolymer (mPEG-PLLA-PMMD) as self-assembly micelle delivery system for paclitaxel. Int. J. Pharm.,2012,430:282-291
    [34]Shirahama, H.; Tanaka, A.; Yasuda, H.. Highly Biodegradable Copolymers Composed of Chiral Depsipeptide and L-Lactide Units with Favorable Physical Properties. J. Polym. Sci. A:Polym. Chem.,2002,40:302-316
    [35]Chisholm, M. H.; Galucci, J.; Krempner, C.; et al. Comments on the ring-opening polymerization of morpholine-2,5-dione derivatives by various metal catalysts and characterization of the products formed in the reactions involving R2SnX2, where X=OPri and NMe2 and R=Bun, Ph and p-Me2NC6H4. Dalton Trans.,2006,6:846-851
    [36]Feng, Y.; Klee, D.; Hocker, H.. Calcium Alcoholates of Hydroxytelechelic Poly(ethylene oxide)s as Initiators for the Ring-Opening Polymerization of 3-(S)-Isopropylmorpholine-2,5-dione. Macromol. Chem. Phys.,2001,202:3120-3125
    [37]Feng, Y.; Klee, D.; Hocker, H.. Biodegradable Block Copolymers with Poly(ethylene oxide) and Poly(glycolic acid-valine) Blocks. J. Appl. Polym. Sci.,2002,86:2916-2919
    [38]Feng, Y.; Kniifermann, J.; Klee, D.; et al. Enzyme-catalyzed ring-opening polymerization of 3(S)-isopropylmorpholine-2,5-dione. Macromol. Rapid. Commun.,1999,20:88-90
    [39]Feng, Y.; Knyfermann, J.; Klee, D.; et al. Lipase-catalyzed ring-opening polymerization of 3(S)-isopropylmorpholine-2,5-dione. Macromol. Chem. Phys.,1999,200:1506-1514
    [40]Feng, Y.; Klee, D.; Hocker, H.. Lipase-catalyzed Copolymerization of 3(S)-Isopropylmorpholine-2,5-dione and D, L-Lactide. Macromol. Biosci.,2004,4: 587-590
    [41]Jorres, V.; Keul, H.; Hocker, H.. Polymerization of (3S,6S)-3-isopropyl-6-methyl-2,5-morpholinedione with tin octoate and tin acetylacetonate. Macromol. Chem. Phys., 1998,199:835-843
    [42]Feng, Y.; Klee, D.; Hocker, H. Synthesis and characterization of new ABA triblock copolymers with poly[3(S)-isobutylmorpholine-2,5-dione] and poly(ethylene oxide) blocks. Macromol. Chem. Phys.,1999,200:2276-2283
    [43]Feng, Y.; Klee, D.; Hocker, H.. New biomaterial triblock copolymers of poly[3(S)-isobutyl-morpholine-2,5-dione]-poly(ethylene oxide). Mat.-wiss. u. Werkstofftech.,1999,30: 862-868
    [44]Feng, Y.; Behl, M.; Kelch, S.; et al. Biodegradable Multiblock Copolymers Based on Oligodepaipeptides with Shape-Memory Properties. Macromol. Biosci.,2009,9:45-54
    [45]Ohya, Y.; Nakai, T.; Nagahama, K.; et al. The Synthesis and Biodegradability of Poly(lactide-random-depsipeptide)-PEG-Poly(lactide-random-depsipeptide) ABA type Triblock Copolymers. J. Bioact. Compat. Polym.,2006,21:557-577
    [46]Feng, Y.; Klee, D.; Keul, H.; et al. Synthesis and Characterization of New Block Copolymers with Poly(ethylene oxide) and Poly[3(S)-sec-butyl-morpholine-2,5-dione] Sequences. Macromol. Biosci.,2001,1:30-39
    [47]Feng, Y.; Klee, D.; Hocker, H. Lipase-catalyzed Ring-Opening Polymerization of 3(S)-sec-Butylmorpholine-2,5-dione. Macromol. Biosci.,2001,1:66-74
    [48]刘迎,魏荣卿,刘晓宁等.红外光谱法测定聚(乳酸-苯丙氨酸)共聚物的含量.光谱学与光谱分析,2009,29(3):661-664
    [49]刘迎,魏荣卿,刘晓宁.乳酸-3-苯甲基-2,5-吗啉二酮共聚物的合成及共聚物组成分析.高分子学报,2009,1:66-71
    [50]John, G.; Tsuda, S.; Morita, M. Synthesis and Modification of New Biodegradable Copolymers:Serine/Glycolic acid Based Copolymers. J. Polym. Sci. A:Polym. Chem., 1997,35:1901-1907
    [51]John, G. and Morita, M.. Synthesis and Characterization of Photo-Cross-Linked Networks Based on L-Lactide/Serine Copolymers. Macromolecules,1999,32:1853-1858
    [52]John, G. and Morita, M. Biodegradable cross-linked microspheres from poly(ε-caprolactone-co-glycolic acid-co-L-serine) based polydepsipeptides. Macromol. Rapid. Commun.,1999, 20:265-268
    [53]Tasaka, F.; Miyazaki, H.; Ohya, Y.; et al. Synthesis of Comb-Type Biodegradable Polylactide through Depsipeptide-Lactide Copolymer Containing Serine Residues. Macromolecules, 1999,32:6386-6389
    [54]Ouchi, T. and Ohya, Y.. Design of Lactide Copolymers as Biomaterials. J. Polym. Sci. A: Polym. Chem.,2004,42:453-462
    [55]Jin, S. and Gonsalves, K. E.. Synthesis of poly(l-lactide-co-serine) and its graft copolymers with poly(ethylene glycol). Polymer,1998,39(21):5155-5162
    [56]李弘,焦洁平,孔丽君等.(3S,6S)-及(3S,6R)-3-苄氧甲基-6-甲基-吗啉-2,5-二酮的制备及其晶体结构.有机化学,2009,29(5):736-741
    [57]Ouchi, T.; Seike, N.; Nozaki, N.; et al. Synthesis and Characteristics of Polydepsipeptide with Pendant Thiol Groups. J. Polym. Sci. A:Polym. Chem.,1998,36:1283-1290
    [58]in't Veld, P. J. A.; Dijkstra, P. J.; Feijen, J. Synthesis of biodegradable polyesteramides with pendant functional groups. Makromol. Chem.,1992,193:2713-2730
    [59]Ouchi, T.; Shiratani, M.; Jinno, M.; et al. Synthesis of poly[(glycolic acid)-alt-(L-aspartic acid)] and its biodegradation behavior in vitro. Makromol. Chem., Rapid Commun.,1993, 14:825-831
    [60]Ouchi, T.; Nozaki, T.; Okamoto, Y.; et al. Synthesis and enzymatic hydrolysis of polydepsipeptides with functionalized pendant groups. Macromol. Chem. Phys.,1996,197: 1823-1833
    [61]Ouchi, T.; Nozaki, T.; Ishikawa, A.; et al. Synthesis and Enzymatic Hydrolysis of Lactic Acid-Depsipeptide Copolymers with Functionalized Pendant Groups. J. Polym. Sci. A: Polym. Chem.,1997,35:377-383
    [62]Ouchi, T.; Hamada, A.; Ohya, Y.. Biodegradable microspheres having reactive groups prepared from L-lactic acid-depsipeptide copolymers. Macromol. Chem. Phys.,1999,200: 436-441
    [63]Ouchi, T.; Miyazaki, H.; Arimura, H.; et al. Synthesis of Biodegradable Amphiphilic AB-Type Diblock Copolymers of Lactide and Depsipeptide with Pendant Reactive Groups. J. Polym. Sci. A:Polym. Chem.,2002,40:1218-1225
    [64]Ouchi, T.; Sasakawa, M.; Arimura, H.; et al. Preparation of poly[DL-lactide-co-glycolide]-based microspheres containing protein by use of amphiphilic diblock copolymers of depsipeptide and lactide having ionic pendant groups as biodegradable surfactants by W/O/W emulsion method. Polymer,2004,45:1583-1589
    [65]Ohya, Y.; Matsunami, H.; Yamabe, E.; et al. Cell attachment and growth on films prepared from poly(depsipeptide-co-lactide) having various functional groups. Inc. J. Biomed. Mater. Res.,2003,65A:79-88
    [66]Ohya, Y.; Toyohara, M.; Sasakawa, M.; et al. Thermosensitive Biodegradable Polydepsipeptide. Macromol. Biosci.,2005,5:273-276
    [67]Nagahama, K.; Imai, Y.; Nakayama, T.; et al. Thermo-sensitive sol-gel transition of poly(depsipeptide-co-lactide)-g-PEG copolymers in aqueous solution. Polymer,2009,50: 3547-3555
    [68]Wang, D. and Feng, X.. Synthesis of Poly(glycolic acid-alt-L-aspartic acid) from a Morpholine-2,5-dione derivative. Macromolecules,1997,30:5688-5692
    [69]Wang, D. and Feng, X.. Copolymerization of s-Caprolactone with (3S)-3-[(Benzyloxy-carbonyl)methyl]morpholine-2,5-dione and the 13C NMR Sequence Analysis of the Copolymer. Macromolecules,1998,31:3824-3831
    [70]Zhang, G.; Wang, D.; Feng, X.. Preliminary Study of Hydrogen Bonding in (3S)-3-[Benzyloxycarbonyl)methyl]-morpholine-2,5-dione and Its Effect on Polymerization. Macromolecules,1998,31:6390-6392
    [71]张慧芳.用于光动力治疗的具有功能侧基双亲性聚合物微纳米系统的研究:[硕士研究生学位论文].北京:中国协和医科大学,2007
    [72]唐志荣,黄虹,饶炬等.吗啉二酮衍生物与丙交酯的共聚.华东理工大学学报,2002,28(6):618-620
    [73]赵燕超,龚飞荣,胡源浚等.吗啉二酮衍生物与L-丙交酯共聚物的体外降解性能.功能高分子学报,2007,19-20(4):431-435
    [74]Zhao, Y.; Hu, Y.; Cheng, S.; et al. Degradation of morpholine-2,5-dione derivative copolymer in vitro. Polym. Bull.,2008,61:35-41
    [75]赵燕超,龚飞荣,葛均波等.大黄素洗脱可降解涂层指甲的制作及其体内外实验研究.华东理工大学学报(自然科学版),2008,34(2):242-246
    [76]赵燕超,刘学波,葛均波等.新型生物可降解心血管涂层支架的制备及其生物相容性的研究.中国生物医学工程学报,2008,27(3):438-442
    [77]Huang, Y. S.and Cui, F. Z.. Preparation of biodegradable poly(lactic acid-co-aspartic acid) by copolymerization processes. Current Applied Physics,2005,5:546-548
    [78]Feng, Y.; Klee, D.; Hocker, H.. Biodegradable copolymers based on poly(ethylene oxide), polylactide and polydepsipeptide sequences with functional groups. e-Polymers,2001, no. 003.
    [79]Feng, Y.; Klee, D.; Hocker, H. Synthesis of Poly[(lactic acid)-alt-or-co-((S)-aspartic acid)] from (3S,6R,S)-3-[(Benzyloxycarbonyl)methyl]-6-methylmorpholine-2,5-dione. Macromol. Chem. Phys.,2002,203:819-824
    [80]Deng, X.; Yao, J.; Yuan, M.; et al. Synthesis of poly[(glycolic acid)-alt-(L-glutamic acid)] and poly{(lactic acid)-co-[(glycolic acid)-alt-(L-glutamic acid)]}. Macromol. Chem. Phys., 2000,201:2371-2376
    [81]Ouchi, T.; Toyohara, M.; Arimura, H.; et al. Preparation of Poly(L-Lactide)-Based Microspheres Having a Cationic or Anionic Surface Using Biodegradable Surfactants. Biomacromolecules,2002,3(5):885-888
    [82]Guan, H.; Xie, Z.; Zhang, P.; et al. Synthesis and Characterization of Biodegradable Amphiphilic Triblock Copolymers Containing L-Glutamic Acid Units. Biomacromolecules, 2005,6:1954-1960
    [83]Xie, Z.; Guan, H.; Chen, X.; et al. A novel polymer-paclitaxel conjugate based on amphiphilic triblock copolymer. J. Contr. Relea.,2007,117:210-216
    [84]吕冬梅,郭颖志.聚[(ε-已内酯)-co-(乙醇酸-alt-L-谷氨酸)]的合成与表征.现代医药卫生,2011,27(2):245-246
    [85]Ouchi, T.; Miyazaki, H.; Arimura, H.; et al. Formation of Polymeric Micelles with Amino Surfaces from Amphiphilic AB-Type Diblock Copolymers Composed of Poly(Glycolic Acid Lysine) Segments and Polylactide Segments. J. Polym. Sci. A:Polym. Chem.,2002,40: 1426-1432
    [86]Franz, N.and Klok, H.. Synthesis of Functional Polydepsipeptides via Direct Ring-Opening Polymerization and Post-Polymerization Modification. Macromol. Chem. Phys.,2010,211: 809-820
    [87]Barrera, D. A.; Zylstra, E.; Lansbury, Jr., P. T.; et al. Synthesis and RGD Peptide Modification of a New Biodegradable Copolymer:Poly(lactic acid-co-lysine). J. Am. Chem. Soc.,1993,115:11010-11011
    [88]Barrera, D. A.; Zylstra, E.; Lansbury, Jr., P. T.; et al. Copolymerization and Degradation of Poly(lactic acid-co-lysine). Macromolecules,1995,28:425-432
    [89]Cook, A. D.; Hrkash, J. S.; Gao, N. N.; et al. Characterization and development of RGD-peptide-modified poly(lactic acid-co-lysine) as an interactive, resorbable biomaterial. J. Biomed. Mater. Res.,1997,35:513-523
    [90]Yu, H.; Guo, X.; Qi, X.; et al. Synthesis and characterization of arginine-glycine-aspartic peptides conjugated poly(lactic acid-co-L-lysine) diblock copolymer. J. Mater. Sci:Mater. Med.,2008,19:1275-1281
    [91]Gu, S.; Wang, Z.; Zhang, C.; et al. Synthesis and evaluation of a biodegradable material with cell recognition motives. Carbohydrate Polymers,2008,74:572-578
    [92]Duan, L. J.; Kim, M. J.; Jung, J. H.; et al. Synthesis of Poly(L, L-lactic acid-co-lysine) and Its Cell Compatibility Evaluation as Coating Material on Metal. Macromolecular Research, 2010,18(8):806-811
    [93]Yonezawa, N.; Toda, F.; Hasegawa, M.. Synthesis of Polydepsipeptides:Ring-opening polymerization of 6-isopropylmorpholine-2,5-dione and 6-isopropyl-4-methylmorpholine-2,5-dione. Makromol. Chem., Rapid Commun.,1985,6:607-611
    [94](a) Smelcerovic, A.; Yancheva, D.; Cherneva, E.; et al. Identification and synthesis of three cyclo didepsipeptides as potential precursors of enniatin B in Fusarium sporotrichiodes. J. Mole. Struc.,2011,985,397-402 (b) Pavlovic, V.; Djordjevic, A.; Cherneva, E.; et al. Stimulatory effect on rat thymocytes proliferation and antimicrobial activity of two 6-(propan-2-yl)-4-methyl-morpholine-2,5-diones. Food Chem. Toxicol.,2012,50:761-766 (c) Yancheva, D.; Daskalova, L.; Cherneva, E.; et al. Synthesis, structure and antimicrobial activity of 6-(propan-2-yl)-3-methyl-morpholine-2,5-dione. J. Mole. Struc.,2012,1016: 147-154 (d) Pavlovic, V.; Cherneva, E.; Yancheva, D.; et al.6-(Propan-2-yl)-3-methyl-morpholine-2,5-dione, a novel cyclodidepsipeptide with modulatory effect on rat thymocytes. Food Chem. Toxicol.,2012,50:3014-3018 (e) Smelcerovic, A.; Rangelov, M.; Smelcerovic, Z.; et al. Two 6-(propan-2-yl)-4-methyl-morpholine-2,5-diones as new non-purine xanthine oxidase inhibitors and anti-inflammatory agents. Food Chem. Toxicol., 2013,55:493-497
    [95]Porzi, G. and Sandri, S.. Enantioselective Synthesis of (R)-and (S)-a-Aminoacids using (6S)-and (6R)-6-Methyl-morpholine-2,5-dione Derivatives. Tetrahedron:Asymmetry,1996,7(1): 189-196
    [96]Arcelli, A.; Balducci, D.; Grandi, A.; et al. Chiral 1,4-Morpholine-2,5-diones. Synthesis and Evaluation as Glucosidase Inhibitors. Monatshefte fur Chemie,2004,135:951-958
    [97]Arcelli, A.; Balducci, D.; Grandi, A.; et al. Chiral 1,4-morpholin-2,5-dione derivatives as a-glucosidase inhibitors:Part 2. Tetrahedron:Asymmetry,2005,16:1495-1501
    [98]Arcelli, A.; Balducci, D.; Neto, S. de F. E.; et al. Synthesis of new chiral 1,4-morpholin-2, 5-dione derivatives and evaluation as a-glucosidase inhibitors:Part 3. Tetrahedron: Asymmetry,2007,18:562-568
    [99]Linden, A.; Pour, F. G.; Breitenmoser, R. A.; et al. (±)-6-Benzyl-3,3-dimethylmorpholine-2,5-dione and its 5-monothio and 2,5-dithio derivatives. Acta Cryst.,2001, C57:634-637
    [100]Mawad, N.; Pour, F. G; Linden, A.; et al. Synthesis and Crystal Structure of 3,3,6,6-Tetramethylmorpholine-2,5-dione and Its 5-Monothioxo and 2,5-Dithioxo Derivatives. Helvetica Chinica Acta,2010,93:2326-2346
    [101]Crane, S. N. and Corey, E. J. A Novel Enantioselective Synthetic Route to Omuralide Analogues with the Potential for Species Selectivity in Proteasome Inhibition. Org. Lett., 2001,3(9):1395-1397
    [102]Hughes, A. B. and Sleebs, M. M.. Total Synthesis of Bassiatin and Its Stereoisomers:Novel Divergent Behavior of Substrates in Mitsunobu Cyclizations. J. Org. Chem.,2005,70: 3079-3088
    [103]Kardassis, G.; Brungs, P.; Nothhelfer, C.; et al. Electrogenerated Chiral Cationic Glycine Equivalents-Part 2:Chiral 3-Methoxy-2,5-Morpholinediones from (S)-a-hydroxy acids and dimethyl aminomalonate. Tetrahedron,1998,54:3479-3488
    [104]Pedras, M. S. C.; Chumala, P. B.; Quail, J. W.. Chemical Mediators:The Remarkable Structure and Host-Selectivity of Depsilairdin, a Sesquiterpenic Depsipeptide Containing a New Amino Acid. Org. Lett.,2004,6(24):4615-4617
    [105]Perez-Faginas, P.; Alkorta, I.; Garcia-Lopez, M. T.; et al. From theoretical calculations to the enantioselective synthesis of a 1,3,4-trisubstituted Gly-derived 2-azetidinone. Tetrahedron Lett.,2008,49:215-218
    [106]Li, F.; Zhang, H.; Jiang, L.; et al. Dynamic NMR study and theoretical calculations on the conformational exchange of valsartan and related compounds. Magn. Reson. Chem.,2007, 45:929-936
    [107]Dinsmore, C. J. and Beshore, D. C. Recent advances in the synthesis of diketopiperazines. Tetrahedron,2002,58:3297-3312
    [108]Lee, B. H.. Solid-Phase Synthesis of Cyclooctadepsipeptide PF1022A Analogs using a Cyclization-cleavage Method with Oxime Resin. Tetrahedron Lett.,1997,38(5):757-760
    [109]Zienty, F. B.; Katlafsky, B.; Pierron, E. D.. The Reaction Product from Aspartic and Maleic Acids in Aqueous Ammoniacal Solution. J. Org. Chem.,1966,31:4240-4244
    [110]Suntornchashwej, S.; Chaichit, N.; Isobe, M.; et al. Hectochlorin and Morpholine derivatives from the Thai See Hare, Bursatella leachii. J. Nat. Prod.,2005,68:951-955
    [111]Molnar, I.; Gibson, D. M.; Krasnoff, S. B.. Secondary metabolites from entomopathogenic hypocrealean fungi. Nat. Prod. Rep.,2010,27:1241-1275
    [112]Sussmuth, R.; Muller, J.; von Dohren, H.; et al. Fungal cyclooligomer depsipeptides:From classical biochemistry to combinatorial biosynthesis. Nat. Prod. Rep.,2011,28:99-124
    [113]胡丰林,李增智.虫草及相关真菌的次生代谢产物及其活性.菌物学报,2007,26(4):607-632
    [114]Chadwich, A. F. and Pascu, E.. The Resolution and Rates of Hydrolysis of d,l-a-Bromo-propionic Acid and its Glycine Derivatives. J. Am. Chem. Soc.,1943,65:392-402
    [115]Cook, A. H. and Cox, S. F..2:5-Diketomorpholines, their synthesis and stability. J. Chem. Soc.,1949,0:2347-2351
    [116]Hartwig, W. and Schollkopf, U.. Asymmetrische Synthesen uber heterocyclische Zwischenstufen, XVI. Enantioselektive Synthese von a-Alkyl-a-phenylglycinen durch Alkylieren von an C-6 chiral substituierten 3,6-Dihydro-3-phenyl-2H-1,4-oxazin-2-onen. Liebigs Ann. Chem.,1982,11:1952-1970
    [117]Nakamura, C. E.; Moran, J. R.; Di Cosimo, R.. Substd.2,5-morpholine-di:one deriv. prepn.-by catalytic vapour phase cyclisation of N-hydroxy:acyl-aminoacid, used as (co)monomer. WO9403441-A.1994
    [118]Shemiakin, M. M.; Ouchinnikov, Y.; Ivanov, V. T.; et al. J. Gen. Chem. USSR (Engl. Transl.),1972,42:2316
    [119]Nissen, D.; Gilon, C.; Goodman, M.. Polydepsipeptides,4 Synthesis of the alternating Polydepsipeptides Poly(Ala-Lac) and Poly(Val-Lac). Makromol. Chem., Suppl.,1975,1: 23-53
    [120]武汉大学、吉林大学等校编.高等学校教材无机化学(第三版):下册.北京:高等教育出版社,1994,1147-1174
    [121]路德诗,张小伟,周添红等.可降解乳酸共聚物.化学进展,2008,20(2/3):339-350
    [122]白峰,李弘.胍在不对称合成中的应用.有机化学,2004,24(12):1532-1541
    [123]李弘,吴军,王晨宏.硅胶支载的仿生物有机胍盐催化剂在有机合成中的应用.高分子通报,2001,4:51-56
    [124]李弘,王晨宏,吴军等.仿生有机胍盐催化剂合成医用生物降解材料的工艺方法.中国发明专利,公开号CN1401633.2003-03-12
    [125]Li, H.; Wang, C.; Yue, J.; et al. Living Ring-Opening Polymerization of Lactides Catalyzed by Guanidium Acetate. J. Polym. Sci. A:Polym. Chem.,2004,42:3775-3781
    [126]Li, H.; Wu, J.; Brunel, S.; et al. Polymerization of Lactides and Lactones by Metal-Free Initiators. Ind. Eng. Chem. Res.,2005,44:8641-8643
    [127]李弘,王晨宏,赵晓娜等.仿生醋酸有机胍催化剂的合成方法.中国发明专利,公开号CN1550494.2004-12-01
    [128]李弘,王晨宏,王玉琴等.醋酸有机胍催化剂合成医用生物降解材料的工艺方法.中国发明专利,公开号CN1560109.2005-01-05
    [129]Wang, G.; Li, H.; Zhao, X.. Ring opening polymerization of L-lactide initiated by creatinine. Biomaterials,2004,25:5797-5801
    [130]李弘,王晨宏,赵晓娜.生物质有机胍化合物催化合成医用生物降解材料的工艺方 法.中国发明专利,公开号CN1556128.2004-12-22
    [131]李弘,张赛晖,焦志峰等.肌酐乳酸胍催化L-丙交酯活性开环聚合反应研究.高分子学报,2008,7:667-672
    [132]Li, H.; Zhang, S.; Jiao, J.; et al. Controlled Synthesis of Polylactides Using Biogenic Creatinine Carboxylate Inatiators. Biomacromolecules,2009,10:1311-1314
    [133]李弘,何培茹,李金玲等.羧酸肌酐胍催化合成聚丙交酯及聚丝氨酸吗啉二酮.中国发明专利,公开号CN1786042.2006-06-14
    [134]李弘,张赛晖,左佳卿.环酯开环聚合催化剂乙醇酸肌酐胍及乳酸肌酐胍的制备.中国发明专利,公开号CN100999499.2007-07-18
    [135]李弘,徐杰,焦洁平等.用于生物降解聚合物合成的催化剂苯甲酸肌酐胍的制备.中国发明专利,授权公告号CN101215263B.2011-05-18
    [136]李弘,焦洁平,徐杰等.环酯开环聚合催化剂磷酸肌酐胍的制备.中国发明专利,公开号CN101215374.2008-07-09
    [137]李弘,焦洁平,孔丽君等.醋酸双环胍合成方法及催化合成聚丙交酯和聚丝氨酸吗啉二酮.中国发明专利,授权公告号CN101318960B.2010.11-03
    [138]Pang, Z.; Li, H.; He, P.; et al. Controllable Ring-Opening Copolymerization of L-Lactide and (3S)-Benzyloxymethyl-(6S)-Methyl-Morpholine-2,5-Dione Initiated by a Biogenic Compound Creatinine Acetate. J. Polym. Sci. A:Polym. Chem.,2012,50(19):4004-4009
    [139]Baran, J.; Duda, A.; Kowalski, A. Intermolecular chain transfer to polymer with chain scission:general treatment and determination of kp/ktr in L, L-lactide polymerization. Macrolmol. Rapid. Commun.1997,18:325-333
    [140]Du, H.; Velders, A. H.; Dijkstra, P. J.; et al. Polymerization of Lactide Using Achiral Bis(pyrrolidene) Schiff Base Aluminum Complexes. Macromolecules,2009,42: 1058-1066.
    [141]Abayasinghe, N. K.; Perera, K. P. U.; Thomas, C.; et al. Amido-modified polylactide for potential tissue engineering applications. J. Biomater. Sci. Polymer Edn.2004,15(5): 595-606
    [142]Bero, M.; Kasperczyk, J.; Jedlinski, Z. J..Coordination polymerization of lactides,1 Structure determination of obtained polymers. Makromol. Chem.,1990,191:2287-2296
    [143]Coudane, J.; Ustariz-Peyret, C.; Schwach, G.; et al. More about the Stereodependence of DD and LL Pair Linkages during the Ring-Opening Polymerization of Racemic Lactide. J. Polym. Sci. A:Polym. Chem.,1997,35:1651-1658
    [144]Bero, M.; Dobrzynski, P.; Kasperczyk, J.. Synthesis of Disyndiotactic Polylactide. J. Polym. Sci. A:Polym. Chem.,1999,37:4038-4042
    [145]Kasperczyk, J. E.. HETCOR NMR study of poly(rac-lactide) and poly(meso-lactide). Polymer,1999,40:5455-5458
    [146]Lin, C.; Kuo, S.; Huang, C.; et al. Glass transition temperature enhancement of PMMA through copolymerization with PMAAM and PTCM mediated by hydrogen bonding. Polymer,2010,51:883-889
    [147]李弘,庞子博,王玉琴.乙醇酸双环胍合成及其催化开环聚合合成可降解聚合物的工艺方法.中国发明专利,公开号CN102757432A.2012-10-31
    [148]李弘,庞子博,王玉琴.乳酸双环胍合成及其催化开环聚合合成可降解聚合物的工艺方法.中国发明专利,公开号CN102757433A.2012-10-31
    [149]李弘,任红霞,庞子博等.一种乳酸-谷氨酸吗啉二酮及其合成工艺方法.中国发明专利,公开号CN102408389A.2012-04-11
    [150]李弘,庞子博,任红霞等.医用生物降解性聚乳酸-谷氨酸的合成工艺.中国发明专利,公开号CN102408553A.2012-04-11,授权公告号:CN102408553B.2013-05-08
    [151]何培茹.新型仿生醋酸肌酐胍催化吗啉二酮活性开环聚合反应研究:[硕士研究生毕业(学位)论文].天津:南开大学,2006
    [152]张来东.羧酸肌酐胍催化丝氨酸吗啉二酮活性开环聚合研究:[硕士研究生毕业(学位)论文].天津:南开大学,2007
    [153]刘莹,阮建明,张海坡等.聚L-乳酸(PLLA)的热稳定性.粉末冶金材料科学与工程,2006,11(6):367-371
    [154]赵衡柱,杨青芳,艾莉等.聚DL-乳酸的合成及其热性能研究.合成化学,2005,13(4):368-371
    [155]全大萍,袁润章,卢泽俭等.高分子量聚DL-丙交酯的合成及热降解.应用化学,2000,17(3):268-271

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700