用户名: 密码: 验证码:
内酯类天然产物及其类似物的合成与生物活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代农业的发展,环保、绿色的农药越来越受到关注。传统农药具有毒性高、难以降解等缺点,而以天然产物为先导化合物开发得到的新型农药具有绿色、环境兼容性好等优点,因此此类新型农药品种的研发具有重要意义。
     本文分为两部分:第一部分,探索了3-溴甲基-5-H-呋喃-2-酮在合成α-亚甲基-γ-丁内酯类化合物中的应用,并且之后将其应用于(+)-8-Epigrosheimin的全合成,;后以香豆素类天然产物为先导化合物,进行结构修饰,寻求开发新的绿色农药。所合成化合物结构都经过’HNMR、13C NMR、HRMS的表征。香豆素类化合物的初步生物活性测试显示,此类化合物有一定除草活性,具有作为先导化合物继续研究的价值,为今后此方向的工作打下了一定基础。具体内容如下:
     第一部分,探索了3-澳甲基-5-H-呋喃-2-酮在金属锌与铟的参与下与醛耦合合成α-亚甲基-γ-丁内酯类化合物的反应。该反应显示了良好的化学选择性,并没有观察到其他副产物,得到共计17个化合物;同时,与锌相比,铟参与的Barbier反应具有更好的立体选择性,并且所用溶剂为水,反应更加绿色,具有很好的实际利用价值。该方法相比于其他合成α-亚甲基-γ-丁内酯结构的方法来说,操作简单,反应条件温和,产率较高,应用范围广,不存在反应条件苛刻以及产率低等缺点,在今后合成α-亚甲基-γ-丁内酯结构化合物时会发挥重要作用;之后将3-溴甲基-5-H-呋喃-2-酮应用于(+)-8-Epigrosheimin的全合成,合成以(L)-香芹酮和3-溴甲基-5-H-呋喃-2-酮为原料,通过Barbier反应、分子内ENE反应为关键步骤,总共11步合成了(+)-8-Epigrosheimin,总产率45%。该化合物的合成验证了3-溴甲基-5-H-呋喃-2-酮在合成α-亚甲基-γ-丁内酯结构时的高效性,内酯结构与亚甲基结构同时构建大大的提高了合成效率;并且之后构建碳环骨架时,由于五元内酯环的刚性最终立体选择性的得到了产物,证明先构筑内酯环、然后构筑七元碳环骨架的合成策略是有效地,而且五元内酯环两个手性碳原子的立体构型可以通过底物手性诱导的方法来控制,其他先合成七元环骨架、后合成内酯的策略则不能很好的控制五元内酯环手性,同时α-亚甲基的构建也要通过多步反应,效率较低。因此该策略也可为今后对该种类化合物的生物活性研究以及构效关系研究提供非常便捷的合成方法。
     第二部分,以天然产物4-羟基香豆素为先导化合物,在3位引入苯甲酰基行进结构修饰,合成了与三酮化合物结构相似的3-苯甲酰基-4-羟基香豆素类化合物,共计48个化合物,随后测试了该类化合物对油菜和稗草的抑制活性。测试结果表明,所有此类化合物都对油菜具有一定活性,可是对于稗草则没有明显活性,说明此类化合物对双子叶植物有抑制作用,而对单子叶植物没有明显抑制作用。此类化合物虽然也具有三酮类化合物的结构,但是从除草结果来看,3-苯甲酰基-4-羟基香豆素类化合物可能具有与三酮类化合物不同的除草作用机制。针对其对油菜的活性,我们将继续研究具有较高活性的该类化合物,希望通过了解其除草作用机制来开发新型的除草剂。
Environment friendly and green pesticides are paid more attention with the development of modern agriculture. Traditional pesticides have played an important role in the past years, but as high toxical compounds that hard to be degraded, they have also produced environment and social problems. Meantime, lead compounds based on natural product can be developed to be green,degradable pesticides, which means the research of this field will be very important.
     In this paper, the application of3-bromomethyl-5-H-furan-2-one in the synthesis of a-methylene-y-butyrolactone was explored as Zinc or Indium-mediated, and (+)-8-Epigrosheimin was total synthesized; then we made the structure modification of4-hydroxycoumarin to develop new green pesticide. There were65compounds synthesized and they were all characterized by1H NMR,13C NMR, HRMS. The preliminary bioassay of coumarin compounds shows that they proceed certain herbicidal bioactivity and can be researched as lead compounds, the work in the future can be continued. The work are as follows:
     We investigated the reactions of3-bromomethyl-5-H-furan-2-one with aldehyde in the presence of metal Zinc and Indium, as that's an efficient route to synthesize a-methylene-y-butyrolactone which is a popular structure in many nature products. The chemoselectivity of reaction is quite well, no byproducts were observed and17compounds were synthesized. Meanwhile, compared to Zinc, the stereoselectivity of reaction that mediated by Indium was better; and water was used as solvent in the reaction, that's more environment-friendly. Compared to the other method for the synthesis of a-methylene-y-butyrolactone, our ideal is more effective because the reaction is easier to operate, the conditions are more mild, yields are higher. There is no doubt that this method will be more and more used in the synthesis of the compounds that obtain the structure of a-methylene-y-butyrolactone.
     Then we synthesized (+)-8-Epigrosheimin from (JL)-Carvone and3-bromomethyl-5-H-furan-2-one after11steps, in which Barbier reaction and intramolecular ENE reaction were the key steps, and final yield reached45%. The synthesis proved that3-bromomethyl-5-H-furan-2-one is a useful compound for the synthesis of a-methylene-y-butyrolactone, formation of methylene and lactone improved the efficiency of synthesis remarkable. When we obtained the seven membered carbon ring, rigidity of lactone lead to enantioselective synthesis of final compound, which proved our strategy that formation of lactone was proceeded before carbon ring was right; during the reaction, two chiral centers in the lactone were precisely obtained because the chiral conduction from the starting compound. Compared to the methods that carbon ring was synthesized first and lactone was obtained later, our strategy got an advantage of chiral contral. The methods that have been reported to format a-methylene need certain steps and efficiency is poor, so our method provided a useful way for the synthesis of Epigrosheimin derivatives, which is good for the study of their bioactivitives and structure-activity relationship.
     At last,3-benzoyl-4-hydroxycoumarin derivatives that have a similar structure with sulcotrione were synthesized from4-hydroxycoumarin which is a lead compound. Herbicidal activities were investigated. The results showed that all compounds were active selectively against brassic campestris, nearly no activities against Echinochloa crusgalli, which means these compounds got the inhibition against dicotyledon but monocotyledon. Obviously, it goes the different way in the field of herbicidal activities, compared the commercial herbicide such as sulcotrione or mesotrione. It is quite necessary for us the find the3-benzoyl-4-hydroxycoumarin derivatives that obtain better Herbicidal activities against brassic campestris, after this we will investigate how these compounds work, so as to explode a new herbicide.
引文
[1]陈万义,薛振祥,王能武主编.新农药研究与开发.北京:化学工业出版社,1997.
    [2]羊晓东,杨丽娟.农药化学的研究现状与展望.云南农业大学学报,2001,16(3),236-238.
    [3]刘建超,贺红武,冯新民.化学农药的发展方向-绿色化学农药.农药,2005,44(1),1-3.
    [4]杨华铮.农药分子设计.北京:科学出版社,2003.
    [5]Huxley-Tencer, A.; Francotte, E.; Bladocha-Moreau, M; Pestic. Sci.,1992,34(1),65-74.
    [6]唐除痴,李煜昶,陈彬等.农药化学.天津:南开大学出版社,1998.
    [7]王一鸣.浅谈植物源农药.山东教育学院学报,2007,(3),116-120.
    [8]何衍彪,詹儒林,赵艳龙.植物源农药的研究和应用.热带农业科学,2004,24(3),48-56.
    [9]袁文金,马德英,郭冬雪等.我国植物源农药研究进展.新疆农业科学,2007,44(6),892-897.
    [10]Kim, H. G.; Lee, S. G.; An, K. H. et al.; Recnet Red Tides in Korean Coastal Waters, Nat. Fish. Res. Dev. Agency, Korea,1997,237-239.
    [11]Yoshinaga, I.; Kawai, T.; Ishida, Y.; Analysis of algicidal ranges of the bacteria killing the marine dinoflagellate Gymnodinium mikimotoi isolated from Tanabe Bay, Wakayama Pref, Fish. Sci.,1997,63,94-98.
    [12]Haffmann, H. M. R.; Rahe, J.; Synthesis and biological activity of a-methylene-y-butyrolactones, Angew. Chem.,1985,24(2),94-110.
    [13]Bohlman, F.; Le, V. N.; Naturally occurring terpenoid derivatives. Part 96:Sesquiterpene lactones and polyines from the genus Arctotis, Phytochemistry,1977,16(4),487-488.
    [14]Macias, F. A.; Galindo, J. C. G.; Dehydrozaluzanin C:a potent plant growth regulator with potential use as a natural herbicide template, Phytochemistry,2000,55(2),165-171.
    [15]Kupchan, S. M.; Eakin, M. A.; Thomus, A. M.; Tumor inhibitors structure cytotoxicity relationships among the sesquiterpene lactones, J. Med. Chem.,1971,14(12),1147-1149.
    [16]Shaikenov, T. E.; Adekenov, S. M.; Williams, R. M. et al; Arglabin-DMA, a plant derived sesquiterpene inhibits farnesyltransferase, Oncol. Rep.,2001,8,173-179.
    [17]Schall, A.; Reiser, O.; Synthesis of biologically active guaianolides with a frans-annulated lactone moiety, Eur. J. Org. Chem.,2008,14,2353-2364.
    [18]Lee, K. H.; Furukawa, H.; Antitumor agents 3, Synthesis and cytotoxic activity of helenelipamine adducts and related derivatives, J. Med. Chem.,1972,15(5),609-612.
    [19]Lee, K. H.; Meek, R.; Piantadsi, C.; Antitumor agents 4, Cytotoxicity and in vivo activity of helenalin esters and related derivatives, J. Med. Chem.,1973,16(3),299.-216.
    [20]Lee, K. H.; Beta unsulstituted cyclopentenone a structure requirement for antimicrobial and cyctotoxic actives, Chem. Pharm. Bull,1974,22(9),2206-2209.
    [21]Douglas, J. A.; Smallfield, B. M.; Burgress, E. J. et al.;Sesquiterpene lactones in arnica montana:a rapid analytical method and the effects of flower maturity and simulated mechanical harvesting on quality and yield. Planta Medica,2004,70(2),166-170.
    [22]Beekman, A. C.; Woerdenbag, H. J.; Uden, W. V. et al.; Structure-cytotoxicity relationships of some helenanolide-type sesquiterpene lactones, J. Nat. Prod.,1997,60(3),252-257.
    [23]Wagner, S., Kratz, F., Merfort, I.; In vitro behaviour of sesquiterpene lactones and sesquiterpene lactone-containing plant preparations in human blood, plasma and human serum albumin solutions, Planta Medica,2004,70(3,),227-233.
    [24]Hall, I. H.; Statnes, C. O.; Lee, K., H. et al.; Mode of action of sesquiterpene lactones as anti-inflammatory agent, J. Pharm. Sci.,1980,69,537-539.
    [25]Pettit, G. R.; Herald, C. L.; Judd, G. F. et al.; Antineoplastic and cytotoxic components of desert baileya, J. Pharm. Sci.,1975,64,2023-2027.
    [26]Kupchan, S. M.; Ashmore, J. W.; Sneden, A. T.; Structure-activity relationshiops aming in vivo active germacranolides, J. Pharm. Sci.,1978,67,685-690.
    [27]Tabopda, T. K.; Liu, J. W.; Ngadjui, B. T.; Luu, B.; Cytotoxic triterpene and sesquiterpene lactones from Elephantopus mollis and induction of apoptosis in neuroblastoma cells, Planta Medica,2007,73(4),376-380.
    [28]Gonzalez, A. G.; Darias, V.; Alonson, G. et al.; Cytostatic activity of sesquiterpene lactones from compositae of the canary is lands, Planta Medica,1978,33,356-359.
    [29]Lee, K. H.; Toshiro, I.; Isolation and structural elucidation of novel germacranolides, J. Pharm. Sci.,1980,69,1050-1060.
    [30]Wong, L. K.; Chen, H. T.; Gi, Z. Z.; US pat 5,250,735, Oct.5, Appl No 847910.
    [31]Woerdenbag, H. J.; Meijer, C.; Mulder, N. H. et al.; Evaluation of the in vitro cytotoxicity of some sesquiterpene lactones on human lung carcinoma cell line using the fast green dye exclusion assay, Planta Medica,1986,52,112-117.
    [32]Grieco, P. A.; Synthesis of mono-and bifunctional a-methylene lactone systems as potential rurmor inhibitors, J. Med. Chem.,1977,20(6),11-11.
    [33]Yang, Q.; Wang, C. M.; Jia, Z. J.; Sesquiterpenes and other constituents from the aerial parts of inula japonica, Planta Medica,2003,69(7),662-666.
    [34]Morales, J. J.; Espina, J. R.; The structure of euniolide, a new cembranoid diterpene from the Caribbean gorgonians eunicea succinea and eunicea mammosa. Tetrahedron,1990,46(17), 5889-5894.
    [35]Rodriguez, A. D.; Pina, I. C.; Acosta, A. L.; Barnes, C. L.; Synthesis of cytotoxic cembranolide analogues via acid-induced opening of oxiranes, Tetrahedron,2001,57(1),93-108.
    [36]龙康侯,傅建龙.中国南海珊瑚化学研究进展.中国海洋药物,1991,10(2),33.
    [37]Yamada, Y.; Suzuki, S.; Iguchi, K. et al.; Studies on marine natural products:two new cembranolids from the soft coral labophyrum paucifiorum(ehrenberg), Chem. Pharm. Bull.,1980, 28,2035-2037.
    [38]Hoffmann, H. M. R.; Rabe, J.; Synthesis and biological activity of α-methylene-γ-butyrolactone, Angew. Chem. Int. Ed. Engl,1985,24,94-110.
    [39]Schal, A.; Reiser, O.; Synthesis of biologically active guaianolides with a trans-annulated lactone moiety, Eur. J. Org. Chem.,2008,14,2353-2364.
    [40]Kato, Y.; Yoshida, H.; Shoji, K.; A facile method for the preparation of α-methylene-γ-butyrolactones from tulip tissues by enzyme-mediated conversion, Tetrahedron Letters,2009, 50(33),4751-4753.
    [41]Hughes, M. A.; McFadden, J. M.; Townsend C. A.; A. new α-methylene-γ-butyrolactones with antimycobacterial properties, Bioorg.& Med. Chem. Lett.,2005,15(17),3857-3859.
    [42]Yu, C. M.; Hong, Y. T.; Lee, J. H.; A convenient synthesis of α-methylene-γ-butyrolactones from allenyl carbonyl units mediated by Mo(CO)s through intramolecular cyclocarbonylation, J. Org. Chem.2004,69(24),8506-8509.
    [43]Sass, D. C.; Oliveira, K. T.; Constantino, M. G.; Constantino, M. G. Synthesis of homoallylic oxygenated α-methylene-γ-butyrolactones:a model for preparing biologically active natural lactones, Tetrahedron Letters,2008,49(39),5770-5772.
    [44]Gowrisankar, S.; Kim, S. J.; Kim, J. N.; Synthesis of β,β-disubstituted-α-methylene-γ-butyrolactones via theregioselective oxidation of exo-methylenetetrahydroftirans, Tetrahedron Letters,2001,48(1),289-292.
    [45]Gowrisankar, S.; Lee, K. Y.; Kim, J. N.; Synthesis of 3,4-disubstituted 2,5-dihydrofurans starting from the Baylis-Hillman adducts via consecutive radical cyclization, halolactonization, and decarboxylation strategy, Tetrahedron Letters,2005,46(7),4859-4863.
    [46]Edwards, M. G.; Martin N. K.; Taylor, R. J. K. et al.; The telescoped intramolecular Michael/olefination (TIMO) approach to α-alkylidene-γ-butyrolactones:synthesis of (+)-Paeonilactone B, Angew. Chem. Int. Ed.,2008,47,1935-1937.
    [47]Connolly, J. D.; Hill, R. A.; DictionaryofTerpenoids. London:Chapman and Hall,1991, 476-541.
    [48]Bohlman, F.; Le, V. N.; Naturally occurring terpenoid derivatives. Part 96:Sesquiterpene lactones and polyines from the genus Arctotis, Phytochemistry,1977,16,487-488.
    [49]Asakawa, Y.; Takemoto, T.; Sesquiterpene lactones of Conocephalum conicum, Phytochemistry, 1979,18,285-288.
    [50]Galindo, J. C. G.; Hernandez, A.; Dayan, F. E. et al.; Dehydrozaluzanin C, a natural sesquiterpenolide, causes rapid plasma membrane leakage, Phytochemistry,1999,52,805-813.
    [51]Kalsi, P. S.; Kaur, G.; Sharma, S. et al.; Dehydrocostuslactone and plant growth activity of derived guaianolides, Phytochemistry,1984,23,2855-2861.
    [52]Macias, F. A.; Galindo, J. C. G.; Molinillo, J. M. G. et al,; Dehydrozaluzanin C:a potent plant growth regulator with potential use as a natural herbicide template, Phytochemistry,2000,54, 165-171.
    [53]Macias, F. A,; Galindo, J. C. G.; Castellano, D, et al,; Sesquiterpene lactones with potential use as natural herbicide models.2. Guaianolides, JAgric Food Chem.,2000,48,5288-5296.
    [54]Macias, F. A.; Velasco, R. F.; Castellano, D. et al.; Application of Hansch's model to guaianolide ester derivatives:A quantitative structure-activity relationship study, J Agric Food Chem.,2005, 55,3530-3539.
    [55]Macias, F. A.; Torres, A.; Molinillo, J. M. G. et al.; Potential allelopathic sesquiterpene lactones from sunflower leaves, Phytochemistry,1996,43(6),1205-1215.
    [56]Lee, S. H.; Kang, H. Mi.; Song, H. C. et al.; Sesquiterpene lactones. inhibitors of farnesyl protein transferase. isolated from the flower of Artemisia sylvatica, Tetrahedron,2000,56(27), 4711-4715.
    [57]Bruno, M; Rosselli, S.; Maggio, A. et al.; Cytotoxic activity of some natural and synthetic guaianolides, J Mat Prod.,2005,68,1042-1046.
    [58]Schall, A.; Reiser, O.; Synthesis of biologically active guaianolides with a trans-annulated lactone moiety, Eur J Org Chem.,2008,2353-2364.
    [59]Liu, H.; Jensen, K. G.; Tran, L. M.et al.; Cytotoxic phenylpropanoids and an additional thapsigargin analogue isolated from Thapsia garganica, Phytochemistry,2006, 67,2651-2658.
    [60]Andrews, S. P.; Ball, M.; Wierschem, F. et al.; Total synthesis of five thapsigargins:Guaianolide natural products exhibiting sub-nanomolar SERCA inhibition, Chem Eur J.,2001,13,5688-5712.
    [61]Matsuda, H.; Kageura, T.; Inoue, Y. et al.; Absolute stereostructures and syntheses of saussureamines At B, C. D and E. amino acid-sesquiterpene conjugates with gastroprotective effect, from the roots of saussurea lappa, Tetrahedron,2000,56,17763-7777.
    [62]Yoshikawa, M.; Shimoda, H.; Uemura, T. et al.; Alcohol absorption inhibitors from bay leaf (Laurus nobilis):structure-requirements of sesquiterpenes for the activity, Bioorganic & Medicinal Chemistry,2000,8,2071-2077.
    [63]Shimoda, H.; Ninomiya, K.; Nishida, N. et al.; Anti-hyperlipidemic sesquiterpenes and new sesquiterpene glycosides from the leaves of artichoke (Cynara scolymus L.)= structure requirement and mode of action, Bioorganic & Medicinal Chemistry Letters,2003,13,223-228
    [64]Wedgea, D. E.; Galindob, J. C. G.; Macias, F. A.; Fungicidal activity of natural and synthetic sesquiterpene lactone analogs, Phytochemistry,2000,53,747-757.
    [65]Ando, M.; Ibayashi, K.; Minami, N. et al.; Studies on the synthesis of sesquiterpene lactones. 16. The syntheses of 11β,13-dihydrokauniolide, estafiatin, isodehydrocostuslactone, 2-oxodesoxyligustrin, arborescin.1,10-epiarborescin,11β,13-dihydroludartin 8-deoxy-11β,13-dihydrorupicolin B,8-deoxyrupicolin B.3,4-epiludartin, ludartin, kauniolide, dehydroleucodin. and leucodin, J Nat Prod.,1994,57(4),433-445.
    [66]Barton, D. H. R.; De, Mayo. P.; Shafiq, M.; Photochemical transformations. Part I. Some preliminary investigations, J Chem Soc,1957,929-935.
    [67]Bargues, V.; Blay, G.; Cardona, L. et al.; Regio-and stereoselective oxyfuhctionalization at C-and C-5 in sesquiterpene guaianolides, Tetrahedron,1998,54,1845-1852
    [68]Bargues, V.; Blay, G.; Cardona, L. et al.; Stereoselective synthesis of (±)-11 pH,13-dihydroestafiatin. (+)-11 βH,13-dihydroludartin, (-)-compressanolide, and (-)-11pH,13-dihydromicheliolide from santonin, J Nat Prod.,2002,65,1703-1706.
    [69]Ando, M.; Yoshimura, H.; Syntheses of four possible diastereoisomers of Bohlmann's structure of isoepoxyestafiatin. The stereochemical assignment of isoepoxyestafiatin, J Org Chem.,1983, 48,1210-1216.
    [70]Devreese, A. A.; Clercq, P. J. D.; Vandewalle, M.; A general entry to guaianolides. An illustrative synthesis of (±)-compressanolide, Tetrahedron Letters,1980,21, 4767-4470.
    [71]Demuynck, M.; Devreese, A, A.; Clercq, P. J. D. et al.; Guaianolides:The total synthesis of (±)-estafiatin, Tetrahedron Letters,1982,23(24),2501-2504.
    [72]Rigby, J. H.; Wilson, J. Z.; Total synthesis of guaianolides:(±)-Dehydrocostus lactone and (±)-estafiatin, J Am Chem Soc,1984,106,8217-8224.
    [73]Rigby, J. H.; Senanayake, C; Total synthesis of (±)-grosshemin, J Am Chem Soc.,1987, 709,3147-3149.
    [74]Lee, E.; Yoon, C. H.; Stereoselective favorskii rearrangement of carvone chlorohydrin: Expedient synthesis of (+)-dihydronepetalactone and (+)-iridoniyrmecin, J Chem Soc, Chem Commun., 1994,479-481.
    [75]Lee, E.; Lim, J. W.; Yoon, C. H. et al.; Total synthesis of (+)-cladantholide and (-)-Estafiatin: 5-exo.7-endo radical cyclization strategy for the construction of guaianolide skeleton, J Am Chem Soc,1997,119,8391-8392.
    [76]Carret, S.; Depres, J. P.; Access to guaianolides:Highly efficient stereocontrolled total synthesis of (±)-geigerin, Angew Chem Int Ed.,2007,46,6870-6874.
    [77]Kalidindi, S.; Reiser, O.; Enantioselective synthesis of Arglabin, Angew. Chem. Int. Ed.,2007,46, 6361-6363
    [78]周荣汉,段金广,植物化学分类学,上海科学技术出版社,上海,2005
    [79]Murray, R. D.; Progress in the chemistry of organic natural products,1991,58,83-343.
    [80]Kochetovl, A. N.; Kuzminal, L. G; Structure and tautomeric transformations of 3-substituted 4-hydroxycoumarins, Pharmaceutical Chemistry Journal,2010,44(2),68-73.
    [81]Mouli, G; Giridhar, T.; Rao, D. M.; Aflatoxin analogues as possible anticoagulants, J. Heterocyclic Chem.,1996,33,5-8.
    [82]Silveira E.; BR8700724,1988
    [83]Manolev, L. I.; Danolev, N. D.; Synthesis and Antibiotic Activity of 1-Cycloalkoxymethyl-4-dimethylaminopyridin ium and 1-A(1-Alkoxy)ethylU-4-dimethyl aminopyridin ium Chlorides, Arch. Pharm.,1995,30(6),531-533
    [84]Mazumder, A.; Wang, S. M.; Neamati, N. et al.; antiretroviral agents as inhibitors of both human immunodeficiency virus type 1 integrase and protease, J. Med. Chem.,1996.39, 2472-2481.
    [85]Bourinbaiar, A. S.; Tan, X,; Nagaruy, R. et al.; AIDS,1993,7(1),129-130
    [86]Tummino, P. J.; Ferguson, D.; Hupe, D. et al.; Differences in humoral responses to the p24 antigen between Ethiopian and Swedish human immunodeficiency virus type 1-infected patients may suggest influences from a T-helper 2-like phenotype, Biochem. Biophys. Res. Commun.,1994, 200^,1658-1664
    [87]Stanchev, S.; Momekov, G; Jensen, F. et al.; Synthesis, computational study and cytotoxic activity of new 4-hydroxycoumarin derivatives, European Journal of Medicinal Chemistry,2008, 43,694-706
    [88]Karen, A.; Zhao, H.; Faulder, A. et al., Coumarin-based inhibitors of human NAD(P)H:quinone oxidoreductase-1. Identification, structure-activity, off-target effects and in vitro human pancreatic cancer toxicity, J. Med. Chem.,2007,50,6316-6325
    [89]Hamdi, N.; Saoud, M.; Romerosa, A. et al.;Synthesis, spectroscopic and antibacterial investigations of new hydroxy ethers and heterocyclic coumarin derivatives, J. Heterocyclic Chem.,2008,45,1835-1842
    [90]Giovanni, A.; Enrico, M.; Nicola, F. et al.; Antimycobacterial coumarins from the Sardinian giant fennel, J. Nat. Prod.,2004,67(12),2108-2110
    [91]Alain K, W.; Guy, A. A.; Auguatin, E. N. et al.;The efficacy of the crude root bark extracts of Erythrina abyssinica on Rifampicin Resistant Mycobacterium tuberculosis, Phytochem.,2000, 53(8,),981-985
    [92]Beriger, E.; Synthesis of 4-hydroxycoumarins, DE2643476,1977.
    [93]Beriger, E.; discloses quatenary aluminum salts of 4-hydroxy-3-(4-trifiuoromethylphenyD-coumarin, EP14372,1980.
    [94]Beriger, E.; Insecticidally active 3-N-(4-trifiuoromethylphenyl)-carbamoyl-4-hydroxy-coumarin, US4078075,1978.
    [95]Oliva, A.; Meepagala, K..; Wedge, D. E.; Antifungal Clerodane Diterpenes from Macaranga monandra (L) Muell. et Arg. (Euphorbiaceae), J. Agric. Food Chem.2003,51,890-896
    [96]Yang, B.; Sutcliffe, J.; Dutton, C. J.; 4-hydroxy coumarin derivatives, US5985912,1999.
    [97]Wingert, H. D.; Sauter, H. D.; Benoit, R. D. et al.; EP567828,1992.
    [98]Cespedes, C. L.; Avila, J.G.; Martinez, A. et al.; Antifungal and antibacterial activities of mexican tarragon (Tagetes lucida), J. Agric. Food Chem.2006,54,3521-3527
    [99]Smyth, T.; Ramachandran, V. N.; Smyth, W. F.; International Journal of Antimicrobial Agents,2009,33,421-424
    [100]Oliva, A.; Meepagala, K. M.; Wedge, D. E. et al.; Natural Fungicides from Ruta graveolens L. Leaves, Including a New Quinolone Alkaloid, J. Agric. Food Chem.2003,51,890-895.
    [101]Tasdemir, D.; Kaiser, M.; Brun, R. et al.; Anucleate Cell Blue Assay:a Useful Tool for Identifying Novel Type II Topoisomerase Inhibitors, Antimicrobial Agents and Chemotherapy, 2006,54,352-355.
    [102]Haig, T. J.; Haig, T. J.; Seal, A. N. et al.; Allelopathic and bioherbicidal potential of Cladonia verticillaris on the germination and growth of Lactuca sativa, J. Chem. Ecoi,2009,55, 1129-1136.
    [103]Kovad, M.; Sabatie, A.; Floch, L.; Synthesis of coumarin sulfonamides and sulfonylurea, ARKIVOC,2001,6,100-108.
    [104]Alvarado, S. L.; Marc, P. A.; Dahlke, B. J. et al; 4-phenoxycoumarins as herbicidal agents, US5681968,1995.
    [105]Liu, B.; Raeth, T.; Beuerle, T. et al.; A novel 4-hydroxycoumarin biosynthetic pathway, Plant Mol. Biol.,2010,72,17-25.
    [106]Desai, N. J.; Sethna, S.; Synthesis of Some 4-Hydroxycoumarin Derivatives, J. Org. Chem. 1957,22,388-291.
    [107]Zhao, P. L.; Wang, L.; Zhu, X. L. et al.; Subnanomolar Inhibitor of Cytochrome bcl Complex Designed by Optimizing Interaction with Conformationally Flexible Residues, J. Am. Chem. Soc.2010,132,185-190.
    [108]王茜,吐松,沙勇,4-羟基香豆素的合成工艺改进,化学试剂,2010,32(10),944-946.
    [109]Buckle, D. R.; Cantello, B. C.; Smith, H. et al; Antiallergic activity of 4-hydroxy-3-nitrocoumarins,J. Med. Chem.,1975,18(4),391-394.
    [110]Shah, V. R.; Bose, J. L.; Shah, R. C.; Rules of the multiplication of bacteria of the entero-typhoid group in synthetic media in deep cultures with aeration. Communication 2. On substances depressing bacterial growth, Synthetic Communications,1960,25,677-678.
    [111]Stahman, M. A.; The synthesis of 4-hydroxycoumarins, J. Am. Chem. Soc,1943,65, 2285-2287.
    [1]Kim, H. G; Lee, S. G; An, K. H.; et al; Bacillamide, a novel algicide from the marine bacterium, Bacillus sp. SY-1, against the harmful dinoflagellate, Cochlodinium polykrikoides, Nat. Fish. Res. Dev. Agency, Korea,1997,237-239.
    [2]Yoshinaga, I.; Kawai, T.; Ishida, Y.; Analysis of algicidal ranges of the bacteria killing the marine dinoflagellate Gymnodinium mikimotoi isolated from Tanabe Bay, Wakayama Pref, Fish. ScL,1997,63,94-98.
    [3]Barbier, P.; C. R. hebd. Seances. Acad.ScL; 1899,128,110-111.
    [4]Grignard, V.; C.R. hebd. Seances. Acad. Sci.; 1900,130,1322-1324.
    [5]Reid, C. S.; Zhang, Y. H.; Li, C. J.; Fluorous tagging:an enabling isolation technique for indium-mediated allylation reactions in water, Org. Biomol. Chem.,2007,5,3589-3591.
    [6]Kong, W. Q.; Fu, C. L.; Ma, S. M.; Indium and zinc-mediated Barbier-type addition reaction of 2,3-allenals with allyl bromide:an efficient synthesis of 1,5,6-alkatrien-4-ols, Org. Biomol. Chem., 2008,6,4587-4592.
    [7]Yadav, J. S.; Reddy, B. V. S.; Reddy, G. S. K. K.; Indium-mediated allylation of gem-diacetates to homoallylic acetates in aqueous media, Tetrahedron Lett.,2000,41,2695-2697.
    [8]Araki, S.; Jin, S. J.; Idou, Y; Butsugan, Y; Allylation of Carbonyl Compounds with Catalytic Amount of Indium, Bull. Chem. Soc. Jpn.,1992,65,1736-1738.
    [9]Kim, E.; Gordon, D. M.; Schmid, W.; Whitesides, G M.; Tin-and indium-mediated allylation in aqueous media:application to unprotected carbohydrates, J. Org.Chem.,1993,58,5500-5507.
    [10]Chan, T. H.; Li, C. J.; Lee, M. C; Wei, Z. Y; Organometallic-type reactions in aqueous media-a new challenge in organic synthesis, Can. J. Chem.,1994,72,1181-1192.
    [11]Chan, T. H.; Lee, M. C.; Indium-Mediated Coupling of.alpha.-(Bromomethyl)acrylic Acid with Carbonyl Compounds in Aqueous Media. Concise Syntheses of (+)-3-Deoxy-D-glycero-D-galacto-nonulosonic Acid and N-Acetylneuraminic Acid, J. Org. Chem., 1995,60, 4228-4232.
    [12]Li, C. J.; Trimethylenemethane dianion equivalent in aqueous medium, Tetrahedron Lett., 1995,36,517-518.
    [13]Chen, D. L.; Li, C. J.; A gem-allyl dianion synthon in water, Tetrahedron Lett.,1996,37, 295-298.
    [14]Marshall, J. A.; Hinkle, K. W.; Synthesis of anti-Homoallylic Alcohols and Monoprotected 1,2-Diols through InC13-Promoted Addition of Allylic Stannanes to Aldehydes, J. Org. Chem., 1995,60,1920-1921.
    [15]Yi, X. H.; Meng, Y; Li, C. J.; Indium mediated reactions in water:Synthesis of (3-hydroxyl esters, Tetrahedron Lett.,1997,38,4731-4734.
    [16]Chan, T. H.; Li, C. J.; A concise chemical synthesis of (+)-3-deoxy-D-glycero-D-galacto-nonulosonic acid (KDN),J. Chem. Soc, Chem. Commun.,1992, 747-748.
    [17]Chan, T. H.; Li, C. J.; Presented at the 203rd National Meetingof the American Chemical Society, San Francisco, CA., April 1992, Abstract ORGN435.
    [18]Dondoni, A.; Merino, P.; Orduna, J.; Stereoselective construction of polyhydroxyalkyl 2-thiazolyl ketones (thiazole ketoses) from d-glyceraldehyde and d-arabinose acetonides by wittig-michael sequence, a route to d-gluco-KDO, Tetrahedron Lett,1991,32,3247-3250.
    [19](a)Gordon, D. M.; Whitesides, G M.; Indium-mediated allylations of unprotected carbohydrates in aqueous media:a short synthesis of sialic acid,J. Org. Chem.,1993,58, 7937-7938. (b)Casiraghi, G; Rassu, G; Tin-and indium-mediated allylation in aqueousmedia:Application to unprotected carbohydrates, Chemtracts:Org. Chem.,1993,6,336-340.
    [20]Gao, J.; Harter, R.; Gordon, D. M.; Whitesides, G M.; Synthesis of KDO Using Indium-Mediated Allylation of 2,3:4,5-Di-O-isopropylidene-D-arabinose in Aqueous Media, J. Org.Chem.,1994,59,3714-3715.
    [21]Prenner, R. H.; Binder, W. H.; Schmid, W.; Indium-assisted allylation in carbohydrate chemistry:A convenient route to D-glycero-D-galacto-and D-glycero-L-galacto-heptose, Leibigs Ann. Chem.,1994,73-78.
    [22]Binder, W. H.; Prenner, R. H.; Schmid, W.; Indium-mediated allylation of aldehydes:A convenient route to 2-deoxy and 2,6-dideoxy carbohydrates, Tetrahedron,1994,50,749-758.
    [23]Gao, J.; Martichonok, V.; Whitesides, G. M.; Synthesis of a Phosphonate Analog of Sialic Acid (Neu5Ac) Using Indium-Mediated Allylation of Unprotected Carbohydrates in Aqueous Media,/Org. Chem.,1996,61,9538-9540.
    [24]Wang, R.; Lim, C. M.; Tan, C. H.; Lim, B. K.; Sim, K. Y.; Loh, T.P.; Ytterbium trifluoromethanesulfonate [Yb(OTf)3] promoted indium mediated allylation reactions of carbonyl compounds in aqueous media, Tetrahedron:Asymmetry,1995,6,1825-2092.
    [25]Li, C. J.; Lu, Y. Q.; Highly efficient carbonyl allylation of 1,3-dicarbonyl compounds in aqueous medium, Tetrahedron Lett.,1995,36,2721-2724.
    [26]Li, C. J.; Lu, Y. Q.; Novel [3+2] annulation via a trimethylenemethane zwitterion equivalent in water, Tetrahedron Lett.,1996,37,471-474.
    [27]Yang, Z. Y; Burton, D. J.; Gem-difluoroallylation of aldehydes and ketones as a convenient route to.alpha.,.alpha.-difluorohbmoallylic alcohols,J.Org. Chem.,1991,56,1037-1041.
    [28](a)Li, C. J.; Chen, D. L.; Lu, Y. Q.; Haberman, J. X.; Mague, J. T.; Novel Carbocyl Enlargement in Aqueous Medium,J.Am. Chem. Soc.,1996,118,4216-4217. (b)Li, C.-J.; Chen, D.-L.; Lu,Y.-Q.; Haberman, J. X.; Mague, J. T.; Metal-mediated two-atom carbocycle enlargement in aqueous medium, Tetrahedron,1998,54,2347-2364.
    [29]Li, C. J.; Chen, D. L.; Eight-Membered Thiocycloether via Indium-Mediated Ring Enlargement, Synlett,1999,735-736.
    [30]Haberman, J. X.; Li, C. J.; Indium and zinc mediated one-atom carbocycle enlargement in water, Tetrahedron Lett.,1997,38,4735-4736.
    [31]Loh, T.-P.; Cao, G-Q.; Pei, J.; Studies towards total synthesis of antillatoxin:Investigation of the indium-mediated allylation reactions of carbonyl compounds with β-bromocrotylbromide in water, Tetrahedron Lett.,1998,39,1453-1456.
    [32]Orjala, J.; Nagle, G. D.; Hsu, L. V.; Gerwick, W. H.; Antillatoxin:An Exceptionally Ichthyotoxic Cyclic Lipopeptide from the Tropical Cyanobacterium Lyngbya majuscule, J. Am. Chem.Soc,1995,117,8281-8282.
    [33](a) Loh, T. P.; Cao, G. Q.; Pei, J.; Studies towards total synthesis of antillatoxin:Synthesis of C1 C11 fragment, Tetrahedron Lett.,1998,39,1457-1460. (b)Loh, T.-P.; Song, H.-Y.; Studies Towards Total Synthesis of Antillatoxin:Indium-mediated Allylation Reaction of Carbonyl Compounds with Secondary Allylic Bromide in Aqueous Media, Synlett,2002,2119-2121.
    [34](a) Loh, T. P.; Li, X. R.; A versatile and practical synthesis of a-trifluoromethylated alcohols from trifluoroacetaldehyde ethyl hemiacetal in water, J. Chem. Soc, Chem. Commun.,1996, 1929-1930. (b)Song, J.; Hua, Z.-H.; Qi, S.; Ji, S.-J.; Loh, T.-P.; Indium trichloride-catalyzed indium-mediated allylation of dihydropyrans and dihydrofurans in water, Synlett,2004,829-830.
    [35]Loh, T. P.; Wang, R. B.; Sim, K. Y.; Reactivity Studies on 2,3,4,5-Tetraethyl-1,6-diiodo-2,3,4,5-tetracarba-nido-hexaborane(6):Synthesis and Structures of New C4B2 nido-Carborane Derivatives, Main Group Met. Chem.,1997,20,237-239.
    [36]Bryan, V. J.; Chan, T. H.; Indium mediated intramolecular carbocyclization in aqueous media. A facile and stereoselective synthesis of fused α-methylene-γ-butyrolactones, Tetrahedron Lett., 1996,37,5341-5342.
    [37]Hao, J.; Aiguade, J.; Forsyth, C. J.; Remarkably chemoselective indium-mediated coupling en route to the C21-C40 acyclic portion of the azaspiracids, Tetrahedron Lett.,2001, 42,821-824.
    [38]Chan, T. H.; Li, C. J.; A concise synthesis of (+)-muscarine, Can. J. Chem.,1992,70, 2726-2729.
    [39]Waldmann, H.; Proline Benzyl Ester as Chiral Auxiliary in Barbier-Type Reactions in Aqueous Solution, Synlett,1990,627-628.
    [40]Isaac, M. B.; Chan, T. H.; Indium mediated coupling of aldehydes with allyl bromides in aqueous media, the issue of regio-and diastereo-selectivity, Tetrahedron Lett.,1995,36, 8957-8960.
    [41](a)Cram, D. J.; Kopecky, K. R.; Studies in Stereochemistry. XXX. Models for Steric Control of Asymmetric Induction, J. Am. Chem. Soc,1959,81,2748-2755. (b)Reetz, M. T; Chelation or Non-Chelation Control in Addition Reactions of Chiral α-and β-Alkoxy Carbonyl Compounds [New Synthetic Methods, Angew. Chem., Int. Ed. Engl.,1984,23, 556-569. (c)Midland, M. M.; Koops, R. W.; The Scope of Lewis. Acid Chelation-Controlled Cycloadditions, J. Org. Chem.,1990,55,5058-5065.
    [42](a)Paquette, L.; Mitzel, T. M; Addition of Allylindium Reagents to Aldehydes Substituted at Ca or C(3 with Heteroatomic Functional Groups. Analysis of the Modulation in Diastereoselectivity Attainable in Aqueous, Organic, and Mixed Solvent Systems, J. Am. Chem. Soc,1996,118,1931-1937. (b)Paquette, L. A.; Lobben, P. C; Evaluation of Chelation Effects Operative during Diastereoselective Addition of the Allylindium Reagent to 2-and 3-Hydroxycyclohexanones in Aqueous, Organic, and Mixed Solvent Systems, J. Org. Chem.,1998,63,5604-5616.
    [43](a)Loh, T.-P.; Li, X.-R.; Tin-and Indium-Mediated Allylation Reactions in Water:Highly Stereoselective Synthesis of β-Trifluoromethylated Homoallylic Alcohols, Eur. J. Org. Chem., 1999,1893-1899. (b)Loh, T.-P.;Li, X.-R.; A simple and practical synthesis of a-trifluoromethylated alcohols in water, Tetrahedron,1999,55,5611-5622.
    [44](a) Alcaide, B.; Almendros, P.; Salgado, N. R.; Stereoselective allylation of 4-oxoazetidine-2-carbaldehydes. Application to the stereocontrolled synthesis of fused tricyclic-lactams via intramolecular Diels-Alder reaction of 2-azetidinone-tethered trienes, J. Org. Chem., 2000,65,3310-3321. (b)Alcaide, B.; Almendros, P.; Aragoncillo, C; RodriguezAcebes, R.; Metalpromotedallylation, propargylation, or allenylation of azetidine-2,3-diones in aqueous and anhydrous media. Application to theasymmetric synthesis of densely functionalized 3-substituted3-hydroxy-beta-lactams, J. Org. Chem.,2001,66,5208-5216.
    [45]Yadav, J. S.; Reddy, B. V. S.; Reddy, G. S.; Kiran, K.; Indium-mediated allylation of gem-diacetates to homoallylic acetates in aqueous media, Tetrahedron Lett.,2000,41,2695-2697.
    [46]Mendez-Andino, J. Paquette, L. A.; Tandem Deployment of Indium-, Ruthenium-, and Lead-Promoted Reactions. Four-Carbon Intercalation between the Carbonyl Groups of Open-Chain and Cyclic a-Diketones, Org. Lett.,2000,2,1263-1265.
    [47]Bernardelli, P.; Moradei, O. M.; Friedrich, D.; Yang, J.; Gallou,F.; Dyck, B. P.; Doskotch, R. W.; Lange, T.; Paquette, L. A.; Total Asymmetric Synthesis of the Putative Structure of the Cytotoxic Diterpenoid (-)-Sclerophytin A and of the Authentic Natural Sclerophytins A and B, J.Am. Chem. Soc.,2001,123,9021-9032.
    [48]Lee, J. E.; Cha, J. H.; Pae, A. N.; Choi, K. I.; Koh, H. Y.; Kim,Y.; Cho, Y. S.; Indium and tin mediated allylation reactions of 3-hydroxycephem in aqueous media, Synth. Commun.,2000,30, 4299-4308.
    [49]Cha, J. H.; Pae, A. N.; Choi, K. I.; Cho, Y. S.; Koh, H. Y; Lee, E.; An efficient approach to (E)-β-methyl Baylis-Hillman adducts via indium-mediated allylation of aldehydes in aqueous media,J. Chem. Soc, Perkin 1,2001,2079-2081.
    [50](a)Canac, Y; Levoirier, E.; Lubineau, A.; New access to C-branched sugars and C-disaccharides under indium promoted Barbier-type allylations in aqueous media, J. Org. Chem., 2001,66,3206-3210. (b)Lubineau, A.; Canac, Y.; Le Goff, N.; Indium-Promoted Barbier-Type Allylations in Aqueous Media:New Access to 2-C-and 4-C-Branched Sugars, Adv. Synth. Catal.,2002,344,319-327.
    [51]Shin, J. A.; Choi, K. I.; Pae, A. N.; Koh, H. Y.; Kang, H.-Y.; Cho.Y. S.; Intramolecular cation exchange in ion pairs. Part Ⅱ. Isomeric radical ion pairs of dithiolactones, J. Chem. Soc, Perkin 1, 2001,946-952.
    [52]Hidestal, O.; Ding, R.; Almesaker, A.; Lindstro'm, U. M.; Indium-mediated allylation reactions of a-chlorocarbonyl compounds and preparation of allylic epoxides, J. Chem.Soc, Perkin Trans.1,2001,946-948.
    [53]Loh, T. P.; Tan, K. T.; Yang, J. Y; Xiang, C. L.; Development of a highly a-regioselective indium-mediated allylation reaction in water, Tetrahedron Lett.,2001,42,8701-8703.
    [54](a)Loh, T. P.; Tan, K. T.; Hu, Q. Y.; A new mechanistic proposal for the origin of a-homoallylic alcohols in indium-mediated allylation reactions in water, Tetrahedron Lett.,2001, 42,8705-8708. (b)Tan, K. T.; Chang, S. S.; Cheng, H. S.; Loh, T. P.; Development of General a-Regioselective Metal-mediated Allylation Reactions in Aqueous Media and a New Mechanistic Proposal for the Origin of-Regioselectivity, J. Am. Chem. Soc,2003,125,2958-2963.
    [55]Cho, Y. S.; Kang, K. H.; Cha, J. H.; Choi, K. I.; Pae, A. N.; Koh.H. Y.; Chang, M. H.; A Facile One-Pot Operations of Reduction and Allylation of Nitrobenzaldehydes Mediated by Indium and Their Applications, Bull. Kor. Chem. Soc,2002,23,1285-1290.
    [56]Alcaide, B.; Almendros, P.; Aragoncillo, C; Rodriguez-Acebes.R.; A New Route to Nl-Substituted Uracil Derivatives Using Hypervalent Iodine, Synthesis,2003,1163-1170.
    [57]Jang, T. S.; Keum, G; Kang, S. B.; Chung, B. Y.; Kim, Y; Palladium-catalyzed allylation of carbonyl compounds with various allylic compounds using In-InC13 in aqueous media, Synthesis, 2003,775-779.
    [58]Huang, J. M.; Xu, K. C; Loh, T. P.; Facile Synthesis and In-Vitro Antimalarial Activity of Novel a-Hydroxy Hydrazonates, Synthesis,2003,755-764. (322) Chung, W. J.; Higashiya, S.; Oba, Y.; Welch, J. T.; Indium-and zinc-mediated allylation of difluoroacetyltrialkylsilanes in aqueous media, Tetrahedron,2003,59,10031-10036.
    [59]Loh, T. P.; Yin, Z.; Song, H. Y.; Tan, K, L.; Indium-mediated allylation of carbonyl compounds with an allylic bromide in aqueous media:anomalous syn-diastereoselectivity regardless of allylic bromide geometry, Tetrahedron Lett.,2003,44,911-914.
    [60]Juan, S.; Hua, Z. H.; Qi, S.; Ji, S. J.; Loh, T. P.; Indium trichloride-catalyzed indium-mediated allylation of dihydropyrans and dihydrofurans in water, Synlett,2004,829-830.
    [61]Dam, J. H.; Fristrup, P.; Madsen, R.; Combined Experimental and Theoretical Mechanistic Investigation of the Barbier Allylation in Aqueous Media, J. Org. Chem.,2008,73,3228-3235.
    [62]Zha, Z. G;Qiao, S.; Jiang, J. Y; Wang, Y. S.; Miao, Q.; Zhiyong Wang, Z. Y.; Barbier-type reaction mediated with tin nano-particles in water, Tetrahedron,2005,61,2521-2527.
    [63]Zhang, J.; Blazecka, P. G; Berven, H.; Belmont, D.; Metal-mediated allylation of mucohalic acids:facile formation of y-allylic a,β-unsaturated y-butyrolactones, Tetrahedron Lett.,2003,44, 5579-5582.
    [64]Nokami, J.; Otera, J.; Sudo, T.; Okawara, R.; Allylation of aldehydes and ketones in the presence of water by allylic bromides, metallic tin, and aluminum, Organometallics.,1983,2, 191-193.
    [65]Nokami, J.; Wakabayashi, S.; Okawara, R.; Intramolecular allylation of carbonyl compounds. A new method for five and six membered ring formation, Chem. Lett.,1984,869-870.
    [66]Zhou, J. Y.; Chen, Z. G; Wu, S. H.; Tin-promoted stereocontrolled intramolecular allylation of carbonyl compounds:a facile and stereoselective method for ring construction, J. Chem. Soc, Chem.Commun.,1994,2783-2784.
    [67]Uneyama, K.; Kamaki, N.; Moriya, A.; Torii, S.; Tin (Ⅱ)-aluminum-promoted allylation of aldehydes with allyl chloride in an aqueous solvent system, J. Org. Chem.,1985,50,5396-5399.
    [68]Wu, S. H.; Huang, B. Z.; Zhu, T. M.; Yiao, D. Z.; Chu, Y. L.; Preparation of Tungsten Carbide and Titania Nanocomposite and Its Electrocatalytic Activity for Methanol, Acta.Chim. Sin.,1990, 48,372-376.
    [69]Uneyama, K.; Matsuda, H.; Torii, S.; Grignard-type allylation of carbonyl compounds in methanol by the electrochemically recycled allyltin reagent, Tetrahedron Lett.,1984, 25,6017-6020.
    [70]Mandai, T.; Nokami, J.; Yano, T.; Facile one-pot synthesis of bromo homoallyl alcohols and 1, 3-keto acetates via allyltin intermediates, J. Org. Chem.,1984,49,172-174.
    [71]Petrier, C; Luche, J. L.; Allylzinc reagents additions in aqueous media, J. Org. Chem.,1985, 50,910-912.
    [72]Einhorn, C; Luche, J. L.; Selective allylation of carbonyl compounds in aqueous media, J. Organomet. Chem.,1987,322,177-183.
    [73](a)Masuyama, Y.; Takahara, T. P.; Kurusu, Y.; Palladium-catalyzed carbonyl allylation by allylic alcohols with SnCl2. A solvation-controlled diastereoselection Tetrahedron Lett.,1989,30, 3437-3440. (b)Masuyama, Y.; Nimura, Y; Kurusu, Y; Palladium-catalyzed carbonyl allylation by 2-(hydroxymethyl) aery late derivatives:synthesis of α-methylene-γ-butyrolactones, Tetrahedron Lett.,1991,32,225-228.
    [74]Sati, M.; Sinou, D.; Catalytic coupling of terminal acetylenes with iodoarenes and diaryliodonium salts in water, Tetrahedron Lett.,1991,32,2025-2028.
    [75]Boaretto, A.; Marton, D.; Tagliavini, G; Gambaro, A.; Allylstannation:VI. Allylation and allenylation of aldehydes and ketones by allyl-and allenyl-tin chlorides in the presence of water, J. Organomet. Chem.,1985,286,9-16.
    [76]Boaretto, A.; Marton, D.; Tagliavini, G; Preparation of α-allenic and β-acetylenic alcohols by treatment of a mixture of Bu, SnCH C CH and RCHO with Bu 2 SnCl 2 and water J. Organomet. Chem.,1985,297,149-153.
    [77]Furlani, D.; Marton, D.; Tagliavini, G; Zordan, M.; Hydrated o-bonded organometallic cations in organic synthesis:I. Allyl-, crotyl-,1-methylallyl-, cyclohex-2-enyl-, and cinnamyl-stannation of carbonyl compounds in water, J. Organomet.Chem.,1988,341,345-356.
    [78]Hachiya, I.; Kobayashi, S.; Aqueous reactions with a Lewis acid and an organometallic reagent. The scandium trifluoromethanesulfonate-catalyzed allylation reaction of carbonyl compounds with tetraallyltin, J. Org. Chem.,1993,58,6958-6960
    [79]Zha, Z.; Wang, Y.; Yang, G; Zhang, L.; Wang, Z.; Efficient Barbier reaction of carbonyl compounds improved by a phase transfer catalyst in water, Green Chem.,2002,4,578-580.
    [80]Wang, Z.; Zha, Z.; Zhou, C; Application of tin and nanometer tin in allylation of carbonyl compounds in tap water, Org. Lett.,2002,4,1683-1685.
    [81]Kumaraswamy, S.; Nagabrahmanandachari, S.; Kumara Swamy.K. C; Addition of azomethine ylides:fulleropyrrolidines, Synth. Commun.,1996,24,729-732.
    [82]Yanagisawa, A.; Morodome, M.; Nakashima, H.; Yamamoto, H.; Allylation of Aldehydes with Allyltin Compounds in Acidic Aqueous Media-A Catalytic Version, Synlett,1997,1309-1311.
    [83]Marshall, R. L.; Muderawan, I. W.; Young, D. J.; The cyclization of peptides and depsipeptides, J. Chem. Soc.Perkin 2,2000,5,957-962.
    [84]Shibata, I.; Yoshimura, N.; Yabu, M.; Baba, A.; Cl-Symmetric Sulfoximines as Ligands in Copper-Catalyzed Asymmetric Mukaiyama-Type Aldol Reactions, Eur. J. Org.Chem.,2001, 3207-3211.
    [85]Manabe, K.; Mori, Y; Wakabayashi, T.; Nagayama, S.; Kobayashi, S.; Asymmetric Mannich-type reactions catalyzed by indium (Ⅲ) complexes in ionic liquids, J. Am. Chem. Soc, 2000,122,7202-7207.
    [86]Nagayama, S.; Kobayashi, S.; Site-isolation effects in a dendritic nickel catalyst for the oligomerization of ethylene, Angew. Chem., Int. Ed.,2000,39,567-569.
    [87]Masuyama, Y; Kishida, M.; Kurusu, Y; Organometallic complexes for nonlinear optics.16. Second and third order optical nonlinearities of octopolar alkynylruthenium complexes, Chem. Commun.,1995,1405-1406.
    [88]Kundu, A.; Prabhakar, S.; Vairamani, M.; Roy, S.; A novel copper (Ⅱ)/tin (Ⅱ) reagent for aqueous carbonyl allylation:in situ diagnostics of reactive organometallics in water, Organometallics,1997,16,4796-4799.
    [89]Okano, T.; Kiji, J.; Doi, T.; Control of asymmetry through conjugate addition reactions, Chem. Lett.,1998,5,425-426.
    [90]Tan, X.-H.; Shen, B.; Deng, W.; Zhao, H.; Liu, L.; Guo, Q. X.; Asymmetric Radical Addition of Ethers to Enantiopure, Org. Lett.,2003,5,1833-1835.
    [91]Carde, L.; Llebaria, A.; Delgado, A.; A solid-phase version of the palladium-catalyzed carbonyl allylation by allylic alcohols with SnCl2, Tetrahedron Lett.,2001,42,3299-3302.
    [92]Samoshin, V. V.; Gremyachinskiy, D. E.; Smith, L. L; Bliznets,I. V.; Gross, P. H.; Practical synthesis of bis-homoallylic alcohols from dialdehydes or their acetals, Tetrahedron Lett.,2002, 43,6329-6330.
    [93]Wang, J.; Yuan, G; Dong, C.-Q.; Mechanistic and stereochemical aspects of the asymmetric cyclocarbonylation of 1,6-enynes with rhodium catalysts, Chem. Lett.,2004,33,286-287.
    [94]Chang, H.-M.; Cheng, C.-H.; Synthesis of the C16-C28 Spiroketal Subunit of Spongistatin 1 (Altohyrtin A):The Pyrone Approach, Org. Lett,2000,2,3439-3442.
    [95]Schmid, W.; Whitesides, G. M.; Carbon-carbon bond formation in aqueous ethanol: diastereoselective transformation of unprotected carbohydrates to higher carbon sugars using allyl bromide and tin metal, J. Am. Chem. Soc,1991,113,6674-6675.
    [96]Ma'rquez, F.; Montoro, R.; Llebaria, A.; Lago, E.; Molins, E.; Delgado, A.; Cross-Coupling of Alkyl Halides with Aryl Grignard Reagents Catalyzed by a Low-Valent Iron Complex, J. Org. Chem.,2002,67,308-311.
    [97]Cho, Y. S.; Lee, J. E.; Pae, A. N.; Choi, K.; Koh, H. Y.; Indium and zinc mediated Barbier type reactions:allylation and propargylation reactions of 6-oxopenicillanate and 7-oxocephalosporanate, Tetrahedron Letters,1999,40,1725-1728.
    [98]Yadav, J. S.; Reddy, B. V. S.; Reddy, P. M.; Srinivas, C; Zinc-mediated Barbier reactions of pyrrole and indoles:a new method for the alkylation of pyrrole and indoles, Tetrahedron Lett., 2002,43,5185-5187.
    [99]Li, C. J.; Chan, T. H.; Organometallic reactions in aqueous media, Organometallics,1991,10, 2548-2549.
    [100]Trost, B. M.; King, S. A.; Charge-transfer structures of aromatic EDA complexes with N-heteroatom-substituted pyridinium cations, J. Am. Chem. Soc,1990,112,408-422.
    [101]Oda, Y; Matsuo, S.; Saito, K.; An efficient synthesis of 3-chlorohomoallyl alcohols. Zinc-promoted 2-chloroallylation of carbonyl compounds with 2,3-dichloropropene in an aqueous solvent system, Tetrahedron Lett.,1992,33,97-100.
    [102]Cripps, H. N.; Kiefer, E. F.; Theoretical and experimental investigation of the electron affinities of allene and propyne, Org. Synth.,1962,42,12-14.
    [103]Durant, A.; Delplancke, J. L.; Winand, R.; Reisse, J.; A new procedure for the production of highly reactive metal powders by pulsed sono-electrochemical reduction, Tetrahedron.Lett.,1995, 36,4257-4260.
    [104]Marton, D.; Stivanello, D.; Tagliavini, G; Stereochemical study of the allylation of aldehydes with allyl halides in cosolvent/water (salt)/Zn and in cosolvent/water (salt)/Zn/haloorganotin media, J. Org. Chem.,1996,61,2731-2737.
    [105]Sjoholm, R.; Rairama, R.; Ahonen, M.; Zinc mediated allylation of aldehydes and ketones with cinnamyl chloride in aqueous medium, Chem. Commun.,1994,1217-1218.
    [106]Ahonen, M.; Sjoholm, R.; Influence of the form of photodeposited platinum on titania upon its photocatalytic activity in CO and acetone oxidation, Chem. Lett,1995,341-344.
    [107]Hanessian, S.; Park, H.; Yang, R. Y; Zinc-Mediated Allylation of N-Protected a-Amino Aldehydes in Aqueous Solution. Stereoselective Synthesis of Phe-Phe Hydroxyethylene Dipeptide Isosteres, Synlett,1997,351-352.
    [108]Zha, Z.; Xie, Z.; Zhou, C.; Chang, M.; Wang, Z.; High regio-and stereoselective Barbier reaction of carbonyl compounds mediated by NaBF4/Zn (Sn) in water,New J. Chem.,2003,27, 1297-1300.
    [109]Archibald, S. C; Hoffmann, R. W.; Porphyrins, phthalocyanines and related systems in polymer phases, Chemtracts-Org. Chem.,1993,6,194-197.
    [110]Marquez, F.; Montoro, R.; Llebaria, A.; Lago, E.; Molins, E.;Delgado, A.; Cross-Coupling of Alkyl Halides with Aryl Grignard Reagents Catalyzed by a Low-Valent Iron Complex, J. Org. Chem.,2002, 67,308-311.
    [111]Thadani, A. N.; Batey, R. A.; A Mild Protocol for Allylation and Highly Diastereoselective Syn or Anti Crotylation of Aldehydes in Biphasic and Aqueous Media Utilizing Potassium Allyl-and Crotyltrifluoroborates, Org. Lett.,2002,4,3827-3830.
    [112]Thadani, A. N.; Batey, R. A.; Diastereoselective allylations and crotylations under phase-transfer conditions using trifluoroborate salts:an application to the total synthesis of (-)-tetrahydrolipstatin, Tetrahedron Lett.,2003,44,8051-8055.
    [113]Ishihara, K.; Hanaki, N.; Funahashi, M.; Miyata, M.; Yamamoto.H.; Tris (pentafluorophenyl) boron as an Efficient, Air Stable, and Water Tolerant Lewis Acid Catalyst. Bull. Chem. Soc. Jpn, 1995,68,1721-1730.
    [114]Wang, M.; Chen, Y. J.; Liu, L.; Wang, D.; Liu, X. L.; Knoevenagel Condensation Catalyzed by 1,1,3,3-Tetramethylguanidium Lactate, J. Chem.Res., Synop.,2000,80-81.
    [115]Aoyama, N.; Hamada, T.; Manabe, K.; Kobayashi, S.; Bismuth triflate catalyzed allylation of aldehydes with allylstannane under microwave assistance, Chem.Commun.,2003,676-677.
    [116]Wang, Z.; Yuan, S.; Li, C.J.; Gallium-mediated allylation of carbonyl compounds in water, Tetrahedron Lett.,2002,43,5097-5099.
    [117]Tsuji, T.; Usugi, S. I.; Yorimitsu, H.; Shinokubo, H.; Matsubara,S.; Oshima, K.; Attaching proteins to carbon nanotubes via diimide-activated amidation,C/iem. Lett.,2002,2-4.
    [118]Li, C. J.; Zhang, W. C.; Peptidotriazoles on solid phase:[1,2,3]-triazoles by regiospecific copper (Ⅰ)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides, J. Am. Chem. Soc., 1998,720,9102-9013.
    [119]Fukuma, T.; Lock, S.; Miyoshi, N.; Wada, M.; Iron-catalysed arylation of heteroaryl halides by Grignard reagents, Chem. Lett.,2002,376-379.
    [120]Khan, R. H.; Prasada Rao, T. S. R.; Highly efficient and mild copper-catalyzed N-and C-arylations with aryl bromides and iodides, J. Chem. Res., Synop.,1998,202-204.
    [121]Akiyama, T.; Iwai, J.; Scandium trifluoromethanesulfonate-catalyzed chemoselective allylation reactions of carbonyl compounds with tetraallylgermane in aqueous media, Tetrahedron Lett.,1997,38,853-856.
    [122]Zhou, J. Y.; Jia, Y.; Sun, G. F.; Wu, S. H.; Barbier-type allylation of aldehydes and ketones with metallic lead in aqueous media, Synth. Commun.,1997,27,1899-1906.
    [123]Kobayashi, S.; Aoyama, N.; Manabe, K.; The catalytic asymmetric Mannich-type reactions in aqueous media, Synlett,2002,483-485.
    [124]Li, C. J.; Meng, Y.; Yi, X. H.; Ma, J.; Chan, T. H.; Highly meso-Diastereoselective Pinacol Coupling of Aromatic Aldehydes Mediated by Al Powder/Copper Sulfate in Water, J. Org. Chem., 1997,62,8632-8633.
    [125]Li, L. H.; Chan, T. H.; Organometallic reactions in aqueous media Antimony-mediated allylation of carbonyl compounds and the nature of allylstibine intermediates, Can. J. Chem.,2001, 79,1536-1540.
    [126]Wada, M.; Ohki, H.; Akiba, K. Y.; A novel one-pot Reformatsky type reaction via bismuth salt in aqueous media, Bull. Chem. Soc. Jpn.,1990,63,1738-1747;
    [127]Wada, M.; Fukuma, T.; Morioka, M.; Takahashi, T.; Miyoshi,N.; N-Fmoc-aminooxy-2-chlorotrityl polystyrene resin:A facile solid-phase methodology for the synthesis of hydroxamic acids,Tetrahedron Lett.,1997,38,8045-8048.
    [128]Smith, K.; Lock, S.; El-Hiti, G. A.; Wada, M.; Miyoshi, N.; A convenient procedure for bismuth-mediated Barbier-type allylation of aldehydes in water containing fluoride ions, Org.Biomol. Chem.,2004,2,935-938.
    [129]Matsumura, N.; Doi, T.; Mishima, K.; Kitagawa, Y.; Okumura,Y; Mizuno, K. Synthesis of multi ring-fused 2-pyridones via an acyl-ketene imine cyclocondensation, ITE Lett. Batter.; New Technol. Med.,2003,4,473-476.
    [130]Miyamoto, H.; Daikawa, N.; Tanaka, K.; Carbon carbon bond formation using bismuth in a water medium,Tetrahedron Lett.,2003,44,6963-6964.
    [131]Katritzky, A. R.; Shobana, N.; Harris, P. A.; Bismuth(Ⅲ) chloride-aluminum-promoted alkylations of immonium cations to amines in aqueous media:unstabilized carbanion equivalents for use in the presence of water, Organometallics,1992,11,1381-1384.
    [132]Minato, M.; Tsuji, J.; An efficient method for the synthesis of trifluoromethyl substituted heterocycles, Chem. Lett.,1988,2049-2052.
    [133]Xu, X.; Zha, Z.; Miao, Q.; Wang, Z.; Allylation of carbonyl compounds mediated by nanometer-sized bismuth in water, Synlett,2004,1171-1174.
    [134]Killinger, T. A.; Boughton, N. A.; Runge, T. A.; Wolinsky, J.; Synthesis and Characterization of the Cycloheptatrienyl Tantalum "Mixed-Sandwich" Compounds (CsR5)Ta(C7H7), J. Organomet. Chem.,1977,124,131-134.
    [135]Pettier, C; Luche, J. L.; Allylzinc reagents additions in aqueous media, J. Org. Chem.,1985, 50,910-912.
    [136]Einhorn, C; Luche, J. L.; Selective allylation of carbonyl compounds in aqueous media, J. Organomet. Chem.,1987,322,177-183.
    [137]Chan, T. H.; Li, C. J.; Organometallic Reactions in Aqueous Medium, Organometallics, 1990,9,2649-2650.
    [138]Araki, S.; Ito, H.; Butsugan, Y.; Triphenylsulfonium Salt Photochemistry-New Evidence for Triplet Excited-state Reactions,J. Org. Chem.,1988,53,1833-1835.
    [139]Li, C. J.; Chan, T. H.; Organometallic reactions in aqueous media with indium, Tedrahedron Lett,1991,32,7017-7020.
    [140]Chan, T. H.; Li, C. J.; Stereoselective synthesis of quaternary carbon atoms, J. Chem. Soc, Chem. Commun.,1992,747-748.
    [141]Habeman, J. X.; Irvin, G. C; John, V. T.; Li, C. J.; Aldehyde allylation. in liquid carbon dioxide, Green. Chem.,1999,265-268.
    [142]Chan, T. H.; Li, C. J.; Lee, M. C; Wei, Z. Y.; Artificially applied vanillic acid changed soil microbial communities in the rhizosphere of cucumber (Cucumis sativus L.), Can. J. Chem.,1994, 72,1181-1192.
    [143]Gynane, M. J. S.; Worrall, I. J.; Boron heterocycles as platforms for bulding new bioactive agents, J. Organomet. Chem.,1974,81,329-332.
    [144]Chan, T. H.; Yang, Y.; Indium-Mediated Organometallic Reactions in Aqueous Media:The Nature of the Allylindium Intermediate, J. Am. Chem. Soc,1999,121,3228-3229.
    [145]Lu, W. S.; Chan, T. H.; Synthesis of 8-epi-castanospermine and 6,7,8-tri-epi-castanospermine,J. Org. Chem.,2000,65,8589-8594.
    [146]Paquette, L. A.; Mitzel, T. M.; Comparative Diastereoselectivity Analysis of Crotylindium and 3-Bromoallylindium Additions to alpha-Oxy Aldehydes in Aqueous and Nonaqueous Solvent Systems, J. Org. Chem.,1996,61,8799-8804.
    [147]Vilaivan, T.; Winotapan, C; Banphavichit, V.; Shinada, T.; Ohfune, Y.; Indium-mediated asymmetric Barbier-type allylation of aldimines in alcoholic solvents:Synthesis of optically active homoallylic amines, J.Org.Chem.,2005,70,3464-3471.
    [148]Kim, S. J.; Jang, D. O.; A carbon-supported copper complex of 3,5-diamino-1,2,4-triazole as a cathode catalyst for alkaline fuel cell applications, J. Am. Chem. Soc,2010,132, 12185-12187.
    [149]Tan, K. L.; Jacobsen, E. N.; A soluble copper-bipyridine water-oxidation electrocatalyst, Angew. Chem. Int. Ed.,2007,46,1315-1517.
    [150]Haddad, T. D.; Hirayama, L. C; Singaram, B.; Indium-Mediated Asymmetric Barbier-Type Allylations:Additions to Aldehydes and Ketones and Mechanistic Investigation of the Organoindium Reagents, J. Org. Chem.2010,75,642-649
    [151]Loh, T.-R; Zhou, I.-R.; Yin, Z.; A Highly Enantioselective Indium-Mediated Allylation Reaction of Aldehydes, Org. Lett.,Vol.1.No.11,1999,1855-1857
    [152]Jacques.A., nadege. L.G, Aurelie. T. W., Indium-catalyzed allylation of carbonyl compounds with the Mn/TMSC1 system, Tetrahedron Lett.,1999,40,9245-9247.
    [153]Barbetti, P.; Casinovi, C. G.; Santurbano, B. et al.; Theoretical studies on the reactions CH3SCH3 with OH, CF3, and CH3 radicals, Coll Czec Chem. Commun.,1979,44,3123-3127.
    [154]Kisiel, W.; Zielinska, K.; Joshib, S. P.; Sesquiterpenoids and phenolics from Crepis mollis, Phytochemistry,2000,54,763-766.
    [155]Calderon, A.; March, P. D.; Arrad,M. E. et al.; Synthesis of 3-(1-hydroxyalkyl)-5 H-furan-2-ones:Study of their reaction with halogens, Tetrahedron,1994,50(14),4201-4214.
    [156]Manchanayakage, R.; Handy, S. T.; Regioselective Barbier reactions of 2-bromomethylcyclohexenone, Tetrahedron Lett.,2007,48,3819-3822.
    [157]Hanessian, S.; Hou, Y.; Bayrakdarian, M. et al.; Syntheses of enantio-enriched chiral building blocks from L-glutamic acid,J. Org. Chem.,2005,70(17),6735-6745.
    [158]Cherest, M.; Felkin, H.; Stereocontrol in the nucleophilic epoxidation of α-(1-hydroxyalkyl)-α, β-unsaturated sulfones, Tetrahedron Lett.,1968,18,2205-2208.
    [159]Grieco, P. A.; Migashita, M.; A novel synthetic approach to the preparation of various a, α-difluoroesters,J. Org. Chem.,1975,40(8),1181-1183.
    [160]Rayner, C. M.; Astles, P. C; Paquette, L. A.; Total synthesis of furanocembranolides.2. Macrocyclization studies culminating in the synthesis of a dihydropseudopterolide and gorgiacerone. Related furanocembranolide interconversions, J. Am. Chem. Soc,1992,114, 3926-3936.
    [161]Price, C; Judge, J. M.; Desiccant efficiency in solvent and reagent drying.5. Amines, Org. Synth.,1973,5,255-258.
    [162]Detty, M. R.; Wood, G P.; Transition-metal-catalyzed reactions of diazo compounds.1. Cyclopropanation of double bonds, J. Org. Chem.,1980,45(1),80-89.
    [163]Villieras, J.; Rambaud, M.; The direct synthesis of 2-oxazolines from carboxylic esters using lanthanide chloride as catalyst, Organic. Syntheses.,1993,8,265-266.
    [164]Kato, T.; Ishimatu, T.; Aikawa, A. et al.; Microbial synthesis of optically pure (R)-2,4, 4-trimethyl-3-(2'-hydroxyethyl)-cyclohex-2-en-l-ol, a new and versatile chiral building block for terpene synthesis, Tetrahedron:Asymmetry,2000,11,851-860.
    [165]Nicolaou, K. C; Renaud, J.; Nantermet, P. G et al.; Synthesis of potent taxoids for tumor-specific delivery using monoclonal antibodies, J. Am. Chem. Soc.,1995,17,2409-2420.
    [166]Garner, P.; Park, J. M.; The synthesis and configurational stability of differentially protected. beta.-hydroxy-. alpha.-amino aldehydes, J. Org. Chem.,1987,52(12),2361-2364.
    [167]Mikami, K.; Asymmetric catalysis of carbonyl-ene reactions and related carbon-carbon bond forming reactions, Pure&Appl. Chem.,1996,68(3),639-644
    [1]Minutolo, F.; Bertini, S.; Granchi, C. et al.; Structural Evolutions of Salicylaldoximes as Selective Agonists for Estrogen Receptor β,J. Med. Chem.,2009,52,858-863.
    [2]Mughal, E. U.; Ayaz, M.; Hussain, Z. et al.; Tricyclic imidazole antagonists of the Neuropeptide S Receptor, Bioorg. Med. Chem.,2006,14,4704-4708.
    [3]Desai, N. J.; Sethna, S.; Synthesis of Some 4-Hydroxycoumarin Derivatives, J. Org. Chem., 1957,22,388-391.
    [4]Zhao, P. L.; Wang, L.; Zhu, X. L. et al., Subnanomolar Inhibitor of Cytochrome bcl Complex Designed by Optimizing Interaction with Conformationally Flexible Residues, J. Am. Chem. Soc,2010,132,185-190.
    [5]Liao, Y. X.; Kuo, P. Y.; Yang, D. Y; Efficient synthesis of trisubstituted [1]benzopyrano[4,3-b]pyrrol-4(1H)-one derivatives from 4-hydroxycoumarin, Tetrahedron. Lett.,2003,44,1599-1603.
    [6]Kuo, P. Y; Chuang, R. R.; Yang, D. Y.; Controlled microwave heating in modern organic synthesis:highlights from the 2004-2008 literature, Mol. Divers.,2009,13,253-257.
    [1]陈万义,薛振祥,王能武主编.新农药研究与开发.北京:化学工业出版社,1997.
    [2]羊晓东,杨丽娟.农药化学的研究现状与展望.云南农业大学学报,2001,16(3),236-238.
    [3]刘建超,贺红武,冯新民.化学农药的发展方向-绿色化学农药.农药,2005,44(1),1-3.
    [4]杨华铮.农药分子设计.北京:科学出版社,2003.
    [5]Huxley-Tencer, A.; Francotte, E.; Bladocha-Moreau, M; Pestic. Sci.,1992,34(1),65-74.
    [6]唐除痴,李煜昶,陈彬等.农药化学.天津:南开大学出版社,1998.
    [7]王一鸣.浅谈植物源农药.山东教育学院学报,2007,(3),116-120.
    [8]何衍彪,詹儒林,赵艳龙.植物源农药的研究和应用.热带农业科学,2004,24(3),48-56.
    [9]袁文金,马德英,郭冬雪等.我国植物源农药研究进展.新疆农业科学,2007,44(6),892-897.
    [10]Kim, H. G.; Lee, S. G.; An, K. H. et al.; Recnet Red Tides in Korean Coastal Waters, Nat. Fish. Res. Dev. Agency, Korea,1997,237-239.
    [11]Yoshinaga, I.; Kawai, T.; Ishida, Y.; Analysis of algicidal ranges of the bacteria killing the marine dinoflagellate Gymnodinium mikimotoi isolated from Tanabe Bay, Wakayama Pref, Fish. Sci.,1997,63,94-98.
    [12]Haffmann, H. M. R.; Rahe, J.; Synthesis and biological activity of a-methylene-y-butyrolactones, Angew. Chem.,1985,24(2),94-110.
    [13]Bohlman, F.; Le, V. N.; Naturally occurring terpenoid derivatives. Part 96:Sesquiterpene lactones and polyines from the genus Arctotis, Phytochemistry,1977,16(4),487-488.
    [14]Macias, F. A.; Galindo, J. C. G.; Dehydrozaluzanin C:a potent plant growth regulator with potential use as a natural herbicide template, Phytochemistry,2000,55(2),165-171.
    [15]Kupchan, S. M.; Eakin, M. A.; Thomus, A. M.; Tumor inhibitors structure cytotoxicity relationships among the sesquiterpene lactones, J. Med. Chem.,1971,14(12),1147-1149.
    [16]Shaikenov, T. E.; Adekenov, S. M; Williams, R. M. et al.; Arglabin-DMA, a plant derived sesquiterpene inhibits farnesyltransferase, Oncol. Rep.,2001,8,173-179.
    [17]Schall, A.; Reiser, O.; Synthesis of biologically active guaianolides with a trans-annnlated lactone moiety, Eur. J. Org. Chem.,2008,14,2353-2364.
    [18]Lee, K. H.; Furukawa, H.; Antitumor agents 3, Synthesis and cytotoxic activity of helenelipamine adducts and related derivatives, J. Med. Chem.,1972,15(5),609-612.
    [19]Lee, K. H.; Meek, R.; Piantadsi, C; Antitumor agents 4, Cytotoxicity and in vivop activity of helenalin esters and related derivatives, J. Med. Chem.,1973,16(3),299-216.
    [20]Lee, K. H.; Beta unsulstituted cyclopentenone a structure requirement for antimicrobial and cyctotoxic actives, Chem. Pharm. Bull,1974,22(9),2206-2209.
    [21]Douglas, J. A.; Smallfield, B. M.; Burgress, E. J. et al.; Sesquiterpene lactones in arnica montana:a rapid analytical method and the effects of flower maturity and simulated mechanical harvesting on quality and yield. Planta Medica,2004,70(2),166-170.
    [22]Beekman, A. C; Woerdenbag, H. J.; Uden, W. V. et al.; Structure-cytotoxicity relationships of some helenanolide-type sesquiterpene lactones,J. Nat. Prod.,1997,60(3),252-257.
    [23]Wagner, S., Kratz, F., Merfort, I.; In vitro behaviour of sesquiterpene lactones and sesquiterpene lactone-containing plant preparations in human blood, plasma and human serum albumin solutions, Planta Medica,2004,70(3),227-233.
    [24]Hall, I. H.; Statnes, C. O.; Lee, K., H. et al.; Mode of action of sesquiterpene lactones as anti-inflammatory agent, J. Pharm. Sci.,1980,69,537-539.
    [25]Pettit, G. R.; Herald, C. L.; Judd, G. F. et al;, Antineoplastic and cytotoxic components of desert baileya,J. Pharm. Sci.,1975,64,2023-2027.
    [26]Kupchan, S. M.; Ashmore, J. W.; Sneden, A. T.; Structure-activity relationshiops aming in vivo active germacranolides, J. Pharm. Sci.,1978,67,685-690.
    [27]Tabopda, T. K.; Liu, J. W.; Ngadjui, B. T.; Luu, B.; Cytotoxic triterpene and sesquiterpene lactones from Elephantopus mollis and induction of apoptosis in neuroblastoma cells, Planta Medica,2007,73(4),376-380.
    [28]Gonzalez, A. G.; Darias, V.; Alonson, G. et al.; Cytostatic activity of sesquiterpene lactones from compositae of the canary is lands, Planta Medica,1978,53,356-359.
    [29]Lee, K. H.; Toshiro, I.; Isolation and structural elucidation of novel germacranolides, J. Pharm. Sci.,1980,69,1050-1060.
    [30]Wong, L. K.; Chen, H. T.; Gi, Z. Z.; US pat 5,250,735, Oct.5, Appl No 847910.
    [31]Woerdenbag, H. J.; Meijer, C; Mulder, N. H. et al.; Evaluation of the in vitro cytotoxicity of some sesquiterpene lactones on human lung carcinoma cell line using the fast green dye exclusion assay, Planta Medica,1986,52,112-117.
    [32]Grieco, P. A.; Synthesis of mono-and bifunctional a-methylene lactone systems as potential turmor inhibitors, J. Med. Chem.,1977,20(6),71-11.
    [33]Yang, Q.; Wang, C. M.; Jia, Z. J.; Sesquiterpenes and other constituents from the aerial parts of inula japonica, Planta Medica,2003,69(7),662-666.
    [34]Morales, J. J.; Espina, J. R.; The structure of euniolide, a new cembranoid diterpene from the Caribbean gorgonians eunicea succinea and eunicea mammosa. Tetrahedron,1990,46(17), 5889-5894.
    [35]Rodriguez, A. D.; Pina, I. C; Acosta, A. L.; Barnes, C. L.; Synthesis of cytotoxic cembranolide analogues via acid-induced opening of oxiranes, Tetrahedron,2001,57(1),93-108.
    [36]龙康侯,傅建龙.中国南海珊瑚化学研究进展.中国海洋药物,1991,10(2),33.
    [37]Yamada, Y.; Suzuki, S.; Iguchi, K. et al.; Studies on marine natural products:two new cembranolids from the soft coral labophyrum pauciflorum(ehrenberg), Chem. Pharm. Bull,1980, 28,2035-2037.
    [38]Hoffmann, H. M. R.; Rabe, J.; Synthesis and biological activity of α-methylene-γ-butyrolactone, Angew. Chem. Int. Ed. Engl.,1985,24,94-110.
    [39]Schal, A.; Reiser, O.; Synthesis of biologically active guaianolides with a trans-annulated lactone moiety, Eur. J. Org. Chem.,2008,14,2353-2364.
    [40]Kato, Y.; Yoshida, H.; Shoji, K.; A facile method for the preparation of α-methylene-γ-butyrolactones from tulip tissues by enzyme-mediated conversion, Tetrahedron Letters,2009, 50(33),4751-4753.
    [41]Hughes, M. A.; McFadden, J. M.; Townsend C. A.; A. new a-methylene-y-butyrolactones with antimycobacterial properties, Bioorg.& Med. Chem. Lett.,2005,15(17),3857-3859.
    [42]Yu, C. M.; Hong, Y. T.; Lee, J. H.; A convenient synthesis of a-methylene-y-butyrolactones from allenyl carbonyl units mediated by Mo(CO)6 through intramolecular cyclocarbonylation, J. Org. Chem.2004,69(24),8506-8509.
    [43]Sass, D. C; Oliveira, K. T.; Constantino, M. G; Constantino, M. G. Synthesis of homoallylic oxygenated α-methylene-γ-butyrolactones:a model for preparing biologically active natural lactones, Tetrahedron Letters,2008,49(39),5770-5772.
    [44]Gowrisankar, S.; Kim, S. J.; Kim, J. N.; Synthesis of (3, β-disubstituted-a-methylene-y-butyrolactones via theregioselective oxidation of exo-methylenetetrahydrofurans, Tetrahedron Letters,2001,48(1),289-292.
    [45]Gowrisankar, S.; Lee, K. Y.; Kim, J. N.; Synthesis of 3,4-disubstituted 2,5-dihydrofurans starting from the Baylis-Hillman adducts via consecutive radical cyclization, halolactonization, and decarboxylation strategy, Tetrahedron Letters,2005,46(7),4859-4863.
    [46]Edwards, M. G; Martin N. K.; Taylor, R. J. K. et al.;The telescoped intramolecular Michael/olefination (T1MO) approach to a-alkylidene-y-butyrolactones:synthesis of (+)-Paeonilactone B,Angew. Chem. Int. Ed.,2008,47,1935-1937.
    [47]Connolly, J. D.; Hill, R. A.; DictionaryofTerpenoids. London:Chapman and Hall,1991, 476-541.
    [48]Bohlman, F.; Le, V. N.; Naturally occurring terpenoid derivatives. Part 96:Sesquiterpene lactones and polyines from the genus Arctotis, Phytochemistiy,1977,16,487-488.
    [49]Asakawa, Y.; Takemoto, T.; Sesquiterpene lactones of Conocephalum conicum, Phytochemistiy, 1979,18,285-288.
    [50]Galindo, J. C. G.; Hernandez, A.; Dayan, F. E. et al.; Dehydrozaluzanin C, a natural sesquiterpenolide, causes rapid plasma membrane leakage, Phytochemistiy,1999, 52,805-813.
    [51]Kalsi, P. S.; Kaur, G.; Sharma, S. et al.; Dehydrocostuslactone and plant growth activity of derived guaianolides, Phytochemistiy,1984,23,2855-2861.
    [52]Macias, F. A.; Galindo, J. C. G.; Molinillo, J. M. G. et al,; Dehydrozaluzanin C:a potent plant growth regulator with potential use as a natural herbicide template, Phytochemistiy,2000,54, 165-171.
    [53]Macias, F. A,; Galindo, J. C. G.; Castellano, D, et al,; Sesquiterpene lactones with potential use as natural herbicide models.2. Guaianolides, JAgric Food Chem.,2000,48,5288-5296.
    [54]Macias, F. A.; Velasco, R. F.; Castellano, D. et al.; Application of Hansch's model to guaianolide ester derivatives:A quantitative structure-activity relationship study, J Agric Food Chem.,2005, 53,3530-3539.
    [55]Macias, F. A.; Torres, A.; Molinillo, J. M. G. et al.; Potential allelopathic sesquiterpene lactones from sunflower leaves, Phytochemistry,1996,43(6),1205-1215.
    [56]Lee, S. H.; Kang, H. Mi.; Song, H. C. et al.; Sesquiterpene lactones. inhibitors of farnesyl protein transferase. isolated from the flower of Artemisia sylvatica, Tetrahedron,2000,56(27), 4711-4715.
    [57]Bruno, M.; Rosselli, S.; Maggio, A. et al.; Cytotoxic activity of some natural and synthetic guaianolides, J Nat Prod.,2005,68,1042-1046.
    [58]Schall, A.; Reiser, O.; Synthesis of biologically active guaianolides with a trans-annulated lactone moiety, Eur J Org Chem.,2008,2353-2364.
    [59]Liu, H.; Jensen, K. G.; Tran, L. M.et al.; Cytotoxic phenylpropanoids and an additional thapsigargin analogue isolated from Thapsia garganica, Phytochemistry,2006, 67,2651-2658.
    [60]Andrews, S. P.; Ball, M.; Wierschem, F. et al.; Total synthesis of five thapsigargins:Guaianolide natural products exhibiting sub-nanomolar SERCA inhibition, Chem Eur J.,2007,13,5688-5712.
    [61]Matsuda, H.; Kageura, T.; Inoue, Y. et al.; Absolute stereostructures and syntheses of saussureamines A. B, C. D and E, amino acid-sesquiterpene conjugates with gastroprotective effect, from the roots of saussurea lappa, Tetrahedron,2000,56, 7763-7777.
    [62]Yoshikawa, M.; Shimoda, H.; Uemura, T. et al.; Alcohol absorption inhibitors from bay leaf (Laurus nobilis):structure-requirements of sesquiterpenes for the activity, Bioorganic& Medicinal Chemistry,2000,8,2071-2077.
    [63]Shimoda, H.; Ninomiya, K.; Nishida, N. et al.; Anti-hyperlipidemic sesquiterpenes and new sesquiterpene glycosides from the leaves of artichoke (Cynara scolymus L.):structure requirement and mode of action, Bioorganic & Medicinal Chemistry Letters,2003,13,223-228
    [64]Wedgea, D. E.; Galindob, J. C. G.; Macias, F. A.; Fungicidal activity of natural and synthetic sesquiterpene lactone analogs, Phytochemistry,2000,53,747-757.
    [65]Ando, M.; Ibayashi, K.; Minami, N. et al.; Studies on the synthesis of sesquiterpene lactones. 16. The syntheses of 11β,13-dihydrokauniolide. estafiatin. isodehydrocostuslactone. 2-oxodesoxyligustrin, arborescin.1,10-epiarborescin.11β,13-dihydroludartin 8-deoxy-11β,13-dihydrorupicolin B,8-deoxyrupicolin B,3,4-epiludartin, ludartin, kauniolide, dehydroleucodin, and leucodin, J Nat Prod.,1994,57(4),433-445.
    [66]Barton, D. H. R.; De, Mayo. P.; Shafiq, M.; Photochemical transformations. Part I. Some preliminary investigations, J Chem Soc,1957,929-935.
    [67]Bargues, V.; Blay, G.; Cardona, L. et al.; Regio-and stereoselective oxyfunctionalization at C-l and C-5 in sesquiterpene guaianolides, Tetrahedron,1998,54,1845-1852
    [68]Bargues, V.; Blay, G.; Cardona, L. et al.; Stereoselective synthesis of (±)-11βH,13-dihydroestafiatin, (+)-11βH,13-dihydroludartin, (-)-compressanolide. and (-)-11βH,13-dihydromicheliolide from santonin, JNat Prod.,2002,65,1703-1706.
    [69]Ando, M.; Yoshimura, H.; Syntheses of four possible diastereoisomers of Bohlmann's structure of isoepoxyestafiatin. The stereochemical assignment of isoepoxyestafiatin, J Org Chem.,1983, 48,1210-1216.
    [70]Devreese, A. A.; Clercq, P. J. D.; Vandewalle, M.; A general entry to guaianolides. An illustrative synthesis of (±)-compressanolide, Tetrahedron Letters,1980,21,4767-47700.
    [71]Demuynck, M; Devreese, A, A.; Clercq, P. J. D. et al; Guaianolides:The total synthesis of (±)-estafiatin, Tetrahedron Letters,1982,23(24),2501-2504.
    [72]Rigby, J. H.; Wilson, J. Z.; Total synthesis of guaianolides:(±)-Dehydrocostus lactone and (±)-estafiatin, J Am Chem Soc.,1984,106,8217-8224.
    [73]Rigby, J. H.; Senanayake, C.; Total synthesis of (±)-grosshemin, J Am Chem Soc.,1987, 709,3147-3149.
    [74]Lee, E.; Yoon, C. H.; Stereoselective favorskii rearrangement of carvone chlorohydrin: Expedient synthesis of (+)-dihydronepetalactone and (+)-iridomyrmecin, J Chem Soc., Chem Commun., 1994,479-481.
    [75]Lee, E.; Lim, J. W.; Yoon, C. H. et al; Total synthesis of (+)-cladantholide and (-)-Estafiatin: 5-exor 7-endo radical cyclization strategy for the construction of guaianolide skeleton, J Am Chem Soc.,1997,119,8391-8392.
    [76]Carret, S.; Depres, J. P.; Access to guaianolides:Highly efficient stereocontrolled total synthesis of (±)-geigerin, Angew Chem Int Ed.,2007,46,6870-6874.
    [77]Kalidindi, S.; Reiser, O.; Enantioselective synthesis of Arglabin, Angew. Chem. Int. Ed.,2007,46, 6361-6363
    [78]周荣汉,段金广,植物化学分类学,上海科学技术出版社,上海,2005
    [79]Murray, R. D.; Progress in the chemistry of organic natural products,1991,58,83-343.
    [80]Kochetovl, A. N.; Kuzminal, L. G.; Structure and tautomeric transformations of 3-substituted 4-hydroxycoumarins, Pharmaceutical Chemistry Journal,2010,44(2),68-73.
    [81]Mouli, G.; Giridhar, T.; Rao, D. M.; Aflatoxin analogues as possible anticoagulants, J. Heterocyclic Chem.,1996,33,5-8.
    [82]Silveira E.; BR8700724,1988
    [83]Manolev, L. I.; Danolev, N. D.; Synthesis and Antibiotic Activity of 1-Cycloalkoxymethyl-4-dimethylaminopyridin ium and 1-A(1-Alkoxy)ethylU-4-dimethyl aminopyridin ium Chlorides, Arch. Pharm.,1995,30(6),531-533
    [84]Mazumder, A.; Wang, S. M.; Neamati, N. et al.; antiretroviral agents as inhibitors of both human immunodeficiency virus type 1 integrase and protease, J. Med. Chem.,1996.39, 2472-2481.
    [85]Bourinbaiar, A. S.; Tan, X.; Nagaruy, R. et al; AIDS,1993,7(1),129-130
    [86]Tummino, P. J.; Ferguson, D.; Hupe, D. et al; Differences in humoral responses to the p24 antigen between Ethiopian and Swedish human immunodeficiency virus type 1-infected patients may suggest influences from a T-helper 2-like phenotype, Biochem. Biophys. Res. Commun.,1994, 200(3),1658-1664
    [87]Stanchev, S.; Momekov, G.; Jensen, F. et al.; Synthesis, computational study and cytotoxic activity of new 4-hydroxycoumarin derivatives, European Journal of Medicinal Chemistry,2008, 43,694-706
    [88]Karen, A.; Zhao, H.; Faulder, A. et al.; Coumarin-based inhibitors of human NAD(P)H:quinone oxidoreductase-1. Identification, structure-activity, off-target effects and in vitro human pancreatic cancer toxicity, J. Med. Chem.,2007,50,6316-6325
    [89]Hamdi, N.; Saoud, M; Romerosa, A. et al.; Synthesis, spectroscopic and antibacterial investigations of new hydroxy ethers and heterocyclic coumarin derivatives, J. Heterocyclic Chem.,2008,45,1835-1842
    [90]Giovanni, A.; Enrico, M.; Nicola, F. et al.;Antimycobacterial coumarins from the sardinian giant fennel, J. Nat. Prod.,2004,67(12),2108-2110
    [91]Alain K, W.; Guy, A. A.; Auguatin, E. N. et al.; The efficacy of the crude root bark extracts of Erythrina abyssinica on Rifampicin Resistant Mycobacterium tuberculosis, Phytochem.,2000, 53(8),981-985
    [92]Beriger, E.; Synthesis of 4-hydroxycoumarins, DE2643476,1977.
    [93]Beriger, E.; discloses quatenary aluminum salts of 4-hydroxy-3-(4-trifluoromethylphenyD-coumarin, EP14372,1980.
    [94]Beriger, E.; Insecticidally active 3-N-(4-trifluoromethylphenyl)-carbamoyl-4-hydroxy-coumarin, US4078075,1978.
    [95]Oliva, A.; Meepagala, K.; Wedge, D. E.; Antifungal Clerodane Diterpenes from Macaranga monandra (L) Muell. et Arg. (Euphorbiaceae), J. Agric. Food Chem.2003,51.890-896
    [96]Yang, B.; Sutcliffe, J.; Dutton, C. J.; 4-hydroxy coumarin derivatives, US5985912,1999.
    [97]Wingert, H. D.; Sauter, H. D.; Benoit, R. D. et al; EP567828,1992.
    [98]Cespedes, C. L.; Avila, J.G.; Martinez, A. et al.; Antifungal and antibacterial activities of mexican tarragon (Tagetes lucida), J. Agric. Food Chem.2006,54,3521-3527
    [99]Smyth, T.; Ramachandran, V. N.; Smyth, W. F.; International Journal of Antimicrobial Agents,2009,33,421-424
    [100]Oliva, A.; Meepagala, K. M.; Wedge, D. E. et al.; Natural Fungicides from Ruta graveolens L. Leaves, Including a New Quinolone Alkaloid, J. Agric. Food Chem.2003,51,890-895.
    [101]Tasdemir, D.; Kaiser, M.; Brun, R. et al.; Anucleate Cell Blue Assay:a Useful Tool for Identifying Novel Type Ⅱ Topoisomerase Inhibitors, Antimicrobial Agents and Chemotherapy, 2006,54,352-355.
    [102]Haig, T. J.; Haig, T. J.; "Seal, A. N. et al.; Allelopathic and bioherbicidal potential of Cladonia verticillaris on the germination and growth of Lactuca sativa, J. Chem. Ecoi,2009,35, 1129-1136.
    [103]Kovad, M.; Sabatie, A.; Floch, L.; Synthesis of coumarin sulfonamides and sulfonylurea, ARK1VOC,2001,6,100-108.
    [104]Alvarado, S. L.; Marc, P. A.; Dahlke, B. J. et al; 4-phenoxycoumarins as herbicidal agents, US5681968,1995.
    [105]Liu, B.; Raeth, T.; Beuerle, T. et al.; A novel 4-hydroxycoumarin biosynthetic pathway, Plant Mol. Biol,2010,72,17-25.
    [106]Desai, N. J.; Sethna, S.; Synthesis of Some 4-Hydroxycoumarin Derivatives,J. Org. Chem. 1957,22,388-291.
    [107]Zhao, P. L.; Wang, L.; Zhu, X. L. et al.; Subnanomolar Inhibitor of Cytochrome bcl Complex Designed by Optimizing Interaction with Conformationally Flexible Residues, J. Am. Chem. Soc.2010,132,185-190.
    [108]王茜,吐松,沙勇,4-羟基香豆素的合成工艺改进,化学试剂,2010,32(10),944-946.
    [109]Buckle, D. R.; Cantello, B. C; Smith, H. et al.; Antiallergic activity of 4-hydroxy-3-nitrocoumarins, J. Med. Chem.,1975,18(4),391-394.
    [110]Shah, V. R.; Bose, J. L.; Shah, R. C; Rules of the multiplication of bacteria of the entero-typhoid group in synthetic media in deep cultures with aeration. Communication 2. On substances depressing bacterial growth, Synthetic Communications,1960,25,677-678.
    [111]Stahman, M. A.; The synthesis of 4-hydroxycoumarins, J. Am. Chem. Soc,1943,65, 2285-2287.
    [112]Kim, H. G; Lee, S. G; An, K. H.; et al; Bacillamide, a novel algicide from the marine bacterium, Bacillus sp. SY-1, against the harmful dinoflagellate, Cochlodinium polykrikoides, Nat. Fish. Res. Dev. Agency, Korea,1997,237-239.
    [113]Yoshinaga, I.; Kawai, T.; Ishida, Y; Analysis of algicidal ranges of the bacteria killing the marine dinoflagellate Gymnodinium mikimotoi isolated from Tanabe Bay, Wakayama Pref, Fish. Sci.,1997,63,94-98.
    [114]Barbier, P.; C. R. hebd. Seances. Acad.Sci.; 1899,128,110-111.
    [115]Grignard, V.; C. R. hebd. Seances. Acad. Sci.; 1900,130,1322-1324.
    [116]Reid, C. S.; Zhang, Y. H.; Li, C. J.; Fluorous tagging:an enabling isolation technique for indium-mediated allylation reactions in water, Org. Biomol. Chem.,2007,5,3589-3591.
    [117]Kong, W. Q.; Fu, C. L.; Ma, S. M.; Indium and zinc-mediated Barbier-type addition reaction of 2,3-allenals with allyl bromide:an efficient synthesis of 1,5,6-alkatrien-4-ols, Org. Biomol. Chem.,2008,6,4587-4592.
    [118]Yadav, J. S.; Reddy, B. V. S.; Reddy, G S. K. K.; Indium-mediated allylation of gem-diacetates to homoallylic acetates in aqueous media, Tetrahedron Lett.,2000,41,2695-2697.
    [119]Araki, S.; Jin, S. J.; Idou, Y; Butsugan, Y; Allylation of Carbonyl Compounds with Catalytic Amount of Indium, Bull. Chem. Soc. Jpn.,1992,65,1736-1738.
    [120]Kim, E.; Gordon, D. M.; Schmid, W.; Whitesides, G M.; Tin-and indium-mediated allylation in aqueous media:application to unprotected carbohydrates, J. Org.Chem.,1993,58, 5500-5507.
    [121]Chan, T. H.; Li, C. J.; Lee, M. C; Wei, Z. Y; Organometallic-type reactions in aqueous media-a new challenge in organic synthesis, Can.J. Chem.,1994,72,1181-1192.
    [122]Chan, T. H.; Lee, M. C; Indium-Mediated Coupling of.alpha.-(Bromomethyl)acrylic Acid with Carbonyl Compounds in Aqueous Media. Concise Syntheses of (+)-3-Deoxy-D-glycero-D-galacto-nonulosonic Acid and N-Acetylneuraminic Acid, J. Org. Chem., 1995,60,4228-4232.
    [123]Li, C. J.; Trimethylenemethane dianion equivalent in aqueous medium, Tetrahedron Lett., 1995,36,517-518.
    [124]Chen, D. L.; Li, C. J.; A gem-allyl dianion synthon in water, Tetrahedron Lett.,1996,37, 295-298.
    [125]Marshall, J. A.; Hinkle, K. W.; Synthesis of anti-Homoallylic Alcohols and Monoprotected 1,2-Diols through InCl3-Promoted Addition of Allylic Stannanes to Aldehydes, J. Org. Chem., 1995,60,1920-1921.
    [126]Yi, X. H.; Meng, Y.; Li, C. J.; Indium mediated reactions in water:Synthesis of β-hydroxyl esters, Tetrahedron Lett.,1997,38,4731-4734.
    [127]Chan, T. H.; Li, C. J.; A concise chemical synthesis of (+)-3-deoxy-D-glycero-D-galacto-nonulosonic acid (KDN), J. Chem. Soc., Chem. Commun.,1992, 747-748.
    [128]Chan, T. H.; Li, C. J.; Presented at the 203rd National Meetingof the American Chemical Society, San Francisco, CA., April 1992, Abstract ORGN435.
    [129]Dondoni, A.; Merino, P.; Orduna, J.; Stereoselective construction of polyhydroxyalkyl 2-thiazolyl ketones (thiazole ketoses) from d-glyceraldehyde and d-arabinose acetonides by wittig-michael sequence, a route to d-gluco-KDO, Tetrahedron Lett.,1991,32,3247-3250.
    [130](a)Gordon, D. M.; Whitesides, G. M.; Indium-mediated allylations of unprotected carbohydrates in aqueous media:a short synthesis of sialic acid, J. Org. Chem.,1993,58, 7937-7938. (b)Casiraghi, G.; Rassu, G.; Tin-and indium-mediated allylation in aqueousmedia:Application to unprotected carbohydrates, Chemtracts:Org. Chem.,1993,6,336-340.
    [131]Gao, J.; Harter, R.; Gordon, D. M.; Whitesides, G. M.; Synthesis of KDO Using Indium-Mediated Allylation of 2,3:4,5-Di-O-isopropylidene-D-arabinose in Aqueous Media, J. Org.Chem.,1994,59,3714-3715.
    [132]Prenner, R. H.; Binder, W. H.; Schmid, W.; Indium-assisted allylation in carbohydrate chemistry:A convenient route to D-glycero-D-galacto-and D-glycero-L-galacto-heptose, Leibigs Ann. Chem.,1994,73-78.
    [133]Binder, W. H.; Prenner, R. H.; Schmid, W.; Indium-mediated allylation of aldehydes:A convenient route to 2-deoxy and 2,6-dideoxy carbohydrates, Tetrahedron,1994,50,749-758.
    [134]Gao, J.; Martichonok, V.; Whitesides, G. M.; Synthesis of a Phosphonate Analog of Sialic Acid (Neu5Ac) Using Indium-Mediated Allylation of Unprotected Carbohydrates in Aqueous Media, J. Org. Chem.,1996,61,9538-9540.
    [135]Wang, R.; Lim, C. M.; Tan, C. H.; Lim, B. K.; Sim, K. Y.; Loh, T.P.; Ytterbium trifluoromethanesulfonate [Yb(OTf)3] promoted indium mediated allylation reactions of carbonyl compounds in aqueous media, Tetrahedron:Asymmetry,1995,6,1825-2092.
    [136]Li, C. J.; Lu, Y. Q.; Highly efficient carbonyl allylation of 1,3-dicarbonyl compounds in aqueous medium, Tetrahedron Lett.,1995,36,2721-2724.
    [137]Li, C. J.; Lu, Y. Q.; Novel [3+2] annulation via a trimethylenemethane zwitterion equivalent in water, Tetrahedron Lett.,1996,37,471-474.
    [138]Yang, Z. Y.; Burton, D. J.; Gem-difluoroallylation of aldehydes and ketones as a convenient route to.alpha.,.alpha.-difluorohomoallylic alcohols, J. Org. Chem.,1991,56,1037-1041.
    [139](a)Li, C. J.; Chen, D. L.; Lu, Y. Q.; Haberman, J. X.; Mague, J. T.; Novel Carbocyl Enlargement in Aqueous Medium, J. Am. Chem. Soc,1996,118,4216-4217. (b)Li, C.-J.; Chen, D.-L.; Lu,Y-Q.; Haberman, J. X.; Mague, J. T.; Metal-mediated two-atom carbocycle enlargement in aqueous medium, Tetrahedron,1998,54,2347-2364.
    [140]Li, C. J.; Chen, D. L.; Eight-Membered Thiocycloether via Indium-Mediated Ring Enlargement, Synlett,1999,735-736.
    [141]Haberman, J. X.; Li, C. J.; Indium and zinc mediated one-atom carbocycle enlargement in water, Tetrahedron Lett.,1997,38,4735-4736.
    [142]Loh, T.-P.; Cao, G.-Q.; Pei, J.; Studies towards total synthesis of antillatoxin:Investigation of the indium-mediated allylation reactions of carbonyl compounds with β-bromocrotylbromide in water, Tetrahedron Lett.,1998,39,1453-1456.
    [143]Orjala, J.; Nagle, G. D.; Hsu, L. V.; Gerwick, W. H.; Antillatoxin:An Exceptionally Ichthyotoxic Cyclic Lipopeptide from the Tropical Cyanobacterium Lyngbya majuscule, J. Am. Chem.Soc.,1995,117,8281-8282.
    [144](a) Loh, T. P.; Cao, G. Q.; Pei, J.; Studies towards total synthesis of antillatoxin:Synthesis of Cl Cl 1 fragment, Tetrahedron Lett.,1998,39,1457-1460. (b)Loh, T.-R; Song, H.-Y; Studies Towards Total Synthesis of Antillatoxin:Indium-mediated Allylation Reaction of Carbonyl Compounds with Secondary Allylic Bromide in Aqueous Media, Synlett,2002,2119-2121.
    [145](a) Loh, T. P.; Li, X. R.; A versatile and practical synthesis of a-trifluoromethylated alcohols from trifluoroacetaldehyde ethyl hemiacetal in water, J. Chem. Soc, Chem. Commun.,1996, 1929-1930. (b)Song, J.; Hua, Z.-H.; Qi, S.; Ji, S.-J.; Loh, T.-P.; Indium trichloride-catalyzed indium-mediated allylation of dihydropyrans and dihydrofurans in water, Synlett,2004,829-830.
    [146]Loh, T. P.; Wang, R. B.; Sim, K. Y.; Reactivity Studies on 2,3,4,5-Tetraethyl-1,6-diiodo-2,3,4,5-tetracarba-nido-hexaborane(6):Synthesis and Structures of New C4B2 nido-Carborane Derivatives, Main Group Met. Chem.,1997,20,237-239.
    [147]Bryan, V. J.; Chan, T. H.; Indium mediated intramolecular carbocyclization in aqueous media. A facile and stereoselective synthesis of fused a-methylene-y-butyrolactones, Tetrahedron Lett.,1996,37,5341-5342.
    [148]Hao, J.; Aiguade, J.; Forsyth, C. J.; Remarkably chemoselective indium-mediated coupling en route to the C21-C40 acyclic portion of the azaspiracids, Tetrahedron Lett.,2001,42,821-824.
    [149]Chan, T. H.; Li, C. J.; A concise synthesis of (+)-muscarine, Can. J. Chem.,1992,70, 2726-2729.
    [150]Waldmann, H.; Proline Benzyl Ester as Chiral Auxiliary in Barbier-Type Reactions in Aqueous Solution, Synlett,1990,627-628.
    [151]Isaac, M. B.; Chan, T. H.; Indium mediated coupling of aldehydes with allyl bromides in aqueous media, the issue of regio-and diastereo-selectivity, Tetrahedron Lett.,1995,36, 8957-8960.
    [152](a)Cram, D. J.; Kopecky, K. R.; Studies in Stereochemistry. XXX. Models for Steric Control of Asymmetric Induction, J. Am. Chem. Soc,1959,81,2748-2755. (b)Reetz, M. T.; Chelation or Non-Chelation Control in Addition Reactions of Chiral α-and β-Alkoxy Carbonyl Compounds [New Synthetic Methods, Angew. Chem., Int. Ed. Engl.,1984,23, 556-569. (c)Midland, M. M.; Koops, R. W.; The Scope of Lewis. Acid Chelation-Controlled Cycloadditions, J. Org. Chem.,1990,55,5058-5065.
    [153](a)Paquette, L.; Mitzel, T. M.; Addition of Allylindium Reagents to Aldehydes Substituted at Cα or Cβ with Heteroatomic Functional Groups. Analysis of the Modulation in Diastereoselectivity Attainable in Aqueous, Organic, and Mixed Solvent Systems, J. Am. Chem. Soc.,1996,118,1931-1937. (b)Paquette, L. A.; Lobben, P. C.; Evaluation of Chelation Effects Operative during Diastereoselective Addition of the Allylindium Reagent to 2-and 3-Hydroxycyclohexanones in Aqueous, Organic, and Mixed Solvent Systems, J. Org. Chem.,1998,63,5604-5616.
    [154](a)Loh, T.-P.; Li, X.-R.; Tin-and Indium-Mediated Allylation Reactions in Water:Highly Stereoselective Synthesis of β-Trifluoromethylated Homoallylic Alcohols, Eur. J. Org. Chem., 1999,1893-1899. (b)Loh, T.-P.;Li, X.-R.; A simple and practical synthesis of a-trifluoromethylated alcohols in water, Tetrahedron,1999,55,5611-5622.
    [155](a)Alcaide, B.; Almendros, P.; Salgado, N. R.; Stereoselective allylation of 4-oxoazetidine-2-carbaldehydes. Application to the stereocontrolled synthesis of fused tricyclic-lactams via intramolecular Diels-Alder reaction of 2-azetidinone-tethered trienes,J. Org. Chem., 2000,65,3310-3321. (b)Alcaide, B.; Almendros, P.; Aragoncillo, C.; RodriguezAcebes, R.; Metalpromotedallylation, propargylation, or allenylation of azetidine-2,3-diones in aqueous and anhydrous media. Application to theasymmetric synthesis of densely functionalized 3-substituted3-hydroxy-beta-lactams, J. Org. Chem.,2001,66,5208-5216.
    [156]Yadav, J. S.; Reddy, B. V. S.; Reddy, G. S.; Kirah, K.; Indium-mediated allylation of gem-diacetates to homoallylic acetates in aqueous media, Tetrahedron Lett.,2000,41,2695-2697.
    [157]Mendez-Andino, J. Paquette, L. A.; Tandem Deployment of Indium-, Ruthenium-, and Lead-Promoted Reactions. Four-Carbon Intercalation between the Carbonyl Groups of Open-Chain and Cyclic a-Diketones, Org. Lett.,2000,2,1263-1265.
    [158]Bernardelli, P.; Moradei, O. M.; Friedrich, D.; Yang, J.; Gallou.F.; Dyck, B. P.; Doskotch, R. W.; Lange, T.; Paquette, L. A.; Total Asymmetric Synthesis of the Putative Structure of the Cytotoxic Diterpenoid (-)-Sclerophytin A and of the Authentic Natural Sclerophytins A and B, J.Am. Chem. Soc,2001,123,9021-9032.
    [159]Lee, J. E.; Cha, J. H.; Pae, A. N.; Choi, K. I.; Koh, H. Y.; Kim,Y.; Cho, Y. S.; Indium and tin mediated allylation reactions of 3-hydroxycephem in aqueous media, Synth. Commun.,2000,30, 4299-4308.
    [160]Cha, J. H.; Pae, A. N.; Choi, K. I.; Cho, Y. S.; Koh, H. Y; Lee, E.; An efficient approach to (E)-β-methyl Baylis-Hillman adducts via indium-mediated allylation of aldehydes in aqueous media, J. Chem. Soc, Perkin 1,2001,2079-2081.
    [161](a)Canac, Y; Levoirier, E.; Lubineau, A.; New access to C-branched sugars and C-disaccharides under indium promoted Barbier-type allylations in aqueous media, J. Org. Chem., 2001,66,3206-3210. (b)Lubineau, A.; Canac, Y; Le Goff, N.; Indium-Promoted Barbier-Type Allylations in Aqueous Media:New Access to 2-C-and 4-C-Branched Sugars, Adv. Synth. Catal.,2002,344,319-327.
    [162]Shin, J. A.; Choi, K. I.; Pae, A. N.; Koh, H. Y; Kang, H.-Y; Cho,Y S.; Intramolecular cation exchange in ion pairs. Part Ⅱ. Isomeric radical ion pairs of dithiolactones, J. Chem. Soc, Perkin 1, 2001,946-952.
    [163]Hidestal, O.; Ding, R.; Almesaker, A.; Lindstro'm, U. M.; Indium-mediated allylation reactions of a-chlorocarbonyl compounds and preparation of allylic epoxides, J. Chem.Soc, Perkin Trans.1,2001,946-948.
    [164]Loh, T. P.; Tan, K. T.; Yang, J. Y; Xiang, C. L.; Development of a highly a-regioselective indium-mediated allylation reaction in water, Tetrahedron Lett.,2001,42,8701-8703.
    [165](a)Loh, T. P.; Tan, K. T.; Hu, Q. Y; A new mechanistic proposal for the origin of a-homoallylic alcohols in indium-mediated allylation reactions in water, Tetrahedron Lett.,2001, 42,8705-8708. (b)Tan, K. T.; Chang, S. S.; Cheng, H. S.; Loh, T. P.; Development of General a-Regioselective Metal-mediated Allylation Reactions in Aqueous Media and a New Mechanistic Proposal for the Origin of-Regioselectivity, J. Am. Chem. Soc,2003,125,2958-2963.
    [166]Cho, Y. S.; Kang, K. H.; Cha, J. H.; Choi, K. I.; Pae, A. N.; Koh,H. Y; Chang, M. H.; A Facile One-Pot Operations of Reduction and Allylation of Nitrobenzaldehydes Mediated by Indium and Their Applications, Bull. Kor. Chem. Soc,2002,23,1285-1290.
    [167]Alcaide, B.; Almendros, P.; Aragoncillo, C; Rodriguez-Acebes,R.; A New Route to Nl-Substituted Uracil Derivatives Using Hypervalent Iodine, Synthesis,2003,1163-1170.
    [168]Jang, T. S.; Keum, G; Kang, S. B.; Chung, B. Y; Kim, Y; Palladium-catalyzed allylation of carbonyl compounds with various allylic compounds using In-InC13 in aqueous media, Synthesis, 2003,775-779.
    [169]Huang, J. M.; Xu, K. C; Loh, T. P.; Facile Synthesis and In-Vitro Antimalarial Activity of Novel a-Hydroxy Hydrazonates, Synthesis,2003,755-764. (322) Chung, W. J.; Higashiya, S.; Oba, Y; Welch, J. T.; Indium-and zinc-mediated allylation of difluoroacetyltrialkylsilanes in aqueous media, Tetrahedron,2003,59,10031-10036.
    [170]Loh, T. P.; Yin, Z.; Song, H. Y.; Tan, K. L.; Indium-mediated allylation of carbonyl compounds with an allylic bromide in aqueous media:anomalous syn-diastereoselectivity regardless of allylic bromide geometry, Tetrahedron Lett.,2003,44,911-914.
    [171]Juan, S.; Hua, Z. H.; Qi, S.; Ji, S. J.; Loh, T. P.; Indium trichloride-catalyzed indium-mediated allylation of dihydropyrans and dihydrofurans in water, Synlett,2004,829-830.
    [172]Dam, J. H.; Fristrup, P.; Madsen, R.; Combined Experimental and Theoretical Mechanistic Investigation of the Barbier Allylation in Aqueous Media, J. Org. Chem.,2008,73,3228-3235.
    [173]Zha, Z. G;Qiao, S.; Jiang, J. Y.; Wang, Y. S.; Miao, Q.; Zhiyong Wang, Z. Y; Barbier-type reaction mediated with tin nano-particles in water, Tetrahedron,2005,61,2521-2527.
    [174]Zhang, J.; Blazecka, P. G; Berven, H.; Belmont, D.; Metal-mediated allylation of mucohalic acids:facile formation of y-allylic α,β-unsaturated y-butyrolactones, Tetrahedron Lett.,2003,44, 5579-5582.
    [175]Nokami, J.; Otera, J.; Sudo, T.; Okawara, R.; Allylation of aldehydes and ketones in the presence of water by allylic bromides, metallic tin, and aluminum, Organometallics.,1983,2, 191-193.
    [176]Nokami, J.; Wakabayashi, S.; Okawara, R.; Intramolecular allylation of carbonyl compounds. A new method for five and six membered ring formation, Chem. Lett.,1984,869-870.
    [177]Zhou, J. Y; Chen, Z. G; Wu, S. H.; Tin-promoted stereocontrolled intramolecular allylation of carbonyl compounds:a facile and stereoselective method for ring construction, J. Chem. Soc, Chem.Commun.,1994,2783-2784.
    [178]Uneyama, K.; Kamaki, N.; Moriya, A.; Torii, S.; Tin (Ⅱ)-aluminum-promoted allylation of aldehydes with allyl chloride in an aqueous solvent system, J. Org. Chem.,1985,50,5396-5399.
    [179]Wu, S. H.; Huang, B. Z.; Zhu, T. M.; Yiao, D. Z.; Chu, Y. L.; Preparation of Tungsten Carbide and Titania Nanocomposite and Its Electrocatalytic Activity for Methanol, Acta.Chim. Sin.,1990,48,372-376.
    [180]Uneyama, K.; Matsuda, H.; Torii, S.; Grignard-type allylation of carbonyl compounds in methanol by the electrochemically recycled allyltin reagent, Tetrahedron Lett.,1984, 25,6017-6020.
    [181]Mandai, T; Nokami, J.; Yano, T.; Facile one-pot synthesis of bromo homoallyl alcohols and 1,3-keto acetates via allyltin intermediates, J. Org. Chem.,1984,49,172-174.
    [182]Petrier, C; Luche, J. L.; Allylzinc reagents additions in aqueous media,J. Org. Chem.,1985, 50,910-912.
    [183]Einhorn, C; Luche, J. L.; Selective'allylation of carbonyl compounds in aqueous media, J. Organomet. Chem.,1987,322,177-183.
    [184](a)Masuyama, Y; Takahara, T. P.; Kurusu, Y; Palladium-catalyzed carbonyl allylation by allylic alcohols with SnCl2. A solvation-controlled diastereoselection Tetrahedron Lett.,1989,30, 3437-3440. (b)Masuyama, Y; Nimura, Y; Kurusu, Y; Palladium-catalyzed carbonyl allylation by 2-(hydroxymethyl) acrylate derivatives:synthesis of a-methylene-y-butyrolactones, Tetrahedron Lett.,1991,32,225-228.
    [185]Sati, M.; Sinou, D.; Catalytic coupling of terminal acetylenes with iodoarenes and diaryliodonium salts in water, Tetrahedron Lett.,1991,32,2025-2028.
    [186]Boaretto, A.; Marton, D.; Tagliavini, G.; Gambaro, A.; Allylstannation:Ⅵ. Allylation and allenylation of aldehydes and ketones by allyl-and allenyl-tin chlorides in the presence of water, J. Organomet. Chem.,1985,286,9-16.
    [187]Boaretto, A.; Marton, D.; Tagliavini, G.; Preparation of α-allenic and β-acetylenic alcohols by treatment of a mixture of Bu, SnCH C CH and RCHO with Bu 2 SnC1 2 and water J. Organomet. Chem.,1985,297,149-153.
    [188]Furlani, D.; Marton, D.; Tagliavini, G.; Zordan, M.; Hydrated σ-bonded organometallic cations in organic synthesis:Ⅰ. Allyl-, crotyl-,1-methylallyl-, cyclohex-2-enyl-, and cinnamyl-stannation of carbonyl compounds in water, J. Orga.nomet.Chem.,1988,341,345-356.
    [189]Hachiya, I.; Kobayashi, S.; Aqueous reactions with a Lewis acid and an organometallic reagent. The scandium trifluoromethanesulfonate-catalyzed allylation reaction of carbonyl compounds with tetraallyltin, J. Org. Chem.,1993,58,6958-6960
    [190]Zha, Z.; Wang, Y.; Yang, G.; Zhang, L.; Wang, Z.; Efficient Barbier reaction of carbonyl compounds improved by a phase transfer catalyst in water, Green Chem.,2002,4,578-580.
    [191]Wang, Z.; Zha, Z.; Zhou, C.; Application of tin and nanometer tin in allylation of carbonyl compounds in tap water, Org. Lett.,2002,4,1683-1685.
    [192]Kumaraswamy, S.; Nagabrahmanandachari, S.; Kumara Swamy,K. C.; Addition of azomethine ylides:fulleropyrrolidines, Synth. Commun.,1996,24,729-732.
    [193]Yanagisawa, A.; Morodome, M.; Nakashima, H.; Yamamoto, H.; Allylation of Aldehydes with Allyltin Compounds in Acidic Aqueous Media-A Catalytic Version, Synlett,1997,1309-1311.
    [194]Marshall, R. L.; Muderawan, I. W.; Young, D. J.; The cyclization of peptides and depsipeptides, J. Chem. Soc.Perkin 2,2000,5,957-962.
    [195]Shibata, I.; Yoshimura, N.; Yabu, M.; Baba, A.; C1-Symmetric Sulfoximines as Ligands in Copper-Catalyzed Asymmetric Mukaiyama-Type Aldol Reactions, Eur. J. Org.Chem.,2001, 3207-3211.
    [196]Manabe, K.; Mori, Y.; Wakabayashi, T.; Nagayama, S.; Kobayashi, S.; Asymmetric Mannich-type reactions catalyzed by indium (Ⅲ) complexes in ionic liquids, J. Am. Chem. Soc., 2000,122,7202-7207.
    [197]Nagayama, S.; Kobayashi, S.; Site-isolation effects in a dendritic nickel catalyst for the oligomerization of ethylene, Angew. Chem., Int. Ed.,2000,39,567-569.
    [198]Masuyama, Y.; Kishida, M.; Kurusu, Y.; Organometallic complexes for nonlinear optics.16. Second and third order optical nonlinearities of octopolar alkynylruthenium complexes, Chem. Commun.,1995,1405-1406.
    [199]Kundu, A.; Prabhakar, S.; Vairamani, M.; Roy, S.; A novel copper (Ⅱ)/tin (Ⅱ) reagent for aqueous carbonyl allylation:in situ diagnostics of reactive organometallics in water, Organometallics,1997,16,4796-4799.
    [200]Okano, T.; Kiji, J.; Doi, T.; Control of asymmetry through conjugate addition reactions, Chem. Lett.,1998,5,425-426.
    [201]Tan, X.-H.; Shen, B.; Deng, W.; Zhao, H.; Liu, L.; Guo, Q. X.; Asymmetric Radical Addition of Ethers to Enantiopure, Org. Lett.,2003,5,1833-1835.
    [202]Carde, L.; Llebaria, A.; Delgado, A.; A solid-phase version of the palladium-catalyzed carbonyl allylation by allylic alcohols with SnCl2, Tetrahedron Lett.,2001,42,3299-3302.
    [203]Samoshin, V. V; Gremyachinskiy, D. E.; Smith, L. L.; Bliznets,I. V.; Gross, P. H.; Practical synthesis of bis-homoallylic alcohols from dialdehydes or their acetals, Tetrahedron Lett.,2002, 43,6329-6330.
    [204]Wang, J.; Yuan, G; Dong, C.-Q.; Mechanistic and stereochemical aspects of the asymmetric cyclocarbonylation of 1,6-enynes with rhodium catalysts, Chem. Lett.,2004,33,286-287.
    [205]Chang, H.-M.; Cheng, C.-H.; Synthesis of the C16-C28 Spiroketal Subunit of Spongistatin 1 (Altohyrtin A):The Pyrone Approach, Org. Lett.,2000,2,3439-3442.
    [206]Schmid, W.; Whitesides, G. M.; Carbon-carbon bond formation in aqueous ethanol: diastereoselective transformation of unprotected carbohydrates to higher carbon sugars using allyl bromide and tin metal, J. Am. Chem. Soc,1991,113,6614-6675.
    [207]Ma'rquez, F.; Montoro, R.; Llebaria, A.; Lago, E.; Molins, E.; Delgado, A.; Cross-Coupling of Alkyl Halides with Aryl Grignard Reagents Catalyzed by a Low-Valent Iron Complex, J. Org. Chem.,2002,67,308-311.
    [208]Cho, Y. S.; Lee, J. E.; Pae, A. N.; Choi, K.; Koh, H. Y; Indium and zinc mediated Barbier type reactions:allylation and propargylation reactions of 6-oxopenicillanate and 7-oxocephalosporanate, Tetrahedron Letters,1999,40,1725-1728.
    [209]Yadav, J. S.; Reddy, B. V. S.; Reddy, P. M.; Srinivas, C; Zinc-mediated Barbier reactions of pyrrole and indoles:a new method for the alkylation of pyrrole and indoles, Tetrahedron Lett., 2002,43,5185-5187.
    [210]Li, C. J.; Chan, T. H.; Organometallic reactions in aqueous media, Organometallics,1991, 10,2548-2549.
    [211]Trost, B. M.; King, S. A.; Charge-transfer structures of aromatic EDA complexes with N-heteroatom-substituted pyridinium cations, J. Am. Chem. Soc,1990,112,408-422.
    [212]Oda, Y; Matsuo, S.; Saito, K.; An efficient synthesis of 3-chlorohomoallyl alcohols. Zinc-promoted 2-chloroallylation of carbonyl compounds with 2,3-dichloropropene in an aqueous solvent system, Tetrahedron Lett.,1992,33,97-100.
    [213]Cripps, H. N.; Kiefer, E. E; Theoretical and experimental investigation of the electron affinities of allene'and propyne, Org. Synth.,1962,42,12-14.
    [214]Durant, A.; Delplancke, J. L.; Winand, R.; Reisse, J.; A new procedure for the production of highly reactive metal powders by pulsed sono-electrochemical reduction, Tetrahedron.Lett.,1995, 36,4257-4260.
    [215]Marton, D.; Stivanello, D.; Tagliavini, G; Stereochemical study of the allylation of aldehydes with allyl halides in cosolvent/water (salt)/Zn and in cosolvent/water (salt)/Zn/haloorganotin media, J. Org. Chem.,1996,61,2131-2131.
    [216]Sjoholm, R.; Rairama, R.; Ahonen, M.; Zinc mediated allylation of aldehydes and ketones with cinnatnyl chloride in aqueous medium, Chem. Commun.,1994,1217-1218.
    [217]Ahonen, M.; Sjo"holm, R.; Influence of the form of photodeposited platinum on titania upon its photocatalytic activity in CO and acetone oxidation, Chem. Lett,1995,341-344.
    [218]Hanessian, S.; Park, H.; Yang, R. Y.; Zinc-Mediated Allylation of N-Protected a-Amino Aldehydes in Aqueous Solution. Stereoselective Synthesis of Phe-Phe Hydroxyethylene Dipeptide Isosteres, Synlett.,1997,351-352.
    [219]Zha, Z.; Xie, Z.; Zhou, C; Chang, M.; Wang, Z.; High regio-and stereoselective Barbier reaction of carbonyl compounds mediated by NaBF4/Zn (Sn) in water,New J. Chem.,2003,27, 1297-1300.
    [220]Archibald, S. C; Hoffmann, R. W.; Porphyrins, phthalocyanines and related systems in polymer phases, Chemtracts-Org. Chem.,1993,6,194-197.
    [221]Marquez, F.; Montoro, R.; Llebaria, A.; Lago, E.; Molins, E.;Delgado, A.; Cross-Coupling of Alkyl Halides with Aryl Grignard Reagents Catalyzed by a Low-Valent Iron Complex, J. Org. Chem.,2002,67,308-311.
    [222]Thadani, A. N.; Batey, R. A.; A Mild Protocol for Allylation and Highly Diastereoselective Syn or Anti Crotylation of Aldehydes in Biphasic and Aqueous Media Utilizing Potassium Allyl-and Crotyltrifluoroborates, Org. Lett.,2002,4,3827-3830.
    [223]Thadani, A. N.; Batey, R. A.; Diastereoselective allylations and crotylations under phase-transfer conditions using trifluoroborate salts:an application to the total synthesis of (-)-tetrahydrolipstatin, Tetrahedron Lett,2003,44,8051-8055.
    [224]Ishihara, K.; Hanaki, N.; Funahashi, M.; Miyata, M.; Yamamoto,H.; Tris (pentafluorophenyl) boron as an Efficient, Air Stable, and Water Tolerant Lewis Acid Catalyst. Bull. Chem. Soc. Jpn, 1995,68,1721-1730.
    [225]Wang, M.; Chen, Y. J.; Liu, L.; Wang, D.; Liu, X. L.; Knoevenagel Condensation Catalyzed by 1,1,3,3-Tetramethylguanidium Lactate,7. Chem.Res., Synop.,2000,80-81.
    [226]Aoyama, N.; Hamada, T.; Manabe, K.; Kobayashi, S.; Bismuth triflate catalyzed allylation of aldehydes with allylstannane under microwave assistance, Chem.Commun.,2003,676-677.
    [227]Wang, Z.; Yuan, S.; Li, C.J.; Gallium-mediated allylation of carbonyl compounds in water, Tetrahedron Lett,2002,43,5097-5099.
    [228]Tsuji, T; Usugi, S. I.; Yorimitsu, H.; Shinokubo, H.; Matsubara,S.; Oshima, K.; Attaching proteins to carbon nanotubes via diimide-activated amidation,Chem. Lett,2002,2-4.
    [229]Li, C. J.; Zhang, W. C; Peptidotriazoles on solid phase:[1,2,3]-triazoles by regiospecific copper (I)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides, J. Am. Chem. Soc, 1998,720,9102-9013.
    [230]Fukuma, T.; Lock, S.; Miyoshi, N.; Wada, M.; Iron-catalysed arylation of heteroaryl halides by Grignard reagents, Chem. Lett,2002,376-379.
    [231]Khan, R. H.; Prasada Rao, T. S. R.; Highly efficient and mild copper-catalyzed N-and C -arylations with aryl bromides and iodides,J. Chem. Res., Synop.,1998,202-204.
    [232]Akiyama, T.; Iwai, J.; Scandium trifluoromethanesulfonate-catalyzed chemoselective allylation reactions of carbonyl compounds with tetraallylgermane in aqueous media, Tetrahedron Lett.,1997,38,853-856.
    [233]Zhou, J. Y; Jia, Y.; Sun, G F.; Wu, S. H.; Barbier-type allylation of aldehydes and ketones with metallic lead in aqueous media, Synth. Commun.,1997,27,1899-1906.
    [234]Kobayashi, S.; Aoyama, N.; Manabe, K.; The catalytic asymmetric Mannich-type reactions in aqueous media, Synlett,2002,483-485.
    [235]Li, C. J.; Meng, Y; Yi, X. H.; Ma, J.; Chan, T. H.; Highly meso-Diastereoselective Pinacol Coupling of Aromatic Aldehydes Mediated by Al Powder/Copper Sulfate in Water,J. Org. Chem., 1997,62,8632-8633.
    [236]Li, L. H.; Chan, T. H.; Organometallic reactions in aqueous media Antimony-mediated allylation of carbonyl compounds and the nature of allylstibine intermediates, Can. J. Chem.,2001, 79,1536-1540.
    [237]Wada, M.; Ohki, H.; Akiba, K. Y; A novel one-pot Reformatsky type reaction via bismuth salt in aqueous media, Bull. Chem. Soc. Jpn.,1990,63,1738-1747;
    [238]Wada, M.; Fukuma, T.; Morioka, M.; Takahashi, T.; Miyoshi.N.; N-Fmoc-aminooxy-2-chlorotrityl polystyrene resin:A facile solid-phase methodology for the synthesis of hydroxamic acids Jetrahedron Lett.,1997,38,8045-8048.
    [239]Smith, K.; Lock, S.; El-Hiti, G. A.; Wada, M.; Miyoshi, N.; A convenient procedure for bismuth-mediated Barbier-type allylation of aldehydes in water containing fluoride ions, Org.Biomol. Chem.,2004,2,935-938.
    [240]Matsumura, N.; Doi, T.; Mishima, K.; Kitagawa, Y; Okumura.Y; Mizuno, K. Synthesis of multi ring-fused 2-pyridones via an acyl-ketene inline cyclocondensation, ITE Lett. Batter.; New Technol. Med.,2003, 4,473-476.
    [241]Miyamoto, H.; Daikawa, N.; Tanaka, K.; Carbon carbon bond formation using bismuth in a water medium,Tetrahedron Lett.,2003,44,6963-6964.
    [242]Katritzky, A. R.; Shobana, N.; Harris, P. A.; Bismuth(Ⅲ) chloride-aluminum-promoted alkylations of immonium cations to amines in aqueous media:unstabilized carbanion equivalents for use in the presence of water, Organometallics,1992,11,1381-1384.
    [243]Minato, M.; Tsuji, J.; An efficient method for the synthesis of trifluoromethyl substituted heterocycles, Chem. Lett.,1988,2049-2052.
    [244]Xu, X.; Zha, Z.; Miao, Q.; Wang, Z.; Allylation of carbonyl compounds mediated by nanometer-sized bismuth in water, Synlett,2004,1171-1174.
    [245]Killinger, T. A.; Boughton, N. A.; Runge, T. A.; Wolinsky, J.; Synthesis and Characterization of the Cycloheptatrienyl Tantalum "Mixed-Sandwich" Compounds (C5R5)Ta(C7H7), J. Organomet. Chem.,1911,124,131-134.
    [246]Petrier, C; Luche, J. L.; Allylzinc reagents additions in aqueous media, J. Org. Chem.,1985, 50,910-912.
    [247]Einhorn, C; Luche, J. L.; Selective allylation of carbonyl compounds in aqueous media, J. Organomet. Chem.,1987,322,177-183.
    [248]Chan, T. H.; Li, C. J.; Organometallic Reactions in Aqueous Medium, Organometallics, 1990,9,2649-2650.
    [249]Araki, S.; Ito, H.; Butsugan, Y.; Triphenylsulfonium Salt Photochemistry-New Evidence for Triplet Excited-state Reactions,J. Org. Chem.,1988,55,1833-1835.
    [250]Li, C. J.; Chan, T. H.; Organometallic reactions in aqueous media with indium, Tedrahedron Lett.,1991,32,7017-7020.
    [251]Chan, T. H.; Li, C. J.; Stereoselective synthesis of quaternary carbon atoms, J. Chem. Soc, Chem. Commun.,1992,747-748.
    [252]Habeman, J. X.; Irvin, G C; John, V. T.; Li, C. J.; Aldehyde allylation. in liquid carbon dioxide, Green. Chem.,1999,265-268.
    [253]Chan, T. H.; Li, C. J.; Lee, M. C; Wei, Z. Y.; Artificially applied vanillic acid changed soil microbial communities in the rhizosphere of cucumber (Cucumis sativus L.), Can. J. Chem.,1994, 72,1181-1192.
    [254]Gynane, M. J. S.; Worrall, I. J.; Boron heterocycles as platforms for bulding new bioactive agents, J. Organomet. Chem.,1974,81,329-332.
    [255]Chan, T. H.; Yang, Y; Indium-Mediated Organometallic Reactions in Aqueous Media:The Nature of the Allylindium Intermediate, J. Am. Chem. Soc,1999,121,3228-3229.
    [256]Lu, W. S.; Chan, T. H.; Synthesis of 8-epi-castanospermine and 6,7,8-tri-epi-castanospermine, J. Org. Chem.,2000,65,8589-8594.
    [257]Paquette, L. A.; Mitzel, T. M.; Comparative Diastereoselectivity Analysis of Crotylindium and 3-Bromoallylindium Additions to alpha-Oxy Aldehydes in Aqueous and Nonaqueous Solvent Systems,J. Org. Chem.,1996,61,8799-8804.
    [258]Vilaivan, T.; Winotapan, C; Banphavichit, V.; Shinada, T.; Ohfime, Y; Indium-mediated asymmetric Barbier-type allylation of aldimines in alcoholic solvents:Synthesis of optically active homoallylic amines, J.Org.Chem.,2005,70,3464-3471.
    [259]Kim, S. J.; Jang, D. O.; A carbon-supported copper complex of 3,5-diamino-1,2,4-triazole as a cathode catalyst for alkaline fuel cell applications, J. Am. Chem. Soc,2010,132, 12185-12187.
    [260]Tan, K. L.; Jacobseri, E. N.; A soluble copper-bipyridine water-oxidation electrocatalyst, Angew. Chem. Int. Ed.,2007,46,1315-1517.
    [261]Haddad, T. D.; Hirayama, L. C; Singaram, B.; Indium-Mediated Asymmetric Barbier-Type Allylations:Additions to Aldehydes and Ketones and Mechanistic Investigation of the Organoindium Reagents, J. Org. Chem.2010,75,642-649
    [262]Loh, T.-P.; Zhou, I.-R.; Yin, Z.; A Highly Enantioselective Indium-Mediated Allylation Reaction of Aldehydes, Org. Lett.,Nol.1,No.11,1999,1855-1857
    [263]Jacques.A., nadege. L.G, Aurelie. T. W., Indium-catalyzed allylation of carbonyl compounds with the Mn/TMSC1 system, Tetrahedron Lett.,1999,40,9245-9247.
    [264]Barbetti, P.; Casinovi, C. G.; Santurbano, B. et al.; Theoretical studies on the reactions CH3SCH3 with OH, CF3, and CH3 radicals, Coll Czec Chem. Commun.,1979,44.3123-3127.
    [265]Kisiel, W.; Zielinska, K.; Joshib, S. P.; Sesquiterpenoids and phenolics from Crepis mollis, Phytochemistry,2000,54,763-766.
    [266]Calderon, A.; March, P. D.; Arrad,M. E. et al.; Synthesis of 3-(1-hydroxyalkyl)-5 H-furan-2-ones:Study of their reaction with halogens, Tetrahedron,1994,50(14),4201-4214.
    [267]Manchanayakage, R.; Handy, S. T.; Regioselective Barbier reactions of 2-bromomethylcyclohexenone, Tetrahedron Lett.,2007,48,3819-3822.
    [268]Hanessian, S.; Hou, Y.; Bayrakdarian, M. et al.; Syntheses of enantio-enriched chiral building blocks from L-glutamic acid, J. Org. Chem.,2005,70(17),6735-6745.
    [269]Cherest, M.; Felkin, H.; Stereocontrol in the nucleophilic epoxidation of α-(1-hydroxyalkyl)-α,β-unsaturated sulfones, Tetrahedron Lett.,1968,18,2205-2208.
    [270]Grieco, P. A.; Migashita, M.; A novel synthetic approach to the preparation of various a, a-difluoroesters,J.Org. Chem.,1975,40(8),1181-1183.
    [271]Rayner, C. M.; Astles, P. C; Paquette, L. A.; Total synthesis of furanocembranolides.2. Macrocyclization studies culminating in the synthesis of a dihydropseudopterolide and gorgiacerone. Related furanocembranolide interconversions, J. Am. Chem. Soc,1992,114, 3926-3936.
    [272]Price, C; Judge, J. M.; Desiccant efficiency in solvent and reagent drying.5. Amines, Org. Synth.,1973,5,255-258.
    [273]Detty, M. R.; Wood, G. P.; Transition-metal-catalyzed reactions of diazo compounds.1. Cyclopropanation of double bonds,J. Org. Chem.,1980,45(1),80-89.
    [274]Villieras, J.; Rambaud, M.; The direct synthesis of 2-oxazolines from carboxylic esters using lanthanide chloride as catalyst, Organic. Syntheses.,1993,8,265-266.
    [275]Kato, T.; Ishimatu, T.; Aikawa, A. et al.; Microbial synthesis of optically pure (R)-2,4, 4-trimethyl-3-(2'-hydroxyethyl)-cyclohex-2-en-1-ol, a new and versatile chiral building block for terpene synthesis, Tetrahedron:Asymmetry,2000,11,851-860.
    [276]Nicolaou, K. C; Renaud, J.; Nantermet, P. G. et al.; Synthesis of potent taxoids for tumor-specific delivery using monoclonal antibodies,J.Am. Chem. Soc.,1995,17,2409-2420.
    [277]Garner, P.; Park, J. M.; The synthesis and configurational stability of differentially protected. beta.-hydroxy-. alpha.-amino aldehydes,J.Org. them.,1987,52(12),2361-2364.
    [278]Mikami, K..; Asymmetric catalysis of carbonyl-ene reactions and related carbon-carbon bond forming reactions, Pure & Appl. Chem.,1996,68(3),639-644
    [279]Minutolo, F.; Bertini, S.; Granchi, C. et al.; Structural Evolutions of Salicylaldoximes as Selective Agonists for Estrogen Receptor β,J. Med. Chem.,2009,52,858-863.
    [280]Mughal, E. U.; Ayaz, M.; Hussain, Z. et al.; Tricyclic imidazole antagonists of the Neuropeptide S Receptor, Bioorg. Med. Chem.,2006,14,4704-4708.
    [281]Desai, N. J.; Sethna, S.; Synthesis of Some 4-Hydroxycoumarin Derivatives,J. Org. Chem., 1957,22,388-391.
    [282]Zhao, P. L.; Wang, L.; Zhu, X. L. et al., Subnanomolar Inhibitor of Cytochrome bcl Complex Designed by Optimizing Interaction with Conformationally Flexible Residues, J. Am. Chem. Soc,2010,132,185-190.
    [283]Liao, Y. X.; Kuo, P. Y.; Yang, D. Y.; Efficient synthesis of trisubstituted [1]benzopyrano[4,3-b]pyrrol-4(1H)-one derivatives from 4-hydroxycoumarin, Tetrahedron. Lett.,2003,44,1599-1603.
    [284]Kuo, P. Y; Chuang, R. R.; Yang, D. Y.; Controlled microwave heating in modern organic synthesis:highlights from the 2004-2008 literature, Mol. Divers.,2009,13,253-257.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700