用户名: 密码: 验证码:
MgF_2/Ag界面结构特性及对光学性能影响的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氟化镁(MgF2)具有良好的光学性能,是一种传统的光学薄膜材料。从真空紫外波段到红外波段,具有透过率高、吸收率低、折射率低且热稳定性好等优异性能,使其在光学领域的应用越来越广泛。MgF2/金属多层膜结构、金属插层的MgF2光子晶体、金属-MgF2纳米金属复合陶瓷膜,是近年来新出现的研究热点,其中Ag/MgF2多层膜、Ag-MgF2纳米金属复合陶瓷膜,由于量子尺寸效应引起的独特光电特性而备受关注。这些结构中,存在大量的表面、界面及原子间相互作用,会对材料的微观结构及相关性能产生重要影响,尤其Ag/MgF2体系的界面结构、互扩散行为及对光学性能的研究还尚待进一步深入,鉴于实验研究的难度和局限性,原子层次的模拟计算就显得尤为重要。近年来,原子层次上探索实验机理、材料性能预测的研究,正在成为材料科学研究的重要手段。本论文基于第一性原理研究了Ag/MgF2纳米薄膜界面的相关问题,主要研究成果如下:
     (1)系统分析了MgF2块体表面、MgF2内米薄膜的结构稳定性、电子特性及光学性能。(001)、(100)、(110)表面的稳定性依次增强,其中最密排面(110)为MgF2块体最稳定存在的表面;对比分析了以(001)、(100)、(110)为表面纳米薄膜的表面能,表明(100)的表面能低于(001)、(110)的表面能,(100)是MgF2纳米薄膜易于稳定存在的表面之一;块体MgF2的折射率的实验值与理论计算值非常吻合,(100)、(001)、(110)面构成纳米薄膜的折射率较块体材料小;研究发现(001)面纳米薄膜原子层数达25层,即膜厚为4nm时的MgF2薄膜结构较为稳定,并有随薄膜厚度的增加薄膜的折射率及消光系数减小的趋势。
     (2)分析了Ag(111)表面、Ag(111)面构成纳米薄膜的结构稳定性、电子特性及光学性能。不同原子层厚度的Ag(111)面纳米薄膜表面能研究发现,原子层厚度增加到13层时,即膜厚约为2.8nm时,纳米薄膜表面能趋于稳定,为薄膜稳定存在的临界厚度;光学特性来看,在可见光及红外波段,Ag(111)面构成的纳米薄膜的折射率明显高于块体材料而消光系数略高于块体材料,在所研究纳米尺度范围内有随着薄膜厚度的增加,折射率降低、消光系数增加的趋势。
     (3)系统研究了Ag在MgF2(100)、(001)、(110)表面吸附、扩散结构模型,以及吸附、扩散对MgF2电子结构及光学性能的影响规律。结果表明,Ag在MgF2(100)、(001)、(110)面的吸附为化学吸附,稳定吸附位分别为穴位、短桥位、长桥位;(100)、(110)、(001)面吸附Ag体系的稳定性依次增强,Ag、Mg间以离子键形式结合和Ag、F间以共价键形式作用;Ag在MgF2表面的稳定性较强,不易由表面扩散至次表面;MgF2表面含Ag吸附、扩散体系的折射率在可见光波段,较块体MgF2减小,吸收系数较块体MgF2增加。
     (4)探讨了MgF2/Ag纳米薄膜理想界面、互扩散界面的结构稳定性、扩散行为及光学性能。获得了Ag(111)/MgF2(001)理想界面结构界面能最小的稳定结构;Mg、Ag在Ag(111)/MgF2(001)界面结构体系中的扩散行为来看,界面处Mg比Ag更容易扩散入Ag中,而Ag较难扩散入MgF2。Ag扩散引起体系折射率减小,尤其在可见光波段,折射率减小幅度更大。
As one of the most important optical film materials currently available, magnesium fluoride (MgF2) possesses a low refractive index, low absorption, a high thermal stability and good transparency over a wide range of wavelengths. Recently, a lot of new hotspots have attracted researchers'attention, such as MgF2/metal multilayers, metal-intercalated MgF2photonic crystals, metal-MgF2nanoparticle cermet films, among which Ag/MgF2composite films is now an important concern because of their novel photoelectric properties. However, there are a lot of surfaces, interfaces and atomic interaction in Ag/MgF2composite films, which will have a significant effect on the microstructure and performances. So far, the research of Ag/MgF2about interface structure, interdiffusion behavior, and their effect on optical properties of remain to be further investigated. Due to the difficulties and limitations of experimental research, it is very important to simulate from atomic level. In recent years, exploration of the experimental mechanism and prediction of material's properties from atomic level is becoming important means of materials science research. In this paper, interface of Ag/MgF2nanofilms were studied based on the first-principles. The main research results are as follows:
     (1) The structural stability, electronic properties, and optical properties of MgF2surfaces and nanofilms were analyzed. The structural stability of MgF2surfaces increases in the following order:(001),(100), and (110), which reveals the most close-packed surface, that is (110), is most stable. The surface energy of MgF2(100) nanofilms is smaller than that of (100) and (110) nanofilms and MgF2(100) nanofilms can exist stably. Further, MgF2(001) nanofilms are energetically stabilized when the layer number is increased to25, corresponding to a thickness of4nm. Refractive index of MgF2nanofilms is decreased compared with the bulk. With increasing thin film thickness, refractive index and their extinction coefficient of MgF2(001) nanofilms are decreased.
     (2) The structural stability, electronic and optical properties of Ag (111) surface and Ag (111) nanofilms were analyzed. Ag (111) nanofilms are energetically stabilized when the layer number is increased to13, corresponding to a thickness of2.8nm. Analysis on the optical properties of nanofilms suggests that refractive index is significantly increased and extinction coefficient is slightly decreased compared with the bulk in the visible light and infrared wavelengths. With increasing thin film thickness, the refractive index decreased slightly and the extinction coefficient increase.
     (3) The adsorption and diffusion of Ag on MgF2(100),(001) and (110) surfaces were studied. The results show that the adsorption is chemical and the energetically favorable adsorption sites of (100),(001), and (110) are hollow site, short bridge site and long bridge site, respectively. The structural stability of Ag-adsorbed surfaces increases in the following order:(100),(110) and (001). The interaction between Ag and Mg is ionic, while covalent between Ag and F. The diffusion of Ag at MgF2(001) surface is not easy. In the visible wavelength region, the refractive index of MgF2surface with Ag adsorption is slightly decreased compared with that of the bulk, while the optical absorption is slightly increased.
     (4) The interface characteristics of Ag/MgF2nanofilms were discussed. The most stable ideal interface structure of Ag (111)/MgF2(001) is obtained, which has the lowest interface energy. The analysis on the diffusion behavior shows that Mg diffuses into Ag film more easily, while Ag diffuses into MgF2film difficultly. Further, Ag diffusion results in a decrease in refractive index, especially in the visible light wavelength region.
引文
[1]Deadmore D. L., Machin J. S., Allen A. W. Stability of inorganic fluorine-bearing compounds:1. Binary metallic fluorides [J]. J. Am. Ceram. Soc.,1961,44 (3):105-109.
    [2]Messier D. R. Kinetics of high-temperature hydrolysis of magnesium fluoride,1. Evaluation of reaction mechanism [J]. J. Am. Ceram. Soc.,1965,48(9):452-459.
    [3]Murata T., Ishizawa H., Motoyama I., et al. Investigations of MgF2 optical thin films prepared from autoclaved sol [J]. J. Sol-Gel Sci. Technol.,2004,32:161-165.
    [4]王学华,薛亦,赵利,等.新型光学薄膜研究及发展现状[J].武汉理工大学学报,2004,24(2):20-23.
    [5]卢维强,王华清,肖畅,等.光学薄膜及其应用[J].现代显示,2007,73:6-9.
    [6]李金丽,刘全校,许文才.光学薄膜及其发展现状[J].化工新型材料,2012,40(2):14-20.
    [7]郑伟涛.薄膜材料与薄膜技术[M].北京:化学工业出版社,1991:285-287.
    [8]范正修.光学薄膜及其进展[J].光学学报,2011,31(9):0900131-1-5.
    [9]Lee I, Lim D. G. The effects of a doubke layer anti-reflection coating for a buried contact solar cell application [J]. Surface and Coatings Technology,2001,137(1):86-91.
    [10]Kaiser, Lequime M., Macleod H. A. Advance in optical thin films III [M]. Bellingham: SPIE Press,2008:153-158.
    [11]车晓舟, 陈莲华,马洪涛,等.厚度对超薄类金刚石薄膜结构的影响[J].科学通报,2010:55(3):302-305.
    [12]Freeman C. L., Claeyssens F., Allan N. L., et al. Graphitic nanofilms as precursors to wurtzite films:theory [J]. Phys. Rev. Lett.,2006,96(6):066102-066105.
    [13]Li H. D., Li J., Wang Z. G., et al. Layer number-dependent structural evolution of two-dimensional diamond films [J]. J. Chem. Phys.,2012,550:130-133.
    [14]Li Chun, Guo Wanlin, Kong Yong, et al. Size-dependent piezoelectricity in zinc oxide nanofilms from first-principles calculations [J]. Appl. Phys. Lett.2007,90(3):033108-033110.
    [15]Tlili B., Nouveau C., Nasri M., et al., Effect of layer thickness on thermal properties of multilayer thin films produced by PVD [J]. Vacuum,2012,86:1048-1056.
    [16]孙喜莲,洪瑞金,齐红基,等.磁控溅射不同厚度银腆的微结构及其光学常数[J].物理学报,2006,55(9):4923-4927.
    [17]Valat G. V., Vidal J. P., Zeyen C. M., et al. Neutron diffraction study of magnesium fluoride single crystals [J].Acta Crystallogr,1979, B35:1584-1590.
    [18]Palik E. D. Handbook of optical constants of solids [M]. Orlando:Academic Press,1991; 899-901.
    [19]Simanovskii D. M., Schwettman H. A., Lee H., et al. Midinfrared optical breakdown in transparent dielectrics [J]. J. Phys. Rev. Lett.,2003,91(10):107601.
    [20]Williams M. W., Macrae R. A., Arakawa E. T. Optical properties of magnesium fluoride in the vacuum ultraviolet [J]. J. Appl. Phys.,1967,38(4):1701-1705.
    [21]Korkmaz Sadan, Elmas Saliha, Ekem Naci, et al. Deposition of MgF2 thin films for antireflection coating by using thermionic vacuum arc (TVA) [J]. Optics Communications, 2012,285:2373-2376.
    [22]Hunter W. R., Osantowski J. F., Hass G. Reflectance of aluminum overcoated with MgF2 and LiF in the wavelength region from 1600 A to 300 A at various angles of incidence [J]. Appl. Opt.1971,10(3):540-544.
    [23]Larruquert J. I., Keski-Kuha R. A. M. Far ultraviolet optical properties of MgF2 films deposited by ion-beam sputtering and their application as protective coatings for Al [J]. Opt. Commun.,2003,215:93-99.
    [24]Fernandez-Perea M., Aznarez J. A., Calvo-Angos J., et al. Far ultraviolet reflectance variation of MgF2-protected aluminum films under controlled exposure to the main components of the atmosphere [J]. Thin Solid Films,2006,497:249-253.
    [25]张振铎,王淑荣,李福田.等.空间紫外遥感仪器漫反射板的真空紫外辐照特性[J].光学精密工程,2008,16(11):2055-2059.
    [26]Xu Xueke, Tang Zhaosheng, Shao Jianda, et al. The study on the interface adhesion comparison of the MgF2, Al2O3, SiO2 and Ag thin films [J].Applied Surface Science, 2005,245:11-15.
    [27]Sadan Korkmaz, Saliha Elmas, Naci Ekem, et al. Deposition of MgF2 thin films for antireflection coating by using thermionic vacuum arc (TVA) [J]. Optics Communications, 2012, 285: 2373-2376.
    [28]Liu Guanghui, Xiao Qiling, Jin Yunxia, et al. Mechanical stress in 355 nm LaF3/MgF2 high reflectors with various layer-pair number and methods for reduction [J]. Vacuum, 2010,84:778-781.
    [29]Liu Guanghui, Zhou Ming, Hu Guohang, et al. Calculation of temperature fields with a film-substrate interfacial layer model to discuss the layer-pair number effects on the damage thresholds of LaF3/MgF2 high reflectors at 355 nm[J]. Applied Surface Science, 2010,256:4206-4210.
    [30]Yu Hua, Wu Longqi, Liu Caifeng, et al. Study on the feasibility of double stack high reflector coating at 355 nm [J]. Optics & Laser Technology, 2012, 44: 810-814.
    [31]Zhang Guangchun, Zhao Jianhua, Green Martin A. Effect of substrate heating on the adhesion and humidity resistance of evaporated MgF2/ZnS antireflection coatings and on the performance ofhigh-efficiency silicon solar cells[J]. Solar Hnergy Materials and Solar Cells, 1998,51:393-400.
    [32]Andenet Alemu, AlexFreundlich, NacerBadi, et al. Low temperature deposited boron nitride thin films for a robust anti-reflection coating of solar cells[J]. Solar Energy Materials & Solar Cells, 2010, 94: 921-923.
    [33]Diedenhofen Silke L., Grzegorz Grzela, Erik Haverkamp, et al. Broadband and omnidirectional anti-reflection layer for Ⅲ/Ⅴ multi-junction solar cells [J]. Solar Energy Materials & Solar Cells, 2012, 101: 308-314.
    [34]Perrenoud J., Schaffner B., Buecheler S., et al. Fabrication of flexible CdTe solar modules with monolithic cell interconnection[J]. Solar Energy Materials & Solar Cells, 2011,95: S8-S12.
    [35]Jung Sung-Mok, Kim Young-Hwan, Kim Seong-I, et al. Design and fabrication of multi-layer antireflection coating for Ⅲ-Ⅴ solar cell [J]. Current Applied Physics, 2011, 11(3): 538-541.
    [36]Liao Yingjie, Yu Fangfang, Li Long, et al. Low-cost and reliable thin film encapsulation for organic light emitting diodes using magnesium fluoride and zinc sulfide[J]. Thin Solid Films 2011, 519: 2344-2348.
    [37]Chen Shufen, Shi Hongying, Fan Cheng, et al. A very high- contrast top-emitting organic light-emitting diode with a Ni/ZnS/MgF2/Ni contrast-enhancing stack and a CuPc/C60, anti-reflection bilayer [J]. Org. Electron.,2012, http://dx.doi.org/10.1016/j.orgel.2012. 09.038.
    [38]Scalora M., Bloemer M. J., Pethel A. S, et al. Transparent metallo-dielectric one-dimensional photonic band-gap structures [J]. J Appl Phys,1998,83:2377-2383.
    [39]Malherbe A. Interference filters for the far ultraviolet [J]. Appl Opt,1974,13(6): 1275-1276.
    [40]Zukic M., Torr D. G., Spann J.F., et al. Vacuum ultraviolet thin films:optical constants of BaF2, CaF2, LaF3, MgF2, Al2O3, HfO2, and SiO2 thin films [J]. Appl Opt,1990,29(28): 4284-4292.
    [41]Taylor A. J., Gibson R. B., Roberts J P., et al. Two photon absorption at 248 nm in ultraviolet window materials [J].Opt Lett,1988,13(10):814-816.
    [42]Nishikawa M., Kita E., Tasaki A. Optical transmissions in metal/insulator (Fe/MgF2) multilayered thin films [J]. J. Appl.Phys.78 (1995)5198-5200.
    [43]Yablonovitch E. Inhibited spontaneous emission in solid-state physics and electronics [J]. Physical Review Letters,1987,58(20):2059-2062.
    [44]John S. Strong localization of photons in certain disordered dielectric superlattices [J]. Physical Review Letters,1987,58(23):2486-2489.
    [45]Woo S. H., Hwangbo C. K. Effects of annealing on the optical, structural, and chemical properties of TiO2 and MgF2 thin films prepared by plasma ion-assisted deposition [J]. Applied Optics,2006,45(7):1447-1455.
    [46]Woo S. H., Hwangbo C. K. Optical anisotropy of TiO2 and MgF2 thin films by angle deposition [J]. J. Korean Phys. Soc.,2006,49:2136-2139.
    [47]Woo S.H., Hwangbo C.K. Influence of plasma ion-beam assistance on TiO2 and MgF2 thin films deposited by plasma ion-assisted deposition [J]. Surf. Coat. Technol.,2007, 201:8250-8257.
    [48]Kruger H., Hertwig A., Beck U., E. Kemnitz, et al. Low temperature sol-gel metal oxide and fluoride layer stacks for optical applications [J]. Thin Solid Films,2010,518: 6080-6086.
    [49]Zhang Wenting, Han Peide, Lan Aidong, et al. Defect modes tuning of one-dimensional photonic crystals with lithium niobate and silver material defect [J]. Physica E,2012,44: 813-815.
    [50]Li Hongfei, Guan Huihuan, Han Peide, et al. Design for a broad non-transmission band gap of three-color filters using photonic heterostructures [J]. Optics Communications, 2012,287:162-166.
    [51]Guan Huihuan, Han Peide, Li Yuping, et al. Optimization of dichromatic filters based on photonic heterostructures of Si/MgF2 [J]. Optics Communications,2012,285: 2656-2659.
    [52]Larciprete M. C., Sibilia C., Paoloni S., et al. Accessing the optical limiting properties of metallo-dielectric photonic band gap structures [J]. J. Appl. Phys.,2003,93:5013-5017.
    [53]孙兆奇,何玉平,宋学萍,等. Cu-MgF2复合纳米金属陶瓷薄膜的电导特性研究[J].物理学报,2003,52(6):1455-1459.
    [54]Gajdardziska-Josifovska M., McPhedran R. C., McKenzie D. R., et al. Silver-magnesium fluoride cermet films.2:Optical and electrical properties [J]. Applied Optics,1989, 28(14):2744-2753.
    [55]Lissberger P. H., Nelson R. G. Optical properties of thin film Au-MgF2 cermets [J]. Thin Solid Films,1974,21(1):159-172.
    [56]Sun Z. Q., Cai Q., Song X. P. Microstructure and electrical conductivity of Au-MgF2 nanoparticle cermet films [J]. Thin Solid Films,2008,516(8):2280-2285.
    [57]Sun Z. Q., Sun D. M., Ruan T. N. Microstructure and electrical properties of Ag-MgF2 cermet film with high Ag content [J]. Vacuum,2003,68(2):155-159.
    [58]Sun Z. Q., Xiao L., Cao L., et al. Optical nonlinear characteristics of MgF2 films containing Cu nanoparticles [J]. Chinese Optics Letters,2009,7(10):964-966.
    [59]Moss, Swinehart, Spicuzza, et al. Process for preparation of hot pressable magnesium fluoride [P]. US:3920802,1975-11-18.
    [60]周关关,于海欧,郑丽和,等.中红外光学材料的高温性能研究[J].红外与激光工程,2012,41(3):554-558.
    [61]Nofar M., Madaah Hosseini H. R., Shivaee H. A. The dependency of optical properties on density for hot pressed MgF2 [J]. Infrared Physics & Technology,2008,51(6): 546-549.
    [62]Moghim M. H., Paydar M. H. Hot-pressing of bimodally distributed magnesium fluoride powder [J]. Infrared Physics & Technology,2010,53(6):430-433.
    [63]崔益本,姜芸芸,纪玉峰. Co:MgF2光谱特性与可调谐激光技术[J].光电子技术与信息,1995,8(6):13-16.
    [64]张计划,丁建文,卢章辉.Co掺杂MgF2电子结构和光学特性的第一性原理研究[J].物理学报,2009,58(3):1901-1907.
    [65]Xie L. H., Qiu M. Correlation between optical spectrum, electron paramagnetic resonance spectrum and local structure of MgF2: Mn2+[J]. Acta. Phys. Sin.2005,54: 5845-5848.
    [66]Secu M., Secu C. E., Jipa S., et al. High temperature thermoluminescence of Mn2+-doped MgF2 phosphor for personal dosimetry [J]. Radiat. Meas.,2008,43:383-386.
    [67]刘云林,李宗宝,祝娅.稀金属Yb掺杂MgF2电子结构和光学性质的第一性原理研究[J].铜仁学院学报,2011,13(1):128-131.
    [68]张治宇,韩培德,张彩丽,等.Cu掺杂MgF2晶体的电子结构及光学特性[J].物理化学学报,2012,28(2):324-330.
    [69]Shi Shengwei, Ma Dongge. Effect of Ca and buffer layers on the performance of organic light-emitting diodes, based on tris-(8-hydroxyquinoline) aluminum [J]. Thin Solid Films, 2010,518:4874-4878.
    [70]Lin Ke, Huang Cailing, Ramadas Senthil Kumar, et al. Magnesium fluoride modified interfaces for organic light-emitting diode [J].Thin Solid Films,2007,515:3881-3886.
    [71]James T. D., Scullion M. G., Ashok P. C. Valve controlled fluorescence detection system for remote sensing applications [J]. Microfluidics and Nanofluidics,2011,11(5): 529-536.
    [72]Koji Matsuhisa, Minoru Fujii, Kenjilmakita. Photoluminescence from single silicon quantum dots excited via surface plasmon polaritons [J]. Journal of Luminescence,2012, 132:1157-1159.
    [73]Bloemer M. J., Scalora M. Transmissive properties of Ag/MgF2 photonic band gaps [J]. Appl. Phys. Lett.,1998,72(14):1676-1678.
    [74]Xiao Mufei. A calculation of dispersion relation K(x) for Ag/MgF2 one-dimension photonic band-gap structure [J]. Materials Letters,2002,56:945-947.
    [75]Fang N., Lee H., Sun C., et al. Sub-diffraction-limited optical imaging with a silver superlens [Jl.Science, 2005, 308(5721) : 534-537.
    [76]Valentine J., Zhang S., Zentgraf T., et al. Three-dimensional optical metamaterial with a negative refractive index [J].Naturc. 2008, 455: 376-379.
    [77]Stefan Enoch, Gerard Tayeb, Pierre Sabouroux, et al. A metamaterial for directive emission [J]. Phys. Rev. Lett., 2002, 89(21), 213902-213905.
    [78]Cui Hongtao, Campbell Patrick R., Green Martin A. Optimisation of the back surface reflector for textured polycrystalline Si thin film solar cells [J]. Energy Procedia, 2013, 33: 118-128.
    [79]Cao ChunBin, Cai Qi, Jiang XiShun, et al. A study on percolation threshold of Ag-MgF2 nanoparticle cermet films [J]. Chin. Phys. Soc, 2006, 55(6): 3147-3151.
    [80]Wang Jiajia, Li Zhaosheng, Zou Zhigang. Na adsorption on SrTiO3 (001) surface and its interaction with water: A DFT calculation [J]. Applied Surface Science, 2013, 270: 359-363.
    [81]Pavvel Kempisty, Stanislaw Krukowski. Ab initio investigation of adsorption of atomic and molecular hydrogen at GaN (0001) surface [J]. Journal of Crystal Growth. 2012. 358:64-74.
    [82]Nikita I. Vakula. Gulnara M. Kuramshina, Leonid G. Gorb, Adsorption and diffusion of a silver atom and its cation on α-SiO2 (001): Comparison of a pure surface with a surface containing an Al defect[J]. Chemical Physics Letters, 2013, 567: 27-33.
    [83]ML Durr, U. Hofer. Hydrogen diffusion on silicon surfaces [J]. Progress in Surface Science. 2013, 88:61-101.
    [84]Naik Ramakanta, Ganesan R., Sangunni K.S. Optical properties change with the addition and diffusion of Bi to As2S3 in the Bi/As2S3 bilayer thin film[J]. Journal of Alloys and Compounds, 2013, 554:293-298.
    [85]Ni Jiamiao, Zhao Xiujian, Zhao Jiang. P-type transparent conducting SnO2: Zn film derived from thermal diffusion of Zn/SnO2/Zn multilayer thin films [J]. Surface & Coatings Technology, 2012, 206:4356-4361.
    [86]Vassilyeva A. F., Eglitis R. I.,Eotomin E. A. Ab initio calculations of MgF2 (001) and (011) surface structure [J]. Physica B, 2010, 405: 2125-2127
    [87]Vassilyeva A. F., Eglitis R. I., Kotomin E. A. Ab initio calculations of the atomic and electronic structure of MgF2 (011) and (111) surfaces [J]. Central European Journal of Physics,2010,9(2):519-518.
    [88]Zhang L. L., Han P. D., Zhang C. L., et al. Density functional theory study on the stability and electronic properties of MgF2 surfaces [J].Acta. Phys-Chim. Sin,2011, 27(07):1609-1614.
    [89]Zita Huesges, Carsten Muller, Beate Paulus. Characterising MgF2 surfaces with CO adsorption calculations [J]. Surface Science,2013,609:73-77.
    [90]王茂祥,孙承休.双势垒结构Cu-Al2O3-MgF2-Au隧道结的发光效应[J].自然科学进展,2000,10(5):473-477.
    [91]Tero Pilvi. Atomic layer deposition for optical applications:metal fluoride thin films and novel devices [D]. Helsinki:University of Helsinki,2008.
    [92]Andreas Bittner, Angelika Schmitt, Rainer Jahn, et al. Characterization of stacked sol-gel films:Comparison of results derived from scanning electron microscopy, UV-vis spectroscopy and ellipsometric porosimetry [J]. Thin Solid Films,2012,520:1880-1884.
    [93]Wojciechowska M., Wajnert A., Tomska-Foralewska I., et al. Properties of magnesium oxo-fluoride supports for metal catalysts [J]. Catal. Lett.,2009,128:77-82.
    [94]王宪涛,郭磊,柴宏伟,等.氟化镁涂层AZ31B镁合金体内成骨作用的研究[J].中国医科大学学报,2011,40(10):870-873.
    [95]Ae Jung Huh, Young Jik Kwon. "Nanoantibiotics":A new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era [J]. Journal of Controlled Release,2011,156:128-145.
    [96]Chen Fuyi, Yuan Li, Johnston Roy L. Low-loss optical magnetic metamaterials on Ag-Au bimetallic fishnets [J]. Journal of Magnetism and Magnetic Materials,2012,324: 2625-2630.
    [97]Zhao X.G., Tang Z., Hu W.X. Magnetism driven by surface dangling bonds in gallium nitride nanoclusters [J]. Surface Science,2013,608:97-101.
    [1]Chong D. P., Langhoff S. R. A modified coupled pair functional approach [J]. Journal of Chemical Physics,1986,84(10):5606-5610.
    [2]Kresse G., Hafner J. Ab initio molecular dynamics for liquid metals [J]. Phys Rev B,1993, 47(1):558-561.
    [3]Payne M. C., Teter M. P., Allan D. D., et al. Iterative minimization techniques for ab initio total-energy calculations:molecular dynamics and conjugate gradients [J]. Rev. Mod. Phys,1992,64(4):1045-1077.
    [4]Frisch M. J., Trucks G W., Schlegel H. B., et al. Gaussian 09 [M]. Wallingford, CT:2009.
    [5]Born M., Oppenheimer R. Zur Quantentheorie der Molekeln [J]. Ann. Phys. (Leipzig). 1927,389(20):457-484.
    [6]陆栋,蒋平,徐至中.固体物理学[M].上海:上海科学技术出版社,2005,137-138.
    [7]Hohenberg P., Kohn W. Inhomogeneous electron gas [J]. Phys. Rev.,1964,136(3B): B864-B871.
    [8]Fermi E. Eine statistische methode zur b estimmung einiger eigenschaften des atoms und ihre anwendung auf die theories des periodischen systems der elemente [J]. Z. Phys.,1928, 48:73-79.
    [9]Thomas L. H. The calculation of atomic fields [J]. Proc. Cambridge Philos. Soc.,1927,23: 542-548.
    [10]Seidl A., Gorling A., Vogl, P., et al. Generalized Kohn-Sham schemes and the band-gap problem [J]. Phys. Rev. B,1996,53:3764-3774.
    [11]Srivastava G. P., Weaire D. The theory of the cohesive energies of solids [J]. Adv. Phys., 1987,26:463-517.
    [12]Marlo M., Milman V. Density-functional study of bulk and surface properties of titanium nitride using different exchange-correlation functionals [J]. Phys. Rev. B,2000,62: 2899-2907.
    [13]Luo W. H., Hu W. Y., Su K. L., et al. The calculation of surface free energy based on embedded atom method for solid nickel [J]. Appl. Surf. Sci.2013,265:375-378.
    [14]Mubarak A. A. Effects of hydrogen adsorption on the electronic and magnetic structures for varian tterminations of NbRu (001) and M/NbRu (001) surfaces (M=Fe, Ni) [J]. Journal of Magnetism and Magnetic Materials,2013,335:131-138.
    [15]Wang Lu, Shang Jia Xiang, Wang Fu He, et al. First principles study of α2-Ti3Al (0001) surface andy-TiAl(111)/α2-Ti3Al(0001) interfaces [J]. Applied Surface Science,2013, 276:198-202.
    [16]黄昆,韩汝琦.固体物理学[M].北京:高等教育出版社,1988,213-219.
    [17]Sanchez-Portal D., Artacho E., Soler J. M. Projection of plane-wave calculations into atomic orbitals [J]. Solid State Commun.,1995,95:685-690.
    [18]Li Xiaojun, Su Kehe, Yang Xiaohui. Size-selective effects in the geometry and electronic property of bimetallic Au-Ge nanoclusters [J]. Computational and Theoretical Chemistry, 2013,1010:32-37.
    [19]Perdew J. P., Burke K., Ernzerhof M. Generalized gradient approximation made simple. [J]. Phys Rev Lett,1996,77:3865-3868.
    [1]Valat G V., Vidal J. P., Zeyen C. M., et al. Neutron diffraction study of magnesium fluoride single crystals [J]. Acta Crystallogr,1979, B35:1584-1590.
    [2]Jones R.O., Gunnarsson O. The density functional formalism, its applications and prospects [J]. Rev. Mod. Phys.1989,61:689-746.
    [3]Haines J., Lege r J. M., Gorelli F., et al. X-ray diffraction and theoretical studies of the high-pressure structures and phase transitions in magnesium fluoride [J]. Phys. Rev.,2001, B64:134110-134119.
    [4]Ramesh Babu K, Bheema Lingam Ch, et al. Structural, thermodynamic and optical properties of MgF2 studied from first-principles theory [J]. J. Solid State Chem,2011, 184(2):343-350.
    [5]Kanchana V., Vaitheeswaran G, Rajagopalan M. J. Pressure induced structural phase transitions and metallization of BaF2 [J]. Alloys Compds.,2003,359(1-2):66-72.
    [6]Mysovsky Andrey S., Sushko Peter V., Radzhabov Evgeny A., et al. Structure and properties of oxygen centers in CaF2 crystals from ab initio embedded cluster calculations [J]. Phys Rev B,84(6):064133-064143.
    [7]Brik M. G, Ma C. G, Krasnenko V. First-principles calculations of the structural and electronic properties of the cubic CaZrO3 (001) surfaces [J]. Surface Science,2013,608: 146-153.
    [8]Pussi K., Matilainen A., Dhanak V.R., et al. Surface structure of In2O3(111) (1×1) determined by density functional theory calculations and low energy electron diffraction [J]. Surface Science,2012,606(1-2):1-6.
    [9]Vassilyeva A. F., Eglitis R. I., Kotomin E. A. Ab initio calculations of MgF2 (001) and (0 11) surface structure [J]. Physica B,2010,405:2125-2127.
    [10]Vassilyeva A. F., Eglitis R. I., Kotomin E. A. Ab initio calculations of the atomic and electronic structure of MgF2 (011) and (111) surfaces [J]. Central European Journal of Physics,2010,9(2):519-518.
    [11]Zhang L. L., Han P. D., Zhang C. L., et al. Density functional theory study on the stability and electronic properties of MgF2 surfaces [J]. Acta. Phys -Chim. Sin,2011, 27(07):1609-1614.
    [12]Li Chong, Wang Fei, Li S.F., et al. Stability and electronic properties of the O-terminated Cu2O(111) surfaces:First-principles investigation [J]. Physics Letters A,2010,374(29): 2994-2998.
    [13]Guan Li, Zuo Jingai, Jia Guoqi, et al. Structural stability and electronic properties of LaO- and NiO2-terminated LaNiO3 (001) surface [J]. Applied Surface Science,2013, 264:570-573.
    [14]Perales F., Soto D., Heras C. de las. Dependence of optical and structural properties of ZnS and MgF2 multilayers as a function of the number of layers [J]. Thin Solid Films, 2010,518(15):4221-4224.
    [15]Chen S.F., Shi H.Y., Cheng F., et al. A very high-contrast top-emitting organic light-emitting diode with a Ni/ZnS/MgF2/Ni contrast-enhancing stack and a CuPc/C6o anti-reflection bilayer [J]. Org. Electron.2012,13(12):3263-3267.
    [16]Yu H., Wu L. Q., Liu C. F., et al. Study on the feasibility of double stack high reflector coating at 355 nm [J]. Opt. Laser. Technol.,2012,44:810-814.
    [17]Bittner A., Schmitt A., Jahn R., et al. Characterization of stacked sol-gel films: Comparison of results derived from scanning electron microscopy, UV-vis spectroscopy and ellipsometric porosimetry [J]. Thin Solid Films,2012,520:1880-1884.
    [18]Diedenhofen S.L., Grzela G., Haverkamp E., et al. Broadband and omnidirectional anti-reflection layer for Ⅲ/Ⅴ multi-junction solar cells [J]. Sol. Energy Mater. Sol. Cells, 2012,101:308-314.
    [19]Guan H. H., Han P.D., Li Y.P., et al. Optimization of dichromatic filters based on photonic heterostructures of Si/MgF2 [J]. Opt. Commun.,2012,285(10-11):2656-2659.
    [20]Korkmaz S/adan, Elmas Saliha, Ekem Naci, et al. Deposition of MgF2 thin films for antireflection coating by using thermionic vacuum arc (TVA) [J]. Optics Communications, 2012,285:2373-2376.
    [21]Jameson J.R., Harrison W., Griffin P.B. Electronic susceptibility in thin films and interfaces [J]. J. Appl. Phys.,2002,92:4431-4440.
    [22]Ubale A. U., Sakhare Y. S., Bhute M. V., et al. Size-dependent structural, electrical and optical properties of nanostructured iron selenide thin films deposited by Chemical Bath Deposition Method [J]. Solid State Sci.,2013,16,134-142.
    [23]Yan Y., Gong J., Zong Z. G Superconductivity of p-type diamond (001) and (111) thin films:Ab initio calculations [J]. Thin Solid Films,2010,518:4989-4996.
    [24]Jiang D. P., Jia H. Z., Lu H. C. Calculation for the optical parameters of the Sn-doped SiO2 thin films by fitting the entire transmitted spectrum [J]. Optik-Int. J. Light Electron Opt.,2013,124(2):102-106.
    [25]Zhang Lixin, Huang Hanchen. Young's moduli of ZnO nanoplates:Ab initio determinations [J]. Appl. Phys. Lett.2006,89(18):183111-183113.
    [26]Nakamura Jun, Natori Akiko. First-principles evaluations of dielectric constants for ultra-thin semiconducting films [J].Surface Science,2006,600:4332-4336.
    [27]Li H. D., Li J., Wang Z. G, et al. Layer number-dependent structural evolution of two-dimensional diamond films [J]. J. Chem. Phys.,2012,550:130-133.
    [28]Kruger H., Kemnitz E., Hertwig A., et al. Transparent MgF2-films by sol-gel coating: Synthesis and optical properties [J]. Thin Solid Films,2008,516:4175-4177.
    [1]卢宝文,徐学科,余祥,等.不同沉积速率下热蒸发银膜的光学性能和结构分析[J].光学学报,2010,30(1):7-12.
    [2]Fleming J. G, Lin S. Y., El-Kady I., et al. All-metallic three-dimensional photonic crystals with a large infrared bandgap [J]. Nature,2002,417(6884):283-286.
    [3]高敏杰,孙磊,王治华,等.各向异性银纳米材料的制备及生长机制研究进展[J].光学学报,2012,26(6):45-50.
    [4]Gao Minjie, Sun Lei, Wang Zhiqiang, et al. Controlled synthesis of Ag nanoparticles with different morphologies and their antibacterial properties [J]. Materials Science and Engineering,2013, C33:397-404.
    [5]Teng B.T., Zhao Y., Wu F. M., et al. A density functional theory study of CF3CH2I adsorption and reaction on Ag(111) [J]. Surface Science,2012,606:1227-1232.
    [6]Arafune Ryuichi, Lin ChunLiang, Kawahara Kazuaki, et al. Structural transition of silicene on Ag(111) [J]. Surface Science,2013,608:297-300.
    [7]Owen E. A., Williams G. I. A low-temperature X-ray camera [J]. Journal of Scientific Instruments,1954,31(2):49-54.
    [8]Lu Wenting, Chen Jingchao, Li Wenming, et al. A density-functional theory study on the chemisorption of Ag(111)/O2 surface [J]. Procedia Engineering,2012,31:671-675.
    [9]Zhu Y., Zhang X.Y., Zhang S.H., et al. Ge adsorption on Ag(111):A density-functional theory investigation [J]. Solid State Sciences,2012,14:1480-1485.
    [10]Gong H.R. Electronic structures and related properties of Ag-Au bulks and surfaces [J]. Materials Chemistry and Physics,2010,123:326-330.
    [11]赵佳.利用金属-介质纳米结构增强LED发光的FDTD数值模拟研究[D].济南:山东大学,2011.
    [12]Palik E.D., Ghosh G. Handbook of optical constants of solids [M]. Orlando:Academic Press,1998.
    [13]Yildirim Handan, Kara Abdelkader, Rahman Talat S., et al. Surface vibrational thermodynamics from ab initio calculations for fcc(100) [J].Surface Science,2010,604: 308-317.
    [14]Lian Chao, Ni Jun. The structural and electronic properties of silicon nanoribbons on Ag (110):A first principles study [J]. Physica B,2012,407:4695-4699.
    [15]Mohsen Ghasemi Varnamkhasti, Hamid Reza Fallah, Mojtaba Mostajaboddavati, et al. Influence of Ag thickness on electrical, optical and structural properties of nanocrystalline MoO3/Ag/ITO multilayer for optoelectronic applications [J]. Vacuum, 2012,86:1318-1322.
    [16]Kazuhiro Kato, Hideo Omoto, Atsushi Takamatsu. Microstructure analysis of Ag films deposited by low-voltage sputtering [J]. Thin Solid Films,2012,520:4139-4143.
    [17]Yuki Nakanishi, Kazuhiro Kato, Hideo Omoto, et al. Improvement in salt-water durability of Ag thin films deposited by magnetron sputtering using argon and nitrogen mixed gas [J]. Vacuum,2013,87:232-236.
    [18]Renault P. O., Krauss C., Bourhis E. L., et al. Insituthermal residual stress evolution in ultrathin ZnO and Ag films studied by synchrotron x-ray diffraction [J]. Thin Solid Films, 2011,520:1390-1394.
    [19]Khare C., Gerlach J. W., Patzig C., et al. Ion beam sputter deposition of epitaxial Ag films on native oxide covered Si(100) substrates [J]. Applied Surface Science,2012, 258:9617-9622.
    [20]Wu XiaoZhi, Wanga Rui, Wang ShaoFeng, et al. Ab initio calculations of generalized-stacking-fault energy surfaces and surface energies for FCC metals [J]. Applied Surface Science,2010,256:6345-6349.
    [21]Boer F.R. de, Boom R., Mattens W.C.M., et al. Cohesion in metals [M]. Amsterdam: North-Holland Publishing Company,1988.
    [22]Neghabi M., Behjat A., Ghorashi S.M.B., et al. The effect of annealing on structural, electrical and optical properties of nanostructured ZnS/Ag/ZnS films [J].Thin Solid Films,2011,519:5662-5666.
    [1]Chester D., Bermel P., Joannopoulos J. D., et al. Design and global optimization of high efficiency solar thermal systems with tungsten cermets [J]. Opt. Express,2011,19(S3): A245-A247.
    [2]Xie H. Y., Leung P. T., Tsai, D. P. Molecular decay rates and emission frequencies in the vicinity of an anisotropic metamaterial [J]. Solid State Communications,2009,149: 625-629.
    [3]Ergin T., Benkert T., Giessen H., et al. Ultrafast time-resolved spectroscopy of one-dimensional metal-dielectric photonic crystals [J]. M. Phys. Rev. B,2009,79: 245134-245139.
    [4]Kim H., Lee S. N., Park Y., et al. Light extraction enhancement of GaN-based light emitting diodes using MgF2/Al omnidirectional reflectors, [J]. Journal of Applied Physics,2008,104(5):053111-053111-4.
    [5]Nishikawa M., Kita E., Yanagihara H., et al. Magnetic properties and structures of Fe/MgF2 multilayered films [J]. Journal of Magnetism and Magnetic Materials,2002, 238:91-100.
    [6]James T. D., Scullion M. G., Ashok P. C. Valve controlled fluorescence detection system for remote sensing applications [J]. Microfluidics and Nanofluidics,2011,11(5): 529-536.
    [7]Liu G. H., Zhou M., Hu G. H., et al. Calculation of temperature fields with a film-substrate interfacial layer model to discuss the layer-pair number effects on the damage thresholds of LaF3/MgF2 high reflectors at 355 nm [J]. Applied Surface Science,2010, 256:4206-4210.
    [8]Maria W., Michal Z., Mariusz P. MgF2 as a non-conventional catalyst support [J]. J. Fluorine Chemistry,2003,120:1-11.
    [9]Vassilyeva A. F., Eglitis R. I., Kotomin E. A., et al. Ab initio calculations of MgF2 (001) and (011)surface structure [J].Physica B,2010,405:2125-2127.
    [10]张莉莉,韩培德,张彩丽,等.MgF2表面结构稳定性及电子特性的密度泛函理论研究[J].物理化学学报,2011,27:1609-1614.
    [11]Mazheika Aliaksei S., Matulis Vitaly. E., Ivashkevich Oleg A. Quantum chemical study of adsorption of Ag2, Ag4 and Agg on stoichiometric TiO2 (110) surface [J]. Journal of Molecular Structure:THEOCHEM,2010,942:47-54.
    [12]Yang Z., Xiong S. J. Adsorption of Ag and Au atoms on wurtzite ZnO (0001) surface [J]. Surface Science,2011,605:40-45.
    [13]Ma Y. D., Dai Y., Wei W., Liu X. H., et al. Ag adsorption on Cd-terminated CdS (0001) and S-terminated CdS (0001) surfaces:First-principles investigations [J]. Journal of Solid State Chemistry,2011,184:747-752.
    [14]章日光,郑华艳,王宝俊,等.CO和CH30在Cu20(111)表面吸附特性及共吸附的理论研究[J].高等学校化学学报,2010,31:1246-1251.
    [15]Atkins P. W. Physical Chemistry [M]. Oxford:Oxford University Press,7th ed,2002.
    [1]Seleson Pablo, Gunzburger Max, Parks Michael L. Interface problems in nonlocal diffusion and sharp transitions between local and nonlocal domains [J]. Comput. Methods Appl. Mech. Engrg.,2013, doi:http://dx.doi.org/10.1016/j.cma.2013.05.018.
    [2]Zhang Guikai, Wang Xiaolin, Yang Feilong, et al. Energetics and diffusion of hydrogen in hydrogen permeation barrier of a-Al2O3/FeAl with two different interfaces [J]. International journal of hydrogen energy,2013,38:7550-7560.
    [3]Yakubovich Alexander V., Verkhovtsev Alexey V., Matthias Hanauske. Computer simulation of diffusion process at interfaces of nickel and titanium crystals [J]. Computational Materials Science,2013,76:60-64.
    [4]Cao Bo, Yang Tongrui, Li Gongping. Atomic diffusion and interface reaction of Cu/Si (111) films prepared by ionized cluster beam deposition [J]. Vacuum,2013,89:105-108.
    [5]Wu Yongquan, Lu Xiuming, Shen Tong. Arrhenius relationship and two-step scheme in AF hyperdynamics simulation of diffusion of Mg/Zn interface [J]. Trans. Nonferrous Met. Soc. China,2013,23:508-516.
    [6]Kenevisi M. S., Mousavi Khoie S. M., Alaei M. Microstructural evaluation and mechanical properties of the diffusion bonded Al/Ti alloys joint [J]. Mechanics of Materials,2013, doi: http://dx.doi.org/10.1016/j.mechmat.2013.04.011.
    [7]Gunnarsson O., Schonhammer K. Density-functional treatment of an exactly solvable semiconductormodel [J]. Phys. Rev. Lett.,1986,56 (18):1968-1971.
    [8]RameshBabu K., BheemaLingam Ch., Auluck S. Structural, thermodynamic and optical propertiesof MgF2 studied from first-principlestheory [J]. Journal of Solid State Chemistry, 2011,184:343-350.
    [9]Qiang Linhui, Li Zhanfeng, Zhao Tianqi, et al. Atomic-scale interactions of the interface between chitosan and Fe3O4 [J]. Colloids and Surfaces A:Physicochem. Eng. Aspects, 2013,419:125-132.
    [10]Li YanLi. First-principles study on the stability and the electronic structure of low-index CdTe/CdSe interfaces [J]. Solid State Communications,2013,155:73-78.
    [11]Rubio-Zuazo J., Castro G. R. Determination of electronic and atomic properties of surface, bulkand buried interfaces:Simultaneous combination of hard X-ray photoelectron spectroscopy and X-ray diffraction [J]. J. Electron Spectrosc. Relat. Phenom.,2013, http://dx.doi.org/10.1016/j.elspec.2013.04.003.
    [12]Huang Yongxian, Lv Shixiong, Tian Xiubo. Interface analysis of inorganic films on polyimide with atomic oxygen exposure [J]. Surface & Coatings Technology,2013,216: 121-126.
    [13]Anez Rafael, Sierraalta Anibal, San-Miguel Miguel A. Role of the Si-Si bond stability in the first stages of Ti diffusion on a Si(111) 2×1 surface. A periodic DFT study [J]. Applied Surface Science,2013,273:496-501.
    [14]Zhang Jian, Luo Guoqiang, Wang Yiyu. Effect of Al thin film and Ni foil interlayer on diffusion bonded Mg-Al dissimilar joints [J]. Journal of Alloys and Compounds,2013, 556:139-142.
    [15]Xiao M.X., Zhao M., Lang X.Y., et al. Improvement of electromigration reliability and diffusion of Cu films using coherent Cu(111)/Cr2O3(0001) interfaces [J]. Chemical Physics Letters,2012,542:85-88.
    [16]Liu Hui, Li Yuping, Zhang Caili, et al. Effects of aluminum diffusion on the adhesive behavior of the Ni(1ll)/Cr2O3(0001) interface:First principle study [J]. Computational Materials Science,2013,78:116-122.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700