用户名: 密码: 验证码:
基于螺旋几何模型的三维编织复合材料热机械性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
三维编织复合材料是将古老的编织技术与现代复合材料成型技术有机地融于一体而形成的一种具有独特结构的复合材料,它从根本上克服了单向增强的复合材料层板易分层、开裂等缺点,具有比强度高、比刚度高、优良的抗冲击损伤性能、抗疲劳断裂性能、耐烧蚀性能、结构整体性和可设计性等,因此倍受工程界的普遍关注,在航空、航天、国防、体育用品和生物医疗等领域得到了广泛应用。为了更好地开发和利用三维编织复合材料,国内外研究者在近20余年中对三维编织复合材料的细微观结构与宏观力学性能之间的关系进行了大量的研究和探索,取得了许多突出成就,并逐渐发展成力学领域的一个热门研究方向。本文综述和分析了三维编织复合材料的国内外研究现状,针对三维四向碳/环氧编织复合材料,从细观结构几何模型、刚度和强度预报、热物理性能以及热力耦合行为四个方面进行了理论计算和数值分析。
     由于三维四向编织复合材料内部空间纤维束的相互挤压和扭结,将造成纤维束弯曲和截面形状变化,本文对现有的米字型单胞模型进行了改进,用空间抛物线来模拟单胞内纤维束路径,建立了三维四向编织复合材料螺旋型单胞几何模型。螺旋型单胞几何模型避免了内部空间纤维束在单胞中心的交叉,能够更加精确地反映三维四向编织复合材料内部的细观结构。该几何模型虽然以三维四向编织复合材料为对象,但所得结果具有普遍意义,研究方法可以推广到三维多向编织复合材料,为三维多向编织复合材料力学性能分析与材料优化设计提供参考。
     基于螺旋型单胞几何模型,本文对三维四向碳/环氧编织复合材料的刚度和强度进行了数值预报与理论计算。应用多相有限元法,把单胞模型划分为三种子单胞,结合高斯积分法对三维四向碳/环氧编织复合材料的有效工程弹性常数进行了数值预报;对三维四向编织复合材料单胞内的应力场分布和单向拉伸应力应变关系曲线进行了数值模拟;分别采用蔡-吴准则和米赛斯准则数值预报了三维四向编织复合材料的强度,研究了三维编织复合材料拉伸损伤机理;基于螺旋型单胞几何模型,对三维四向碳/环氧编织复合材料的有效工程弹性常数和强度进行了理论推导,并将理论推导结果与相应的数值预报进行了对比分析。
     为了研究三维四向编织复合材料的热机械性能,本文基于螺旋型单胞几何模型,推导了三维四向编织复合材料热弹性问题的稳态热分析有限元方程,建立了三维四向编织复合材料热物理性能分析的力学模型,数值预报了等效热传导系数和热膨胀系数,并讨论了编织角度、纤维体积含量等因素对三维四向编织复合材料热物理性能的影响。结合热传导问题的有限元理论,对三维四向编织复合材料进行了稳态热传导分析,数值预报了第一类边界条件(已知边界温度)和第二类边界条件(已知边界热流)的三维四向编织复合材料的温度场分布。在稳态热传导分析的基础上,建立了三维四向编织复合材料热力耦合行为分析的有限元方法。通过对三维四向编织复合材料单胞模型施加相同的机械载荷与不同的热载荷条件(稳态温度场、已知边界温度和已知边界热流),对三维四向编织复合材料在热力耦合作用下的强度进行预报,讨论了编织角度、纤维体积含量等因素对三维四向编织复合材料热力耦合强度的影响。
The ancient braiding technology and the processing technique for moderncomposites are combined organically to make the composites with unique structure,which fundamentally overcomes the shortcomings of the unidirectional compositelaminates, such as delamination and cracking etc. The3D braided composites hasbeen paid much more attention by engineering for its excellent mechanical properties,such as high specific strength, high specific stiffness, impact toughness,fatigue-fracture, ablative resistance, structural integrity and designability etc. So the3D braided composites is widely used in the fields of high technology such asaeronautics, astronautics, marine, sports, and biomedical etc. In order to make betteruse of3D braided composites, the scholars at home and abroad have carried out a lotof exploration and research on the relationships between microscopic and macromechanical properties in past20years. Some outstanding achievement has beenmade and the3D braided composites have been gradually developed into a popularresearch direction of mechanics. The development and research on3D braidedcomposites at home and abroad are reviewed and analyzed. The geometric model,stiffness and strength, thermo-physical properties and thermo-mechanical couplingbehaviors of3D four-directional carbon/epoxy braided composites are investigatedby using numerical and theoretical methods in this dissertation.
     Owing to the squeezing and twisting of braid yarns each other within the3Dfour-directional braided composites, the braid yarns exhibit the bending andvariational cross-section. A helix geometry model for3D four-directional braidedcomposites is established based on the fiber hexprism diagonal brick cell in thispaper. The spatial parabolic is used to simulate the yarn axis of the unit cell. Fourbraiding yarns in the unit cell are curved to avoid the collision at the center of theunit cell. The helix geometry model reflects more accurately the microstructure of3D four-directional braided composites. Though the microscopic geometric model isestablished to the case of3D four-directional braided composites, but the results havegeneral significance and the research methods can be extended to3Dmulti-directional braided composites. These will provide reference for furtheranalyzing the mechanical properties and optimization design of3D multi-directional braided composites.
     The stiffness and strength of3D four-directional carbon/epoxy braided compositesare predicted based on the helix geometry model by numerical simulation andtheoretical derivation. The RVE is divided into three kinds of elements according tothe finite multiphase element method: matrix element, yarn element and mixedelement and the gauss quadrature has been proposed to predict the effective elasticconstants. The unit cell stress fields and longitudinal tensile stress-strain relationshipsof3D braided composites are presented through the finite element theory of spaceproblem. The Tsai–Wu and Von Mises criterion are used to predict the failure in theyarn and matrix, respectively, and the longitudinal tensile strength of3D braidedcomposites is calculated and the damage mechanisms of the composites are analyzed.The effective elastic constants and longitudinal tensile strength of3D braidedcomposites are theoretically calculated based on the helix geometry model andcompared with the simulation results.
     In order to investigate the thermal mechanical properties of3D four-directionalbraided composites, the finite element equations of steady state thermal analysis ofthermoelastic problem for3D four-directional braided composites are derived and themechanical model of thermo-physical properties analysis for3D four-directionalbraided composites are developed based on the based on the helix geometry model.By numerical computing, the effective thermal conductivity coefficients and thermalexpansion coefficients of3D four-directional braided composites are obtained. Theinfluences of the braid angle and fiber volume fraction on the thermo-physicalproperties of three-dimensional four-directional braided composites are discussed.The steady state thermal conductivity analysis is presented by using the finiteelement theory of thermal conductivity problem. The distribution of temperature of3D braided composites with the first class boundary condition (the distribution oftemperature on the surface is known) and the second class boundary condition (thedistribution of heat flux on the surface is known) are determined. The finite elementmethods of thermo-mechanical coupling behaviors analysis for3D four-directionalbraided composites are developed on the basis of the steady state thermalconductivity analyses. By applying the same mechanical loads and the differentthermal loads (the temperature on the unit cell remains constant, the distribution oftemperature on the surface is known, the distribution of heat flux on the surface is known), the strength of3D braided four-directional composites are analyzed. Theeffects of the braiding angle and fiber volume fraction on the thermo-mechanicalcoupling behaviors of3D braided composites are discussed.
引文
[1] ISHIKAWA T, CHOU T W. Stiffness and Strength Behaviour of Woven FabricComposites[J]. Journal of Material Science.1982,17(11):3211-3220.
    [2] ISHIKAWA T, CHOU T W. One-Dimensional Micromechanical Analysis ofWoven Fabric Composites[J]. AIAAJournal.1983,21(12):1714-1721.
    [3] MA C L, YANG J M, CHOU T W. Elastic Stiffness of Three-DimensionalBraided Textile Structural Composites[C]. Whitney J M, ed. CompositeMaterials: Testing and Design, Philadelphia,1986:404-421.
    [4] YANG J M, MA C L, CHOU T W. Fiber Inclination Model of Three-Dimensional Textile Structural Composite[J]. Journal of Composite Materials,1986,20(5):472-484.
    [5] DU G W, KO F K. Unit Cell Geometry of3D Braided Structures[J]. Journal ofReinforced Plastics and Composites,1993,12(7):752-768.
    [6]吴德隆,郝照平.五向编织结构复合材料的分析模型[J].宇航学报,1993,(3):69-74.
    [7] WU D L. Three Cell Model and5D Braided Structural Composites[J]. Compo-sites Science and Technology,1996,56(3):225-233.
    [8]杨振宇,卢子兴.三维四向编织复合材料弹性性能的理论预测[J].复合材料学报,2004,21(2):134-141.
    [9] WANG Y Q, WANG A S D. On the Topological Yarn Structure of3DRectangular and Tubular Braided Performs[J]. Composites Science andTechnology,1994,51(4):575-586.
    [10] WANG Y Q, WANG A S D. Microstructure/Property Relationships in Three-Dimensionally Braided Fiber Composites[J]. Composites Science andTechnology,1995,53(2):213-232.
    [11] WANG Y Q, SAN X. Determining the Geometry of Textile Performs UsingFinite Element Analysis[C]. Thomas E. Lacy. Proceedings of the AmericanSociety for Composites, Texas,2000:485-492.
    [12] KALIDINDI S R, FRANCO E. Numerical Evaluation of Isostrain andWeighted Average Models for Elastic Moduli of Three-DimensionalComposites[J]. Composites Science and Technology,1997,57(3):293-305.
    [13] CHEN L, TAO X M, CHOY C L. Mechanical Analysis of3D BraidedComposites by the Finite Multiphase Element Method[J]. Composites Scienceand Technology,1999,59(11):2383-2391.
    [14] CHEN L, TAO X M, CHOY C L. On the Microstructure of Three-DimensionalBraided Performs[J]. Composites Science and Technology,1999,59(3):391-404.
    [15]庞宝君,杜善义,韩杰才.三维四向编织复合材料细观组织及分析模型[J].复合材料学报,1999,16(3):135-139.
    [16]李典森,卢子兴,陈利,等.三维七向编织结构细观分析[J].复合材料学报,2006,23(1):135-141.
    [17]李典森,卢子兴,陈利,等.三维六向编织复合材料弹性性能理论预测[J].复合材料学报,2006,23(4):112-118.
    [18]李典森,卢子兴,陈利,李嘉禄.三维五向圆型编织复合材料细观分析及弹性性能预测[J].航空学报,2007,28(1):123-129.
    [19] LI D S, LU Z X, CHEN L, et al. Microstructure and Mechanical Properties ofThree-Dimensional Five-Directional Braided Composites[J]. Solids andStructures,2009,46(18/19):3422-3432.
    [20]孙颖,李嘉禄,陈利.三维多向编织复合材料纤维束细观结构拓扑优化[J].纺织学报,2007,28(10):45-47.
    [21]徐焜,许希武.三维五向编织复合材料宏细观力学性能分析[J].航空学报,2008,29(3):1053-1058.
    [22]李金超,张一帆,孙菲,等.三维五向编织复合材料的力学性能分析[J].复合材料学报,2009,26(1):150-155.
    [23] ZENG T, WU L Z, GUO L C. A Finite Element Model for Failure Analysis of3D Braided Composites[J]. Materials Science and Engineering,2004,366(1):144-151.
    [24] ZENG T, WU L Z, GUO L C. Mechanical Analysis of3D Braided Composites:a Finite Element Model[J]. Composite Structures,2004,64(3-4):399-404.
    [25] ZENG T, WU L Z, GUO L C. A Damage Laminate Model for3D BraidedComposites with Transverse Cracking [J]. Composite Structures,2003,62(2):163-170.
    [26] ZENG T, FANG D N, GUO L C, et al. A Mechanical Model of3D BraidedComposites with Transverse and Longitudinal Cracks[J]. Composite Structures,2005,69(1):117-125.
    [27] SUN X K, SUN C J. Mechanical Properties of Three-Dimensional BraidedComposites[J]. Composite Structures,2004,65(3-4):485-492.
    [28] PANDEY R, HAHN H T. Visualization of Representative Volume Elements forThree-Dimensional Four-Step Braided Composite[J]. Composites Science andTechnology,1996,56(2):161-170.
    [29]邵将,温卫东,崔海涛.三维四步法编织复合材料结构的计算机仿真[J].南京航空航天大学学报,2009,41(1):36-40.
    [30]张美忠.三维整体编织C/C复合材料预制体结构仿真与弹性性能预测析[D].西安:西北工业大学,2006:30-45.
    [31]王毅强,张立同,成来飞.三维编织体复合材料空间几何结构的计算机模拟[J].航空材料学报,2008,28(2):95-98.
    [32] SURYAR K, ABDEL A. Longitudinal and Transverse Moduli and Strengths ofLow Angle3-D Braided Composites[J]. Journal of Composite Materials,1996,30(8):885-905.
    [33] KO F K. Tensile Strength and Modulus of a Three-Dimensional BraidComposite [C]. Whitney J M, ed. Composite Materials: Testing and Design,Philadelphia,1986:392-40.
    [34] MACANDER A B, CRANE R M, CAMPONESCHI E T. Fabrication andMechanical Properties of Multidimensionally (X-D) Braided CompositeMaterials[C]. Whitney J M, ed. Composite Material: Testing and Design,Philadelphia,1986:422-443.
    [35] GAUSE L W, ALPER J. Mechanical Characterization of Magnaweave BraidedComposites[R]. Paper Presented at the Mechanicals of Composites Review. AirForce Materials Laboratory,1983:10-25.
    [36] YAU S S, CHOU T W, KO F K. Flexural and Axial Compressive Failures ofThree-Dimensionally Braided CompositeⅠbeam[J]. Composites,1986,17(3):227-232.
    [37] AUBARD X, CLUZEL C, GUITARE L, et al. Modeling of the MechanicalBehaviour of4D Carbon/Carbon Composite Material[J]. Composites Scienceand Technology,1998,58(5):701-708.
    [38] TATE J S, KELKAR AD, WHITCOMB J D. Effect of Braid Angle on FatiguePerformance of Biaxial Braided Composites[J]. International Journal of Fatigue,2006,28(10):1239-1247.
    [39] TATE J S, KELKAR A D. Stiffness Degradation Model for Biaxial BraidedComposites Under Fatigue Loading[J]. Composites: Part B,2008,39(3):548-555.
    [40] MAJIDI A P, YANG J M, CHOU T W. Mechanical Behavior of Three-Dimensional Braided Metal-Metrix Composites[C]. Peter R. Di Giovanni.Testing Technology of metal-metrix composites. Philadelphia,1988:31-36.
    [41] ARENDTS F J, DRECHSLER K, BRANDT J. The Application ofThree-Dimensional Reinforced Fiber-Performs to Improve the Properties ofComposites[C]. Ko F, ed. Proceedings of34th International SAMPESymposium, Nevada,1989:2118-2129.
    [42] SUSUKI I, SHINYA M, YASUI Y. Mechanical Properties of3D Carbon/Bismaleimide Heat-Resistant Composites[C]. Scott M L, ed. Proceedings ofICCm-11, Gold Coast,1997:614-624.
    [43]刘谦,李嘉禄,李学明.三维编织工艺参数对复合材料拉伸性能的影响[J].宇航材料工艺,2000,(1):55-58.
    [44]刘谦,李嘉禄,李学明.三维编织复合材料的弯曲和压缩性能探讨研究[J].材料工程,2000,(8):3-6.
    [45]李嘉禄,肖丽华.董孚允.立体多向编织结构对复合材料性能的影响[J].复合材料学报,1996,13(3):71-75.
    [46]李嘉禄,刘谦.三维编织复合材料中纤维束走向的研究[J].纺织学报,1999,20(4):7-10.
    [47]李嘉禄,刘谦.三维编织复合材料中纤维束横截面形状的研究[J].复合材料学报,2001,18(2):9-13.
    [48]李嘉禄,孙颖.二步法方型三维编织复合材料的细观结构[J].复合材料学报,2002,19(4):69-75.
    [49]李嘉禄,孙颖.二步法方型三维编织预制件编织结构参数与工艺参数[J].复合材料学报,2003,20(2):81-87.
    [50]李嘉禄,孙颖,李学明.二步法方型三维编织复合材料力学性能及影响因素[J].复合材料学报,2004,21(1):90-94.
    [51]李嘉禄,杨红娜,寇长河.三维编织复合材料的疲劳性能[J].复合材料学报,2005,22(4):172-176.
    [52] LI J L, CHNE L, JIAO Y N. The Microstructure and Mechanical Properties ofThree-Dimensional Integral Braiding Composites[J].西安工程大学学报,2009,23(2):500-506.
    [53]卢子兴,冯志海,寇长河等.编织复合材料拉伸力学性能的研究[J].复合材料学报,1999,16(3):129-134.
    [54]卢子兴,胡奇.三维编织复合材料压缩力学性能的实验研究[J].复合材料学报,2003,20(6):67-72.
    [55]庞宝君,杜善义,严勇等.三维四向碳/环氧编织复合材料剪切力学性能实验研究[J].实验力学,1999,14(2):209-215.
    [56]庞宝君,杜善义,韩杰才等.三维四向编织碳/环氧复合材料实验研究[J].复合材料学报,1999,16(4):136-141.
    [57]王波,矫桂琼,陶亮,等.三维编织复合材料拉压性能的实验研究[J].实验力学.2002,17(3):302-306.
    [58]王波,矫桂琼,潘文革,等.三维编织C/SiC复合材料的拉压实验研究[J].复合材料学报.2004,21(3):110-114.
    [59]曾涛,庞宝君,严勇等.三维四向编织结构复合材料剪切模量的研究[J].哈尔滨理工大学学报,2001,6(2):90-92.
    [60]徐焜,许希武,汪海.三维六向编织复合材料力学性能的实验研究[J].复合材料学报,2005,22(6):144-149.
    [61]沈怀荣.三维编织复合材料冲击实验与分析[J].装备指挥技术学院学报,2002,13(2):84-87.
    [62]刘宁,姚学锋,陈俊达等.编织复合材料的冲击损伤与断裂行为研究[J].实验力学,2002,17(2):184-190.
    [63]顾伯洪,丁辛.三维编织复合材料抗侵彻性能[J].东华大学学报,2003,29(4):1-4.
    [64]杨灵敏,焦亚男,高华斌.三维编织复合材料低速冲击试验与分析[J].纺织学报,2009,30(5):63-67.
    [65]陈利,刘景艳,马振杰,等.三维多向编织复合材料压缩性能的试验研究[J].固体火箭技术,2006,29(1):63-66.
    [66]焦亚男,李嘉禄.异制件用三维编织复合材料的拉伸性能[J].纺织学报,2006,27(9):1-4.
    [67]焦亚男,李嘉禄,魏丽梅,孙颖.损伤形式对三维编织复合材料拉压性能的影响[J].复合材料学报,2006,23(6):52-56.
    [68]李仲平,卢子兴,冯志海,等.三维五向碳/酚醛编织复合材料的拉伸性能及破坏机理[J].航空学报,2007,28(4):869-873.
    [69]陈利,徐正亚.三维五向编织复合材料中纱线截面形状实验分析[J].复合材料学报,2007,24(4):128-132.
    [70] KALIDINDI S R, ABUSAFIEH A. Longitudinal and Transverse Moduli andStrengths of3D Braided Textile Composites with Low Braid Angles[J]. Journalof Composite Materials,1996,30(8):885-905.
    [71] CHEN Z R, ZHU D C, LU M, et al. Evaluation of Elastic Properties of3D(4-Step) Regular Braided Composites by a Homogenization Method[J].Composite Structures,1999,47(1-4):477-482.
    [72]陈作荣,诸德超,陆萌.三维四步编织复合材料单元胞体几何模型[J].北京航空航天大学学报,2000,26(5):539-542.
    [73] CHEN Z R, ZHU D C, LU M, et al. A Homogenization Scheme and itsApplication to Evaluation to Evaluation of Elastic Properties of Three-Dimensional Braided Composites[J]. Composites: Part B,2001,32(1):67-86.
    [74]冯淼林,吴长春,孙慧玉.三维均匀化理论预测编织复合材料等效弹性模量[J].材料科学与工程,2001,19(3):34-37.
    [75]董纪伟,孙良新,洪平.基于均匀化方法的三维编织复合材等效弹性性能预测[J].宇航学报,2005,26(4):482-486.
    [76]孙颖,李嘉禄,亢一澜,等.三维四向编织复合材料刚度的细观力学设计[J].纺织学报,2007,28(5):70-73.
    [77]卢子兴,杨振宇,刘振国.三维四向编织复合材料结构模型的几何特征[J].北京航空航天大学学报,2006,32(1):92-96.
    [78]卢子兴,刘子仙.三维五向编织复合材料的弹性性能[J].北京航空航天大学学报,2006,32(4):455-460.
    [79]徐焜,许希武.四步法三维矩形编织复合材料的细观结构模型[J].复合材料学报,2006,23(5):154-160.
    [80] SUN H Y, QIAO X, Prediction of the Mechanical Properties of Three-Dimensionally Braided Composites[J]. Composites Science and Technology,1997,57(6):623-629.
    [81]庞宝君,杜善义.三维多向编织复合材料非线性本构行为的细观数值模拟[J].复合材料学报,2000,17(1):98-102.
    [82]卢子兴,刘振国,麦汉超,等.三维编织复合材料强度的数值预报[J].北京航空航天大学学报,2002,28(5):563-565.
    [83]郑锡涛.三维编织复合材料细观结构与力学性能分析[D].西安:西北工业大学,2003.
    [84] SUN H Y, DI S L, et al. Micromechanics of Braided Composites ViaMultivariable FEM[J]. Computers and Structures,2003,81(20):2021-2027.
    [85] YU X G, CUI J Z. The Prediction on Mechanical Properties of4-Step BraidedComposites Via Two-Scale Method[J], Composites Science and Technology,2007,67(3-4):471-480.
    [86]徐焜,许希武,田静.小编织角三维编织复合材料拉伸强度模型[J].航空学报,2007,28(2):294-300.
    [87] ZENG T, FANG D N, MA L, et al. Predicting the Nonlinear Response andFailure of3D Braided Composites[J]. Materials Letters2004,58(26):3237-3241.
    [88]练军.动力有限元在三维编织复合材料弹道冲击性能研究中的应用[J].玻璃钢/复合材料,2006,(2):14-17.
    [89] ZENG T, FANG D N, LU T J. Dynamic Crashing and Impact EnergyAbsorption of3D Braided Composite Tubes[J], Materials Letters2005,59(12):1491-1496.
    [90]顾伯洪,徐静怡.三维编织复合材料弹道侵彻准细观层次有限元计算[J].复合材料学报,2004,21(3):84-90.
    [91] HUANG Z M, RAMAKRISHNAS. Modeling Inelastic and Strength Propertiesof Textile Laminates: A Unified Approach[J]. Composites Science andTechnology,2003(64):445-466.
    [92] CHING Q S, ANTHONY W, SHAHWAN K W, et al. Compressive Responseand Failure of Braided Textile Composites: Part2-Computations[J].International Journal of Non-Linear Mechanics,2004,39(4):649-663.
    [93] MIRAVETE A, BIELSA J M, CHIMINELLI A, et al.3D MesomechanicalAnalysis of Three-Axial Braided Composite Materials[J]. Composites Scienceand Technology,2006,66(15):2954-2964.
    [94] ZUO W W, XIAO L Y, LIAO D X. Statistical Strength Analyses of the3DBraided Composites[J]. Composites Science and Technology,2007,67(10):2095-2102.
    [95]董纪伟,孙良新,洪平.三维四向大编织角复合材料的细观强度分析[J].材料科学与工程学报,2006,24(4):539-542.
    [96] WANG A S D, MOHAJERJASBI S. Thermoelastic Properties of3D BraidedComposites: Experiment and Predictions[J]. American Society of MechanicalEngineers,1995,20:275-293.
    [97] GOWAYED Y, HWANG J C. Thermal Conductivity of Composite MaterialsMade From Plain Weaves and3D Weaves[J]. Composites Engineering,1994,5(9):1177-1186.
    [98] KARAMI G, GARNICH M. Micromechanical Study of ThermoelasticBehavior of Composites with Periodic Fiber Waviness[J]. CompositesEngineering,2005,36(3):241-248.
    [99] SCHUSTER J, HEIDER D, SHARP K, et al. Measuring and Modeling theThree-Dimensionally Woven Fabric Composites[J]. Mechanics of CompositeMaterials,2009,45(2):165-174.
    [100]姚学峰,杨桂,姚振汉等.编织结构复合材料热膨胀特性的实验研究[J].复合材料学报,2000,17(4):20-25.
    [101]程伟,赵寿根,刘振国等.三维四向编织复合材料等效热特性数值分析和试验研究[J].航空学报,2002,23(2):102-105.
    [102]夏彪,卢子兴.三维编织复合材料热物理性能的有限元分析[J].航空学报,2011,32(6):1040-1049.
    [103]MOHAJERJASBI S. Predictions for Coefficients of Thermal Expansion ofThree-Dimensional Braided Composites[J]. AIAA Journal,1997,35(1):141-144.
    [104]梁军,杜善义,陈晓峰.含圆币型微裂纹三维编织复合材料的热膨胀系数预报[J].复合材料学报,1998,15(3):103-107.
    [105]成玲.碳/环氧编织复合材料热膨胀特性分析[J].固体火箭技术,2010,33(1):108-111.
    [106]LIU Z G, ZHANG H G, LU Z X, et al. Investigation on the ThermalConductivity of3-Dimensional and4-Directional Braided Composites[J].Chinese Journal of Aeronautics,2007,20(4):327-331.
    [107]李典森,卢子兴,刘振国,等.三维五向编织复合材料导热性能的有限元分析[J].航空动力学报,2008,23(8):1455-1460.
    [108]闫相桥,武海鹏.正交各向异性材料三维热传导问题的有限元列式[J].哈尔滨工业大学学报,2003,35(4):405-409.
    [109]ALZINA A, TOUSSAINT E, BEAKOU A. Multiscale Modeling of theThermoelastic Behavior of Braided Fabric Composites for CryogenicStructures[J]. International Journal of Solids and Structures,2007,44(21):6842-6859.
    [110]GUO Y F, YANG J, HE Y, et al. Tensile and Bending Strengths of TR-30sCarbon Fiber Three-Dimensional Braided Composites at DifferentTemperature[J]. Advanced Materials Research,2010,97(101):1616-1619.
    [111]MEI H, CHENG L F, ZHANG L, et al. Effect of Fiber Architectures onThermal Cycling Damage of C/SiC Composites in Oxidizing Atmosphere[J].Materials Science and Engineering,2007,460(15):306-313.
    [112]LI Z M, YANG D Q. Thermal Postbuckling Analysis of3D Braided CompositeCylindrical Shells[J]. Journal of Mechanics,2010,26(6):113-122.
    [113]左德峰,朱金福,黄再兴.树脂基复合材料固化过程中温度场的数值模拟[J].南京航空航天大学学报,1999,31(6):701-705.
    [114]李嘉禄,贺桂芳,陈光伟.温度对三维五向编织/环氧树脂复合材料拉伸性能的影响[J].复合材料学报,2010,27(6):58-63.
    [115]LI D S, FANG D N, ZHANG G B, et al. Effect of Temperature on BendingProperties and Failure Mechanism of Three-Dimensional Braided Composite[J].Materials and Design,2012,41:167-170.
    [116]庞宝军.三维多向编织复合材料性能预报与优化设计研究[D].哈尔滨:哈尔滨工业大学,1997,92-93.
    [117]左惟炜.三维编织复合材料力学性能与工程应用研究[D].武汉:华中科技大学,2006,51-52.
    [118]郑锡涛.三维编织复合材料细观结构与力学性能分[D].西安:西北工业大学,2003,84–85.
    [119]KREGERS A F, MELBARDIS Y G. Determination of the Deformability ofThree-Dimensionally Reinforced Composites by the Stiffness AveragingMethod[J]. Polymer Mechanics,1978,14(1):3-7.
    [120]LI Z M, ZHU P, LIN Z Q, Nonlinear Bending Behavior of3D BraidedRectangular Plates Subjected to Transverse Loads in Thermal Environments[J].Arch Appl Mech,2011,81(5):585–603.
    [121]CHAMIS C C. Simplified Composite Equations for Strength, FractureToughness, Impact Resistance and Environmental Effects [J]. SAMPEQuarterly,1984,15(4),41–55.
    [122]蔡永恩.热弹性问题的有限元方法及程序设计[M].北京:北京大学出版社,1997,70–84.
    [123]HASHIN Z. Analysis of Composite Materials-A Survey[J]. Applied Mechanics1983,50:481–505.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700