用户名: 密码: 验证码:
W/Zr基非晶合金复合材料的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
W/Zr基非晶合金复合材料具有高强度,同时具有很好的压缩塑性变形能力,因而受到了很多研究者的关注。针对该复合材料,研究者们相继对材料的制备和变形行为进行了初步的研究,但是并没有对该材料进行系统深入的研究。因而,本论文工作制备了不同结构形态的W/ZrTiNiCuBe非晶合金复合材料并系统研究了增强相的结构形态、方向和体积百分含量等因素对复合材料力学性能以及变形断裂的影响。为W/Zr基非晶合金复合材料的进一步应用提供依据。
     本论文工作首先制备了单根W杆/ZrTiNiCuBe非晶合金复合材料。压缩测试结果表明W杆的引入可以有效地阻止剪切带的扩展并促使多剪切带的形成,改善复合材料的室温塑性。W杆的引入改变了复合材料界面附近区域的受力状态,变形过程中,W杆先于非晶屈服,W纤维中的裂纹先于非晶基体中的剪切带产生。复合材料在整个变形过程中都没有发现明显的界面开裂现象,说明W杆与非晶基体之间的界面结合良好。
     通过向ZrTiNiCuBe非晶合金中分别引入1000μm、700μm、500μm和200μm四种不同直径的W纤维,进而研究W纤维直径对复合材料性能和变形行为的影响规律。W纤维直径的改变使得复合材料中的界面面积发生明显的改变,进而导致W纤维/ZrTiNiCuBe非晶合金复合材料性能上的差异。在准静态压缩载荷下,应变速率相同时,随着W纤维直径的减小,W纤维/ZrTiNiCuBe非晶合金复合材料的面体率增大,压缩断裂强度和塑性应变也随之增大,间接说明单位体积基体中界面面积的增大,可以有效的抑制非晶合金基体中剪切带的扩展,进而改善复合材料的静态压缩性能。此外,性能的改善,一定程度上也归因于非晶合金的尺寸效应。W纤维/ZrTiNiCuBe非晶合金复合材料的动态压缩实验结果表明,在高应变速率下,复合材料具有更高的强度,具有明显的应变速率敏感性,这主要归因于W增强相的存在。W纤维直径为500gm时,复合材料的动态抗压强度最大,可达3698MPa。在准静态和动态加载条件下,W/ZrTiNiCuBe非晶合金复合材料都以劈裂的方式发生破坏。
     研究W纤维体积分数对W/ZrTiNiCuBe非晶合金复合材料性能和失效方式的影响发现,复合材料的屈服强度随纤维体积分数的增大而单调增大,而塑性应变先是随纤维体积分数的增大而增大,当体积分数为66%时达到最大值,接着随纤维体积分数的进一步增大而减小。依据Mohr-Coulomb准则可以发现,随着纤维体积分数的增加,复合材料临界剪切断裂应力增大,复合材料难以发生剪切断裂。因而,复合材料的失效方式随纤维体积分数的增大由剪切断裂向纵向劈裂转变。
     通过调节纤维与载荷之间的夹角(θf),研究w纤维/ZrTiNiCuBe非晶合金复合材料的各向异性和变形行为,复合材料在压缩和拉伸载荷下具有明显的拉压不对称性。压缩载荷下,θf为0°时,复合材料具有最高的抗压强度以及塑性应变;θf为45°以及90°时,复合材料的抗压强度和塑性应变相对较低;复合材料随θf的变化表现出三种破坏模式:当θf为0°时,复合材料发生纵向劈裂:0°<θf≤45°时,材料以面内滑移的方式发生破坏,表现为非晶基体的剪切破坏以及界面脱粘的混合模式;45°<θf≤90°时,复合材料以外离面滑移的方式发生破坏,表现为沿w纤维密排面的破坏或者通过连接非晶基体中的剪切带和W纤维中的裂纹发生破坏。拉伸载荷下,W纤维/ZrTiNiCuBe非晶合金复合材料的抗拉强度随θf的增大而减小,θf为90°时,其抗压强度仅为253MPa,无拉伸塑性。失效方式有两种:当θf为0°和15°时,复合材料发生近似90°正断,θf大于等于30°时,复合材料沿θf方向发生破坏。
     制备出各向同性、分布均匀的毫米级W球/ZrTiNiCuBe非晶合金复合材料,室温压缩及拉伸实验结果表明,w球的引入有效地改善了Zr基非晶合金的室温压缩塑性,但是降低了复合材料的抗压强度。复合材料在高应变速率下表现出更为优异的压缩性能。该复合材料的抗拉强度仅为422MPa,弹性变形后直接发生破坏,没有塑性变形。
The W/Zr-based bulk metallic glass composites (BMGCs) have attracted extensive interest because of their high strength and good plastic deformation ability. For these composites, a preliminary study on systhesis and deformation behaviors was carried out, but systematic study about these materials needs to be improved. In this work, W/ZrTiNiCuBe BMGCs with different structure and morphology of W were prepared. The effects of size, volume fraction and direction of W fiber on mechanical properties, deformation and fracture behaviors were investigated systematically, which will provide basis for the application of these materials.
     Firstly, the single W stick/ZrTiNiCuBe BMGC was prepared. The results of compressive experiments show that the W stick can effectively restrict shear band propagation, resulting in the improvement in plasticity of the composite. The introduction of W stick changes the stress state near the interface. During deformation, the W stick yields prior to the MG matrix and the cracks in W stick forms prior to the formation of shear bands in MG matrix. The interface remains intact during deformation process, which indicates that the interface between W stick and MG matrix is good bonding.
     Secondly, the effect of fiber diameter on mechanical properties and deformation behaviors of W fiber/ZrTiNiCuBe BMGCs was investigated. The diameters of the W fibers are1000μm,700μm,500μm and200μm, respectively. The interface area increases with the decrease in the diameter of the W fiber, which results in the difference in properties of the BMGCs. Under quasi-static compressive load, the compressive strength and the plastic strain increase with the decrease of the fiber diameter at the same strain rate, indicating that more interface area is beneficial to the improvement of the compressive properties for the BMGCs. Furthermore, to some extent, the improvement in properties of the BMGCs is attributed to the size effect of the MG matrix. The dynamic compressive experiment results show that the BMGCs possess higher compressive strength under higher strain rate. The dynamic compressive strength of the BMGC with a fiber diameter of500μm is the highest among the four W fiber/ZrTiNiCuBe BMGCs. Under quasi-static and dynamic compressive load, the BMGCs all fail by longitudinal splitting.
     Fiber volume fraction is a very important influence on the mechanical properties and the failure modes of the BMGCs. In this work, four kinds of W fiber/ZrTiNiCuBe BMGCs containing different volume fraction of W fiber were prepared. The variation of the compression properties and failure modes with fiber volume fraction was investigated. The results show that the yield strength of the composites increase with the increase of the fiber volume fraction, while the plastic strain first increase and then decrease with the increase of the fiber volume fraction. The failure modes of the BMGCs change from shear fracture to longitudinal splitting with the increase of the fiber volume fraction. The relationship of the fracture mode and the fiber volume fraction was discussed in detail based on the Mohr-Coulomb criterion.
     Under compressive and tensile loading, the anisotropic deformation behaviors of the W fiber/ZrTiNiCuBe BMGCs were investigated systematically by changing the angle (θf) between fiber directions and loading axis. The θf are0°,15°,30°,45°,60°,75°and90°, respectively. The results show that the BMGCs display asymmetric properties between tensile and compressive deformation. At θf=0°, the BMGC possesses the best compressive properties. The BMGCs with45°and90°tungsten fiber orientations own relatively poor compressive strength and plasticity. There are three fracture modes for the BMGCs under compressive loading. At θf=0°, the BMGC fails by longitudinal splitting. At0°<θf<45°, the composites fail by in-plane sliding and the fracture modes are the matrix shearing and interface debonding. At45°<θf<90°, the composites fail by out-of-plane sliding and the cracks propagate along the mutual contacted fibers or by connecting the cracks in fibers to the shear bands in matrix under shear stress, resulting in shear fracture of the composites. Under tensile loading, the strength of the BMGCs decreases with the increase of the θf, while the plasticity of the BMGCs is not improved. The composites fail along the maximum normal stress surface at θf=0°/15°, while the composites fail along the direction of θf when θf is bigger than or equal to30°.
     At the end of this work, the isotropic ZrTiNiCuBe BMGCs with millimetre-scale W powder sinter balls closely packing in the amorphous matrix were prepared. The results of compressive experiments show that the compressive plasticity is improved but the compressive strength decreases because of the introduction of W balls. The composite displays the higher strength and larger plasticity at the higher strain rate under compressive loading. However, the tensile strength of the composite is only422MPa. The composite fails directly after the elastic deformation without plastic deformation.
引文
[1]Klement W., Willens R. H., Duwez P. Non-crystalline structure in solidified gold-silicon alloys[J]. Nature, 1960,187:869-870.
    [2]Inoue A. Stabilization of metallic supercooled liquid and bulk amorphous alloys[J]. Acta Materialia,2000,48(1):279-306.
    [3]Johnson W. Bulk glass-forming metallic alloys[J]. Science and technology. MRS Bulletin, 1999,24:42-56.
    [4]Wang W. H., Dong C., Shek C. H. Bulk metallic glasses[J]. Materials Science and Engineering:R,2004,44(2):45-89.
    [5]Peker A., Johnson W. L. A highly processable metallic glass:Zr41.2Ti13.8Cu12.5Ni10.0Be22.5[J]. Applied Physics Letters,1993,63(17):2342-2344.
    [6]Ma H., Shi L. L., Xu J., et al. Discovering inch-diameter metallic glasses in three-dimensional composition space[J]. Applied Physics Letters,2005, 87(18):181915-1-181915-3.
    [7]Inoue A., Nishiyama N., Kimura H. Preparation and thermal stability of bulk amorphous Pd40CusoNi10Pzo alloy cylinder of 72 mm in diameter[J]. Materials Transactions-JIM,1997, 38(2):179-183.
    [8]Tang M. Q., Zhang H. F., Zhu Z. W., et al. TiZr-base Bulk Metallic Glass with over 50 mm in Diameter[J]. Journal of Material Science and Technology,2010,26(6):481-486.
    [9]Lu Z. P., Liu C. T., Thompson J. R., et al. Structural amorphous steels[J]. Physical Review Letters,2004,92(24):245503-1-245503-4.
    [10]Chen M. W. A brief overview of bulk metallic glasses[J]. NPG Asia Materials,2011, 3(9):82-90.
    [11]Bernal J. D., Mason J. Packing of spheres:co-ordination of randomly packed spheres[J]. Nature,1960,188:910-911.
    [12]Gaskell P. A new structural model for transition metal-metalloid glasses[J]. Nature, 1978,276(5687):484-485.
    [13]Gaskell P. A new structural model for amorphous transition metal silicides, borides, phosphides and carbides[J]. Journal of Non-crystalline Solids,1979,32(1):207-224.
    [14]Miracle D. B. A structural model for metallic glasses[J]. Nature Materials,2004, 3(10):697-702.
    [15]Miracle D. B. The efficient cluster packing model-An atomic structural model for metallic glasses[J]. Acta Materialia,2006,54(16):4317-4336.
    [16]Miracle D. B., Greer A. L., Kelton K. F. Icosahedral and dense random cluster packing in metallic glass structures[J]. Journal of Non-crystalline Solids,2008, 354(34):4049-4055.
    [17]Sheng H. W., Cheng Y. Q., Lee P. L., et al. Atomic packing in multicomponent aluminum-based metallic glasses[J]. Acta Materialia,2008,56(20):6264-6272.
    [18]Sheng H. W., Luo W. K., Alamgir F. M., et al. Atomic packing and short-to-medium-range order in metallic glasses[J]. Nature,2006,439(7075):419-425.
    [19]Inoue A., Shen B., Koshiba H., et al. Ultra-high strength above 5000 MPa and soft magnetic properties of Co-Fe-Ta-B bulk glassy alloys[J]. Acta Materialia,2004, 52(6):1631-1637.
    [20]Inoue A., Shen B. L., Chang C. T. Fe-and Co-based bulk glassy alloys with ultrahigh strength of over 4000 MPa[J]. Intermetallics,2006,14(8):936-944.
    [21]Inoue A., Zhang W., Zhang T., et al. High-strength Cu-based bulk glassy alloys in Cu-Zr-Ti and Cu-Hf-Ti ternary systems[J]. Acta Materialia,2001,49(14):2645-2652.
    [22]Zhu Z. W., Zhang H. F., Sun W. S., et al. Processing of bulk metallic glasses with high strength and large compressive plasticity in Cu50Zn50[J]. Scripta Materialia,2006, 54(6):1145-1149.
    [23]Bruck H. A., Christman T., Rosakis A. J., et al. Quasi-static constitutive behavior of Zr41.25Ti13.75Ni10Cu12.5Be22.5 bulk amorphous al loys[J]. Scripta Metal lurgica et Material ia, 1994,30(4):429-434.
    [24]Hufnagel T. C., Jiao T., Li Y., et al. Deformation and failure of Zr57Ti5Cu20Ni8Al10 bulk metallic glass under quasi-static and dynamic compression[J]. Journal of Materials Research,2002,17(06):1441-1445.
    [25]Zhang Z. F., Eckert J., Schultz L. Difference in compressive and tensile fracture mechanisms of Zr59Cu20Al10Ni8Ti3 bulk metallic glass[J]. Acta Materialia,2003, 51(4):1167-1179.
    [26]Johnson W., Samwer K. A Universal Criterion for Plastic Yielding of Metallic Glasses with a (T/TR)2/3 Temperature Dependence [J]. Physical Review Letters,2005, 95(19):195501-1-195501-4.
    [27]Chen H. S. Glassy metals[J]. Reports On Progress In Physics,1980,43(4):353-432.
    [28]Lu Z. P., Liu C. T. A new approach to understanding and measuring glass formation in bulk amorphous materials[J]. Intermetallics,2004,12(10):1035-1043.
    [29]Spaepen F. A microscopic mechanism for steady state inhomogeneous flow in metallic glasses[J]. Acta Metallurgica,1977,25(4):407-415.
    [30]Argon A. S. Plastic deformation in metallic glasses[J]. Acta Metallurgica,1979, 27(1):47-58.
    [31]Yang B., Liu C. T., Nieh T. G. Unified equation for the strength of bulk metallic glasses[J]. Applied Physics Letters,2006,88(22):221911-1-221911-3.
    [32]Pan X. F., Zhang H., Zhang Z. F., et al. Vickers hardness and compressive properties of bulk metallic glasses and nanostructure-dendrite composites[J]. Journal of Materials Research,2005,20(10):2632-2638.
    [33]Maddin R., Masumoto T. The deformation of amorphous palladium-20 at.% silicon[J]. Materials Science and Engineering,1972,9:153-162.
    [34]Kawamura Y., Shibata T., Inoue A., et al. Deformation behavior of Zr65Al10oNi10Cu15 glassy alloy with wide supercooled liquid region[J]. Applied Physics Letters,1996, 69(9):1208-1210.
    [35]Bruck H. A., Rosakis A. J., Johnson W. L. The dynamic compressive behavior of beryllium bearing bulk metallic glasses[J]. Journal of Materials Research,1996, 11(02):503-511.
    [36]Mukai T., Nieh T. G., Kawamura Y., et al. Effect of strain rate on compressive behavior of a Pd40Ni40P20 bulk metallic glass [J]. Intermetallics,2002,10(11):1071-1077.
    [37]Mukai T., Nieh T. G., Kawamura Y., et al. Dynamic response of a Pd40Ni40P20 bulk metallic glass in tension[J]. Scripta Materialia,2002,46(1):43-47.
    [38]Das J., Tang M. B., Kim K. B., et al. "Work-hardenable" ductile bulk metallic glass [J]. Physical Review Letters,2005,94(20):205501-1-205501-4.
    [39]Yang B., Riester L., Nieh T. G. Strain hardening and recovery in a bulk metallic glass under nanoindentation[J]. Scripta Materialia,2006,54(7):1277-1280.
    [40]Bei H., Xie S., George E. P. Softening Caused by Profuse Shear Banding in a Bulk Metallic Glass[J]. Physical Review Letters,2006,96(10):105503-1-105503-4.
    [41]Liu C. T., Heatherly L., Horton J. A., et al. Test environments and mechanical properties of Zr-base bulk amorphous alloys[J]. Metallurgical and Materials Transactions A,1998,29(7):1811-1820.
    [42]Masumoto T., Maddin R. Structural stability and mechanical properties of amorphous metals[J]. Materials Science and Engineering,1975,19(1):1-24.
    [43]Pekarskaya E., Kim C., Johnson W. In situ transmission electron microscopy studies of shear bands in a bulk metallic glass based composite[J]. Journal of Materials Research,2001,16(9):2513-2518.
    [44]Donovan P. E. A yield criterion for Pd40Ni40P20 metallic glass [J]. Acta Metallurgica, 1989,37(2):445-456.
    [45]Wright W. J., Saha R., Nix W. D. Deformation mechanisms of the Zr4oTi14Ni10Cu12Be24 bulk metallic glass[J]. Materials Transactions-JIM,2001,42(4):642-649.
    [46]Lowhaphandu P., Montgomery S. L., Lewandowski J. J. Effects of superimposed hydrostatic pressure on flow and fracture of a Zr-Ti-Ni-Cu-Be bulk amorphous alloy[J]. Scripta Materialia,1999,41(1):19-24.
    [47]Donovan P., Stobbs W. The structure of shear bands in metallic glasses[J]. Acta Metallurgica,1981,29(8):1419-1436.
    [48]Pampillo C. A. Flow and fracture in amorphous alloys[J]. Journal of Materials Science, 1975,10(7):1194-1227.
    [49]Bengus V. Z., Tabachnikova E. D., Shumilin S., et al. Some peculiarities of ductile shear failure of amorphous alloy ribbons[J]. International Journal of Rapid Solidification,1993,8(1):21-31.
    [50]Polk D. E., Turnbull D. Flow of melt and glass forms of metallic alloys[J]. Acta Metallurgica,1972,20(4):493-498.
    [51]Spaepen F., Turnbull D. A mechanism for the flow and fracture of metallic glasses. [J]. Scripta Metallurgica,1974,8:563-568.
    [52]Steif P. S., Spaepen F., Hutchinson J. W. Strain localization in amorphous metals[J]. Acta Metallurgica,1982,30(2):447-455.
    [53]Krishnanand K. D., Cahn R. W. Recovery From Plastic Deformation in a Ni-Nb Alloy Glass[J]. Scripta Metallurgica,1975,9(11):1259-1261.
    [54]Pampillo C. A. Local ized shear deformation in a glassy metal [J]. Scripta Metallurgica, 1972,6(10):915-917.
    [55]Yang B., Liaw P. K., Wang G., et al. In-situ thermographic observation of mechanical damage in bulk-metallic glasses during fatigue and tensile experiments[J]. Intermetallics,2004,12(10):1265-1274.
    [56]Yang B., Morrison M. L, Liaw P. K., et al. Dynamic evolution of nanoscale shear bands in a bulk-metallic glass[J]. Applied Physics Letters,2005,86:141904-1-141904-3.
    [57]Gilbert C. J., Ager J. W., Schroeder V., et al. Light emission during fracture of a Zr-Ti-Ni-Cu-Be bulk metallic glass[J]. Applied Physics Letters,1999, 74(25):3809-3811.
    [58]Lewandowski J. J., Greer A. L. Temperature rise at shear bands in metallic glasses[J]. Nature Materials,2005,5(1):15-18.
    [59]Leamy H. J., Wang T. T., Chen H. S. Plastic flow and fracture of metallic glass[J]. Metallurgical and Materials Transactions B,1972,3(3):699-708.
    [60]Wright W. J., Schwarz R. B., Nix W. D. Localized heating during serrated plastic flow in bulk metallic glasses[J]. Materials Science and Engineering:A,2001, 319-321:229-232.
    [61]Huang R., Suo Z., Prevost J., et al. Inhomogeneous deformation in metallic glasses[J]. Journal of The Mechanics and Physics of Solids,2002,50(5):1011-1027.
    [62]Johnson W. L., Lu J., Demetriou M. D. Deformation and flow in bulk metallic glasses and deeply undercooled glass forming liquids-a self consistent dynamic free volume model [J]. Intermetallics,2002,10(11):1039-1046.
    [63]Chen H., He Y., Shiflet G. J., et al. Deformation-induced nanocrystal formation in shear bands of amorphous alloys[J]. Nature,1994,367(6463):541-543.
    [64]Jiang W. H., Pinkerton F. E., Atzmon M. Deformation-induced nanocrystallization in an Al-based amorphous alloy at a subambient temperature [J]. Scripta Materialia,2003, 48(8):1195-1200.
    [65]Kim J.-J., Choi Y., Suresh S., et al. Nanocrystallization during nanoindentation of a bulk amorphous metal alloy at room temperature [J]. Science,2002,295(5555):654-657.
    [66]Chen M., Inoue A., Zhang W., et al. Extraordinary plasticity of ductile bulk metallic glasses[J]. Physical Review Letters,2006,96(24):245502-1-245502-4.
    [67]Li J., Gu X., Hufnagel T. C. Using fluctuation microscopy to characterize structural order in metallic glasses[J]. Microscopy and Microanalysis,2003,9(6):509-515.
    [68]Li J., Spaepen F., Hufnagel T. C. Nanometre-scale defects in shear bands in a metallic glass[J]. Philosophical Magazine A,2002,82(13):2623-2630.
    [69]Flores K. M. Structural changes and stress state effects during inhomogeneous flow of metallic glasses[J]. Scripta Materialia,2006,54(3):327-332.
    [70]Kanungo B. P., Glade S. C., Asoka-Kumar P., et al. Characterization of free volume changes associated with shear band formation in Zr-and Cu-based bulk metallic glasses[J]. Intermetallics,2004,12(10):1073-1080.
    [71]Hirotsu Y., Nieh T. G., Hirata A., et al. Local atomic ordering and nanoscale phase separation in a Pd-NiHP bulk metallic glass[J]. Physical Review B,2006, 73(1):012205-1-012205-4.
    [72]Zhang Z. F., He G., Eckert J., et al. Fracture mechanisms in bulk metallic glassy materials[J]. Physical Review Letters,2003,91(4):045505-1-045505-4.
    [73]Lowhaphandu P., Ludrosky L. A., Montgomery S. L., et al. Deformation and fracture toughness of a bulk amorphous Zr-Ti-Ni-Cu-Be alloy[J]. Intermetallics,2000, 8(5-6):487-492.
    [74]He G., Lu J., Bian Z., et al. Fracture morphology and quenched-in precipitates induced embrittlement in a Zr-base bulk glass [J]. Materials Transactions,2001,42:356-364.
    [75]Jiang M. Q., Ling Z., Meng J. X., et al. Energy dissipation in fracture of bulk metallic glasses via inherent competition between local softening and quasi-cleavage[J]. Philosophical Magazine,2008,88:407-426.
    [76]Lee J. Y., Han K. H., Park J. M., et al. Deformation and evolution of shear bands under compressive loading in bulk metallic glasses[J]. Acta Materialia,2006, 54(19):5271-5279.
    [77]Wang G., Shen J., Sun J. F., et al. Tensile fracture characteristics and deformation behavior of a Zr-based bulk metallic glass at high temperatures[J]. Intermetall ics, 2005,13(6):642-648.
    [78]Takayama S. Serrated plastic flow in metallic glasses[J]. Scripta Metallurgica,1979, 13(6):463-467.
    [79]Alpas A. T., Edwards L., Reid C. N. Fracture and fatigue crack propagation in a nickel-base metallic glass[J]. Metallurgical and Materials Transactions A,1989, 20(8):1395-1409.
    [80]Noskova N., Vildanova N., Filippov Y. I., et al. Strength, plasticity, and fracture of ribbons of Fe5Co70Si15B10 amorphous alloy[J]. physica status solidi (a),1985, 87(2):549-557.
    [81]Bengus V. Z., Diko P., Csach K., et al. Failure crack orientation at ductile shear fracture of Fe80 xNi xB20 metallic glass ribbons[J]. Journal of Materials Science,1990, 25:1598-1602.
    [82]Davis L. A., Yeow Y. T. Flow and fracture of a Ni-Fe metallic glass[J]. Journal of Materials Science,1980,15(1):230-236.
    [83]Megusar J., Argon A. S., Grant N. J. Plastic flow and fracture in Pd80Si20 near T,[J]. Materials Science and Engineering,1979,38:63-72.
    [84]Chen M. Mechanical behavior of metallic glasses:Microscopic understanding of strength and ductility[J]. Annual Review of Materials Research,2008,38:445-469.
    [85]Loffler J. F. Bulk metallic glasses[J]. Intermetallics,2003,11(6):529-540.
    [86]Schroers J., Kumar G., Hodges T. M., et al. Bulk metallic glasses for biomedical applications[J]. JOM Journal of the Minerals, Metals and Materials Society,2009, 61(9):21-29.
    [87]Novikov V. N., Sokolov A. P. Poisson's ratio and the fragility of glass-forming liquids[J]. Nature,2004,431(7011):961-963.
    [88]Ashby M. F., Greer A. L. Metallic glasses as structural materials[J]. Scripta Materialia,2006,54(3):321-326.
    [89]Schneider S. Bulk metallic glasses[J]. Journal of Physics:Condensed Matter,2001, 13:7723-7736.
    [90]Choi-Yim H., Conner R. D., Szuecs F., et al. Processing, microstructure and properties of ductile metal particulate reinforced Zr57Nt5Al10Cu15.4Ni12.6 bulk metallic glass composites[J]. Acta Materialia,2002,50(10):2737-2745.
    [91]Li H., Subhash G., Kecskes L. J., et al. Mechanical behavior of tungsten preform reinforced bulk metallic glass composites[J]. Materials Science and Engineering:A, 2005,403(1):134-143.
    [92]Zhang H. F., Li H., Wang A. M.,-et al. Synthesis and characteristics of 80 vol.% tungsten (W) fibre/Zr based metallic glass composite[J]. Intermetallics,2009,17:1070-1077.
    [93]Fu H. M., Wang H., Zhang H. F., et al. In situ TiB-reinforced Cu-based bulk metallic glass composites[J]. Scripta Materialia,2006,54(11):1961-1966.
    [94]Mu J., Zhu Z. W., Zhang H. F., et al. Thermal behaviors of Al-based amorphous alloys bearing nanocrystalline In particles[J]. Acta Materialia,2010,58(19):6267-6275.
    [95]Oh Y. S., Kim C. P., Lee S., et al. Microstructure and tensile properties of high-strength high-ductility Ti-based amorphous matrix composites containing ductile dendrites[J]. Acta Materialia,2011,59(19):7277-7286.
    [96]Wang H. Bulk metallic glass composites[J]. Journal of Materials Science & Technology, 2005,21 (s1):86-90.
    [97]胡壮麒,张海峰.块状非晶合金及其复合材料研究进展[J].金属学报,2010,46(11):1391-1421.
    [98]Choi-Yim H., Johnson W. L. Bulk metallic glass matrix composites [J]. Applied Physics Letters,1997,71(26):3808-3810.
    [99]Fan C., Louzguine D. V., Li C., et al. Nanocrystal line composites with high strength obtained in Zr-Ti-Ni-Cu-Al bulk amorphous alloys[J]. Applied Physics Letters,1999, 75(3):340-342.
    [100]Fan C., Li C., Inoue A., et al. Deformation behavior of Zr-based bulk nanocrystal line amorphous alloys[J]. Physical Review B,2000,61(6):3761-3763.
    [101]Szuecs F., Kim C. P., Johnson W. L. Mechanical properties of Zr56.2Ti13.8Nb5.0Cu6.9Ni5.6Be12.5 ductile phase reinforced bulk metallic glass composite[J]. Acta Materialia,2001, 49(9):1507-1513.
    [102]Kuhn U., Eckert J., Mattern N., et al. ZrNbCuNiAl bulk metallic glass matrix composites containing dendritic bcc phase precipitates[J]. Applied Physics Letters,2002, 80:2478-2480.
    [103]Choi-Yim H., Busch R., K ster U., et al. Synthesis and characterization of particulate reinforced Zr57Nb5Al10Cu15.4Ni12.6 bulk metallic glass composites[J]. Acta Materialia, 1999,47(8):2455-2462.
    [104]Fan C., Ott R. T., Hufnagel T. C. Metallic glass matrix composite with precipitated ductile reinforcement [J]. Applied Physics Letters,2002,81 (6):1020-1022.
    [105]Conner R. D., Dandliker R. B., Johnson W. L. Mechanical properties of tungsten and steel fiber reinforced Zr41.25Ti13.75Cu12.5Ni10Be22.5 metallic glass matrix composites[J]. Acta Materialia,1998,46(17):6089-6102.
    [106]Zhang H. F., Wang A. M., Li H., et al. Quasi-static compressive property of metallic glass/porous tungsten bi-continuous phase composite[J]. Journal of Materials Research,2006,21(6):1351-1354.
    [107]Xue Y. F., Cai H. N., Wang L., et al. Strength-improved Zr-based metallic glass/porous tungsten phase composite by hydrostatic extrusion[J]. Applied Physics Letters,2007, 90(8):081901-1-081901-3.
    [108]Rohatgi P. K., Asthana R., Das S. Solidification, structures, and properties of cast metal-ceramic particle composites[J]. International Metals Reviews,1986, 31(1):115-139.
    [109]Inem B., Pollard G. Interface structure and fractography of a magnesium-alloy, metal-matrix composite reinforced with SiC particles[J]. Journal of Materials Science,1993,28(16):4427-4434.
    [110]Conner R. D., Choi-Yim H., Johnson W. L. Mechanical properties of Zr57Nb5Al10Cu15.4Ni12.6 metallic glass matrix particulate composites[J]. Journal of Materials Research,1999, 14(8):3292-3297.
    [111]Xu Y. K., Xu J. Ceramics particulate reinforced Mg65Cu20Zn5Y10 bulk metallic glass composites[J]. Scripta Materialia,2003,49(9):843-848.
    [112]Jang J. S. C., Jian S. R., Li T. H., et al. Structural and mechanical characterizations of ductile Fe particles-reinforced Mg-based bulk metallic glass composites[J]. Journal of Alloys and Compounds,2009,485(1-2):290-294.
    [113]Choi-Yim H., Lee S. -Y., Conner R. D. Mechanical behavior of Mo and Ta wire-reinforced bulk metallic glass composites[J]. Scripta Materialia,2008,58(9):763-766.
    [114]Conner R. D., Dandliker R. B., Scruggs V., et al. Dynamic deformation behavior of tungsten-fiber/metallic-glass matrix composi tes[J]. International Journal of Impact Engineering,2000,24(5):435-444.
    [115]Zong H. T., Ma M. Z., Liu L., et al. W(?)/Zr41.2Ti13.8Cu12.5Ni10Be22.5 bulk metallic glass composites prepared by a new melt infiltrating method[J]. Journal of Alloys and Compounds,2010,504:S106-S109.
    [116]Hui X., Dong W., Chen G. L., et al. Formation, microstructure and properties of long-period order structure reinforced Mg-based bulk metallic glass composites[J]. Acta Materialia,2007,55(3):907-920.
    [117]Khademian N., Gholami pour R. Fabrication and mechanical properties of a tungsten wire reinforced Cu-Zr-Al bulk metallic glass composite[J]. Materials Science and Engineering:A,2010,527(13-14):3079-3084.
    [118]He G., Eckert J., Loser W., et al. Novel Ti-base nanostructure-dendrite composite with enhanced plasticity[J]. Nature Materials,2003,2(1):33-37.
    [119]Kato H., Inoue A. Synthesis and Mechanical Properttie of Bulk Amorphous Zr-Al-Ni-Cu Alloys Containing ZrC Particles[J]. Materials Transactions-JIM,1997, 38(9):793-800.
    [120]Choi-Yim H., Schroers J., Johnson W. L. Microstructures and mechanical properties of tungsten wire/particle reinforced ZrNbAlCuNi metallic glass matrix composites [J]. Applied Physics Letters,2002,80:1906-1908.
    [121]Zhang H., Zhang Z. F., Wang Z. G., et al. Fatigue damage and fracture behavior of tungsten fiber reinforced Zr-based metallic glassy composite[J]. Materials Science and Engineering:A,2006,418:146-154.
    [122]Ma W., Kou H., Chen C., et al. Compressive deformation behaviors of tungsten fiber reinforced Zr-based metallic glass composites[J]. Materials Science and Engineering: A,2008,486(1):308-312.
    [123]Dragoi D., Ustundag E., Clausen B., et al. Investigation of thermal residual stresses in tungsten-fiber/bulk metallic glass matrix composites[J]. Scripta Materialia,2001, 45(2):245-252.
    [124]Clausen B., Lee S. Y., Ostundag E., et al. Compressive yielding of tungsten fiber reinforced bulk metallic glass composites[J]. Scripta Materialia,2003, 49(2):123-128.
    [125]Zhang H., Liu L. Z., Zhang Z. F., et al. Deformation and fracture behavior of tungsten fiber-reinforced bulk metallic glass composite subjected to transverse loading[J]. Journal of Materials Research,2006,21(6):1375-1384.
    [126]Qiu K. Q., Wang A. M., Zhang H. F., et al. Mechanical properties of tungsten fiber reinforced ZrAlNiCuSi metallic glass matrix composite[J]. Intermetallics,2002, 10(11):1283-1288.
    [127]Zhang H., Zhang Z. F., Wang Z. G., et al. Effects of tungsten fiber on failure mode of Zr-based bulk metallic glassy composite[J]. Metallurgical and Materials Transactions A,2006,37(8):2459-2469.
    [128]Zhang H., Zhang Z., Wang Z., et al. Deformation and damage evolution of tungsten fiber reinforced metallic glass matrix composite induced by compression[J]. Materials Science and Engineering:A,2008,483:164-167.
    [129]Wang G., Chen D. M., Shen J., et al. Deformation behaviors of a tungsten-wire/bulk metallic glass matrix composite in a wide strain rate range[J]. Journal of Non-crystalline Solids,2006,352(36-37):3872-3878.
    [130]Bae D. H., Lee M. H., Kim D. H., et al. Plasticity in Ni59Zr20Ti16Si2Sn3 metallic glass matrix composites containing brass fibers synthesized by warm extrusion of powders [J]. Applied Physics Letters,2003,83:2312-2314.
    [131]Haein C. Y., Lee S. Y., Conner R. D. Mechanical behavior of Mo and Ta wire-reinforced bulk metallic glass composites [J]. Scripta Materialia,2008,58 (9):763-766.
    [132]Bian Z., Pan M. X., Zhang Y., et al. Carbon-nanotube-reinforced ZrCuNiAlTi bulk metallic glass composites[J]. Applied Physics Letters,2002,81:4739-4741.
    [133]Deng S. T., Diao H., Chen Y. L., et al. Metallic glass fiber-reinforced Zr-based bulk metallic glass[J]. Scripta Materialia,2011,64(1):85-88.
    [134]Xue Y. F., Cai H. N., Wang L., et al. Deformation and failure behavior of a hydrostatically extruded Zr38Ti17Cu10.5Co12Be22.5 bulk metallic glass/porous tungsten phase composite under dynamic compression[J]. Composites Science and Technology, 2008,68(15-16):3396-3400.
    [135]Xue Y. F., Wang L, Cheng H. W., et al. Shear band formation and mechanical properties of Zn38Ti17Cu10.5Co12Be22.5 bulk metallic glass/porous tungsten phase composite by hydrostatic extrusion [J]. Materials Science and Engineering:A,2010,527:5909-5914.
    [136]Sun Y., Zhang H., Wang A., et al. Mg-based metallic glass/titanium interpenetrating phase composite with high mechanical performance [J]. Applied Physics Letters,2009, 95(17):171910-1-171910-3.
    [137]Sun Y., Zhang H., Wang A., et al. Compressive deformation and damage of Mg-based metallic glass interpenetrating phase composite containing 30-70 vol% titanium[J]. Journal of Materials Research,2010,25(11):2192-2196.
    [138]Chen Y., Wang A., Fu H., et al. Preparation, microstructure and deformation behavior of Zr-based metallic glass/porous SiC interpenetrating phase composites[J]. Materials Science and Engineering:A,2011,530:15-20.
    [139]Hays C. C., Kim C. P., Johnson W. L. Microstructure controlled shear band pattern formation and enhanced plasticity of bulk metallic glasses containing in situ formed ductile phase dendrite dispersions[J]. Physical Review Letters,2000, 84(13):2901-2904.
    [140]Zhu Z. W., Gu L., Xie G. Q., et al. Relation between icosahedral short-range ordering and plastic deformation in Zr-Nb-Cu-Ni-Al bulk metallic glasses[J]. Acta Material ia, 2011,59(7):2814-2822.
    [141]Qiao J. W., Sun A. C., Huang E. W., et al. Tensile deformation micromechanisms for bulk metallic glass matrix composites:From work-hardening to soft.ening[J]. Acta Materialia,2011,59(10):4126-4137.
    [142]Gargarella P., Pauly S., Song K. K., et al. Ti-Cu-Ni shape memory bulk metallic glass composites[J]. Acta Materialia,2013,61 (1):151-162.
    [143]Eckert J., Das J., Pauly S., et al. Mechanical properties of bulk metallic glasses and composites[J]. Journal of Materials Research,2007,22(02):285-301.
    [144]Zhang Z., He G., Zhang H., et al. Rotation mechanism of shear fracture induced by high plasticity in Ti-based nano-structured composites containing ductile dendrites[J]. Scripta Materialia,2005,52(9):945-949.
    [145]沈观林,胡更开.复合材料力学[M].北京:清华大学出版社,2006:188-243.
    [146]Gao Y. C., Mai Y. W., Cotterell B. Fracture of fiber-reinforced materials[J]. Journal of Applied Mathematics and Physics,1988,39(4):550-572.
    [147]Guo Z. X., Derby B. Solid-state fabrication and interfaces of fibre reinforced metal matrix composites[J]. Progress In Materials Science,1995,39(4):411-495.
    [148]Du Z. Z., McMeeking R. M. Control of strength anisotropy of metal matrix fiber composites[J]. Journal of Computer-aided Materials Design,1993,1(3):243-264.
    [149]He M. Y., Evans A. G., Curtin W. A. The ultimate tensile strength of metal and ceramic-matrix composites [J]. Acta Metallurgica et Materialia,1993,41(3):871-878.
    [150]Jansson S., Deve H. E., Evans A. G. The anisotropic mechanical properties of a Ti matrix composite reinforced with SiC fibers[J]. Metallurgical and Materials Transactions A,1991,22(12):2975-2984.
    [151]Gunawardena S. R., Jansson S., Leckie F. A. Modeling of anisotropic behavior of weakly bonded fiber reinforced MMC's[J]. Acta Metallurgica et Materialia,1993, 41(11):3147-3156.
    [152]Lu J., Ravichandran G., Johnson W. L. Deformation behavior of the Zr41.2Ti13.8Cu12.5Ni10Be22.5 bulk metallic glass over a wide range of strain-rates and temperatures[J]. Acta Materialia,2003,51(12):3429-3443.
    [153]Zhang B., Fu H., Zhu Z., et al. Synthesis and properties of tungsten balls/Zr-base metallic glass composite[J]. Materials Science and Engineering:A,2012, 540:207-211.
    [154]Bian Z., Kato H., Qin C., et al. Cu-Hf-Ti-Ag-Ta bulk metallic glass composites and their properties[J]. Acta Materialia,2005,53(7):2037-2048.
    [155]Ding S., Kong J., Schroers J. Wetting of bulk metallic glass forming liquids on metals and ceramics[J]. Journal of Applied Physics,2011,110:043508-1-043508-6.
    [156]Liu N., Ma G. F., Zhang H. F., et al. Wetting behavior of Zr-based bulk metallic glasses on W substrate[J]. Materials Letters,2008,62(17-18):3195-3197.
    [157]Liu N., Zhang H., Li H., et al. Wetting phenomena in CuZr-based glassy alloys/W system[J]. Journal of Alloys and Compounds,2010,494(1-2):347-350.
    [158]Ma G. F., Zhang H. F., Li H., et al. Wetting behavior of CuZr-based BMGs/alumina system[J]. Journal of Alloys and Compounds,2008,462(1):343-346.
    [159]Shen P., Lin Q., Jiang Q., et al. Reactive wetting of polycrystalline TiC by molten Zr55Cu30Al10Ni5 metallic glass alloy [J]. Journal of Materials Research,2009, 24(07):2420-2427.
    [160]Delannay F., Froyen L., Deruyttere A. The wetting of solids by molten metals and its relation to the preparation of metal-matrix composites composites[J]. Journal of Materials Science,1987,22(1):1-16.
    [161]Schroers J., Samwer K., Szuecs F., et al. Characterization of the interface between the bulk glass forming alloy Zr41Ti14Cu12Ni10Be23 with pure metals and ceramics[J]. Journal of Materials Research,2000,15(07):1617-1621.
    [162]Zhu Z., Zhang H., Hu Z., et al. Ta-particulate reinforced Zr-based bulk metallic glass matrix composite with tensile plasticity[J]. Scripta Materialia,2010, 62(5):278-281.
    [163]Das J., Tang M. B., Kim K. B., et al. "Work-Hardenable" Ductile Bulk Metallic Glass[J]. Physical Review Letters,2005,94(20):205501-1-205501-4.
    [164]Liu Y. H., Wang G., Wang R. J., et al. Super plastic bulk metallic glasses at room temperature[J]. Science,2007,315(5817):1385-1388.
    [165]Choi-Yim H., Conner R. D., Szuecs F., et al. Quasistatic and dynamic deformation of tungsten reinforced Zn57Nh5Al10Cu15.4Ni12.6 bulk metallic glass matrix composites[J]. Scripta Materialia,2001,45(9):1039-1046.
    [166]王从曾,刘会亭.材料性能学[M].北京:北京工业大学出版社,2001:16.
    [167]Lee C. J., Huang J. C., Nieh T. G. Sample size effect and microcompression of Mg65Cu25Gd10 metallic glass[J]. Applied Physics Letters,2007,91:161913-1-161913-3.
    [168]Schuster B. E., Wei Q., Hufnagel T. C., et al. Size-independent strength and deformation mode in compression of a Pd-based metallic glass[J]. Acta Materialia, 2008,56(18):5091-5100.
    [169]Xie S., George E. P. Size-dependent plasticity and fracture of a metallic glass in compression[J]. Intermetallics,2008,16(3):485-489.
    [170]Wu F. F., Zhang Z. F., Mao S. X. Size-dependent shear fracture and global tensile plasticity of metallic glasses[J]. Acta Materialia,2009,57(1):257-266.
    [171]Zhang Z., Zhang H., Pan X., et al. Effect of aspect ratio on the compressive deformation and fracture behaviour of Zr-based bulk metallic glass[J]. Philosophical Magazine Letters,2005,85(10):513-521.
    [172]Conner R. D., Li Y., Nix W. D., et al. Shear band spacing under bending of Zr-based metallic glass plates[J]. Acta Materialia,2004,52(8):2429-2434.
    [173]Xue Y. F., Cai H. N., Wang L., et al. Effect of loading rate on failure in Zr-based bulk metallic glass[J]. Materials Science and Engineering:A,2008,473(1):105-110.
    [174]Xue Y. F., Wang L., Cai H. N., et al. Effect of Strain Rate on Plastic Flow in Zr-Based Metallic-Glass-Reinforced Porous Tungsten Matrix Composites[J]. Metallurgical and Materials Transactions A,2011,42(11):3521-3526.
    [175]Bechtold J. H. Strain rate effects in tungsten[J]. Transactions of The American Institute of Mining, Metallurgical and Petroleum Engineers,1956,206:142-146.
    [176]Bechtold J. H., Shewmon P. G. Flow and Fracture Characteristics of Annealed Tungsten[J]. Transactions of The American Society For Metals,1954,46:397-408.
    [177]Iliescu D., Schulson E. M. The brittle compressive failure of fresh-water columnar ice loaded biaxially[J]. Acta Materialia,2004,52(20):5723-5735.
    [178]Fan J. T., Zhang Z. F., Jiang F., et al. Ductile to brittle transition of Cu46Zr47Al7 metallic glass composites[J]. Materials Science and Engineering:A,2008, 487(1):144-151.
    [179]Fu X. L., Li Y., Schuh C. A. Mechanical properties of metallic glass matrix composites: Effects of reinforcement character and connectivity[J]. Scripta Materialia,2007, 56(7):617-620.
    [180]Pauly S., Gorantla S., Wang G., et al. Transformation-mediated ductility in CuZr-based bulk metallic glasses[J]. Nature Materials,2010,9(6):473-477.
    [181]Fu S. Y., Feng X. Q., Lauke B., et al. Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate-polymer composites[J]. Composites Part B:Engineering,2008, 39(6):933-961.
    [182]Inoue A., Nishiyama N. New bulk metallic glasses for applications as magnetic-sensing, chemical, and structural materials[J]. MRS Bulletin,2007,32(08):651-658.
    [183]Schuh C. A., Hufnagel T. C., Ramamurty U. Mechanical behavior of amorphous alloys [J]. Acta Materialia,2007,55(12):4067-4109.
    [184]Conner R. D., Johnson W. L., Paton N. E., et al. Shear bands and cracking of metallic glass plates in bending[J]. Journal of Applied Physics,2003,94:904-911.
    [185]Yoo B. G., Jang J. A study on the evolution of subsurface deformation in a Zr-based bulk metallic glass during spherical indentation[J]. Journal of Physics D:Applied Physics,2008,41:074017-1-074017-7.
    [186]Louzguine D. V., Kato H., Inoue A. High-strength Cu-based crystal-glassy composite with enhanced ductility[J]. Applied Physics Letters,2004,84:1088-1089.
    [187]Hui X. D., Kou H. C., He J. P., et al. Preparation, microstructure and mechanical properties of Zr-based bulk amorphous alloys containing tungsten[J]. Intermetallics, 2002,10(11-12):1065-1069.
    [188]Kim K. B., Das J., Baier F., et al. Lattice distortion/disordering and local amorphization in the dendrites of a Ti66.1Cu8Ni4.8Sn7.2Nb13.9 nanostructure-dendrite composite during intersection of shear bands[J]. Applied Physics Letters,2005, 86(20):201909-1-201909-3.
    [189]Liu T., Shen P., Qiu F., et al. Synthesis and mechanical properties of TiC-reinforced Cu-based bulk metallic glass composites[J]. Scripta Materialia,2009,60(2):84-87.
    [190]Subhash G., Dowding R. J., Kecskes L. J. Characterization of uniaxial compressive response of bulk amorphous Zr-Ti-Cu-Ni-Be alloy[J]. Materials Science and Engineering:A,2002,334(1-2):33-40.
    [191]Jiao T., Kecskes L. J., Hufnagel T. C., et al. Deformation and failure of Zr57Nb5Al10Cu15.4Ni12.6/W particle composites under quasi-static and dynamic compression[J]. Metallurgical and Materials Transactions A,2004,35(11):3439-3444.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700