用户名: 密码: 验证码:
喷雾燃烧制备氧化铁基纳米复合材料及其性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米复合材料由于纳米尺度和不同功能的结合具有优异的性能,是新材料的研究热点之一。氧化铁基纳米复合材料在磁分离、催化剂、磁显影、新能源、太阳能光解水等领域有着重要的应用。因此,设计和制备新型多功能氧化铁基纳米复合材料具有重要的价值。火焰喷雾燃烧法基于传统气相燃烧制备纳米材料,具有气相燃烧连续化、无后处理、低成本、易规模化等优点。采用溶液注射,拓展了前驱体的范围,在制备多组分的纳米复合材料方面具有优势。本文基于气相火焰燃烧法,针对材料结构制备,设计燃烧反应器,开发了新型喷雾燃烧反应装置,优化燃烧工艺,制备了金属性Fe和Co3Fe7纳米颗粒、γ-Fe2O3‖SiO2双面杂化颗粒、Sn02纳米晶包覆γ-Fe2O3的核壳结构、以及相分离生长的α-Fe2O3/SnO2纳米异质结构等一系列氧化铁基纳米复合材料。同时,研究了喷雾燃烧中材料的形成,结构与性能之间的关系。主要研究工作如下:
     1、针对火焰喷雾燃烧过程,通过控制燃料氧气比,选择高含量的前驱体,并通过淬火环引入N2保护,优化燃烧工艺,建立了金属性纳米材料的还原火焰燃烧制备新技术,制备了金属性Fe和C03Fe7合金纳米颗粒。其中,金属颗粒(Fe和Co3Fe7)粒径为20-80nm,被3-6nm的氧化物层(Fe304和CoFe2O4)所包覆,在空气气氛中具有良好的热稳定性。有较高的比饱和磁化强度,Co3Fe7合金颗粒的比饱和磁化强度高达126.1emu/g,比单一的Fe颗粒的比饱和磁化强度提高了68%。研究了燃料氧气比、组成、材料结构和磁性能的关系。分析了金属性纳米颗粒在火焰中的形成:前驱体火焰燃烧热解、还原性气氛下的成核生长和表面氧化。
     2、结合Fe2O3和SiO2双组分高温相分离生长的特点,设计了共进前驱体喷雾燃烧工艺和后续连续化改性过程,优化前驱体组成,制备了具有不对称结构的γ-Fe2O3‖SiO2双面杂化颗粒,并实现了颗粒的原位表面改性。所制备的γ-Fe2O3‖SiO2双面杂化颗粒具有非对称的组成,在外磁场作用下,可以进行磁定向排列。研究了前驱体中Fe/Si比与材料结构的关系。通过火焰反应中原位取样分析表征,结合Fe2O3和SiO2的二元相图,分析了双面杂化结构在火焰中的形成机理。在此基础上,研究了火焰共进Ni、Mn、Co/Si前驱体得到的燃烧产物结构。经后续表面改性,硅烷偶联剂(KH570)分子选择性的接枝到双面结构中SiO2表面,赋予材料的双亲双疏特性。改性后的材料稳定于油/水两相溶剂的界面,亲水疏水分子作用使得材料取向排列,自组装形成油水界面膜和磁响应的微胶囊。采用改性后的材料可以组装成新型液体磁性微球,这些微球具有体积可控、良好的力学性能和外磁场驱动特性。
     3、基于火焰温度梯度的变化,采用淬火环添加另一种前驱体原位包覆的方法,在反应器的后续位置引入锡源,利用SnO2在Fe2O3表面的异相成核生长,制备了SnO2纳米晶包覆γ-Fe2O3核壳纳米结构。核为30-120m的γ-Fe2O3组成,壳由8-10m的SnO2纳米晶所组成,且SnO2壳厚度在10-15nm。改变鼓泡瓶的水浴温度调整淬火环引入锡源前驱体的量,可以控制SnO2壳厚。研究发现水浴温度30℃制备的核壳结构有高的比表面积,有最高的气敏性能,对100ppm乙醇在300℃其灵敏度达22.8,是同条件下制备的Fe2O3的3.5和SnO2的1.9倍,且对乙醇有选择性。结合核壳结构及异质界面电子传递,分析了材料对乙醇分子的气敏机理。
     4、根据相分离诱导外延生长的机理,选择设计前驱体组成,采用前驱体共进料喷雾燃烧工艺,制备了α-Fe2O3/SnO2异质结构的纳米复合材料。其中,α-Fe2O3/SnO2纳米异质结构表面粗糙,尺寸在30-200nm,且具有厚度不均的SnO2壳。研究了SnO2的引入对火焰燃烧形成的Fe203组成与结构的影响。研究表明Sn02能够有效地促进火焰反应中γ-Fe2O3向α-Fe2O3的转变。当SnO2掺杂量大于5at%时,γ相Fe2O3完全转变为α相。当前驱体中锡源量继续增加时,SnO2在Fe2o3中达到饱和,在Fe2oO的表面外延生长,形成类核壳异质结构。结合燃烧反应区温度梯度及复合材料的结构演变,分析了火焰中α-Fe2O3/SnO2纳米异质结构的相分离生长机理。用所制备的α-Fe2O3/SnO2异质结构作为负极材料组装成纽扣式锂离子电池,发现相对于单组分的Fe2O3和SnO2颗粒,两种活性氧化物的异质结构可以显著地提高锂电池容量存储性能。
Recently, advanced nanomaterials have attracted more attention owing to the unique physical and chemical properties. Especially, nanocomposites with versatile morphologies have an extensive application and are one of research hot topics of novel materials, which have different compositions, diverse function and unique interfacial interaction at nanoscale. Iron oxide based nanocomposites, as an important fuctional material, have a promising application such as magnetic recyclable catalysts, magnetic resonance imaging, lithium ion battery, solar light splitting water and so on. Therefore, it is still a challenge that how to design and synthesize multifunctional iron oxide based nanocomposites effectively. Flame spray pyrolysis technology has been demonstrated to be an effective, continuous, easily scalable approach for production of nanomaterials. Liquid-feeding route could offer more chocies for employing versatile precursor and make flame spray pyrolysis method possess more advantages in the construction of nanocomposites with multicomposition and diverse morphologies. In this thesis, combining flame reactor designing, optimum process control and the design of structured materials, Iron oxide based nanocomposites, such as oxides stabilized metallic Fe and Co3Fe7alloy core-shell nanoparticles, double faced γ-Fe2O3‖SiO2nanhybrids, γ-Fe2O3‖SiO2core-shell nanostructures and α-Fe2O3/SnO2nanoheterostructures, have been prepared by a facile flame spray pyrolysis approach. The flame process, materials structures and properties have been investigated in detail. The major contents have been summarized as follows.
     1. Air stable, metallic Fe and Co3Fe7nanoparticles have been synthesized via one-step flame spray pyrolysis of an organicmetal precursor solution under stronger reducing atmosphere. The as-synthesized nanoparticles with diameters of20-80nm showed a typical core shell structure and high stability for one month in air, which metallic Fe or Co3Fe7cores were protected against oxidation by a surface shell of about3-6nm oxides (Fe3O4and CoFe2O4). The ratio of metallic Fe/Co alloy nanoparticles was7:3. The alloy nanoparticles exhibited enhanced saturation magnetization (126.1emu/g), compared with flame sprayed iron nanoparticles with the same conditions. By investigating the relationship between the ratio of fuel to oxygen, the morphology and composition of obtained materials and magnetic properties, reducing flame synthesis process is created for the synthesis of novel nanomaterials. Moreover, the formation mechanism of metal and alloy nanoparticles with core-shell structure was investigated in detail, which included three stages:flame combustion, reducing and surface oxidation during flame process. It is reckoned that such a continuous production approach an effective way to produce the stable advanced nanomaterials with a reduced valence state.
     2. Double faced γ-Fe2O3‖SiO2nanohybrids (NHs) and their in-situ selective modification on silica faces with the3-Methacryloxypropyltrimethoxysilane molecules have been successfully prepared by a simple, rapid and scalable flame aerosol route. The double faced NHs perfectly integrates magnetic hematite hemispheres and non-magnetic silica parts into an almost intact nanoparticle as a result of phase segregation during the preparation process. The unique feature allows us to easily manipulate these particles into one-dimension chain-like nanostructures. By tailoring the mole ratio of Fe and Si in precursor, Janus nanoparticles with different volume of segregated SiO2hemisphere could be designed. The high temperature phase segregation mechanism based on thermal dynamic control is proposed to explain the formation of double faced γ-Fe2O3‖SiO2NHs in flame. Furthermore, the co-oxidation of different precursor (Ni, Mn, Co) and silica resource in flame eventually leads to the products with different composition and morphologies, indicating that the final morphology undergoing a high temperature aerosol process are independent of the bulk physiochemical features of the corresponding metal oxides. On the other hand, in situ selectively modificated double faced γ-Fe2O3‖SiO2NHs possess excellent interfacial activities, which can assemble into many interesting architectures, such as interfacial film, magnetic responsive capsules, novel magnetic liquid marbles and so forth. The modified NHs prefers to assemble at the interface of water/oil or oil/water systems. It is believed that the highly interfacial active NHs is not only beneficial for the development of interface reaction in a miniature reactor, but also very promising functional materials for other smart applications.
     3. Core-shell γ-Fe2O3‖SiO2nanohybrids were fabricated via a simple flame-assisted spray pyrolysis (FASP). The shell layer composed of SnO2nanocrystals (8-10nm) was in-situ grown on the pristine Fe2O3nanoparticles with a tailored thickness ranging from6-20nm. The construction of such intriguing structure thus provided a rational and efficient combination of two kinds of gas sensitive materials, resulting in a remarkably enhanced sensing sensitivity (Ra/Rg) of22.8to100ppm ethanol vapor at300℃with high selectivity, compared to the pure Fe2O3and SnO2materials synthesized by FASP, respectively. The enhancement can be mainly attributed to the synergistic effects, i.e. the change of heterojunction barrier height at the interface between them. In addition, the in-situ flame coating process provides a promising and versatile choice for the synthesis of core-shell nanostructures with multifunctional composition.
     4. Novel core-shell α-Fe2O3/SnO2heterostructures (HSs) are successfully prepared by a one-step flame-assisted spray copyrolysis of iron and tin precursor. The effect of SnO2component is investigated for the evolution of phase composition and morphology in detail. For the first time, it is noted that SnO2as a dopant can effectively promote the phase transition of γ-Fe2O3to α-Fe2O3during flame synthesis. A phase-segregation induced growth mechanism is proposed to explain the formation of unique core-shell structure. Such core-shell HSs as LIB anode materials exhibits an enhanced lithium storage capacity in comparison to pure Fe2O3and SnO2. This enhancement could be ascribed to the synergetic effect of both single components as well as the unique core-shell HSs.
引文
[1]Richard P. Feynman. There's plenty of room at the bottom [J]. Eng. Sci.1960,23(5): 22-36
    [2]王世敏,许祖勋,傅晶.纳米材料制备技术.化学工业出版社.北京:2001
    [3]Tatzke G. R., Zhou Y., Kontic R., and Conrad F. Oxide nanomaterials:synthetic developments, mechanistic studies, and technological innovations [J]. Angew. Chem. Int. Ed. 2010,49(4):2-36
    [4]Chen X. B., Shen S. H., Guo L. J., and Mao S. S. Semiconductor-based photocatalytic hydrogen generation [J]. Chem. Rev.2010,110(11):6503-6570
    [5]Kubacka A., Fernandez-Garcia M., and Colon G. Advanced nanoarchitectures for solar photocatalytic application [J]. Chem. Rev.2012,112(3):1555-1641
    [6]Tartaj P., Morales M. P., Gonzalez-Carreno T., Veintemillas-Verdaguer S., and Serna C. J. The iron oxides strike back:from biomedical applications to energy storage devices and photoelectrochemical water splitting [J]. Adv. Mater.2011,23(44):5243-5249
    [7]Guo L., Huang Q. J., Li X. Y., and Yang S. H. Iron nanoparticles:synthesis and application in surface enhanced Raman scattering and electrocatalysis [J]. Phys. Chem. Chem. Phys.2001,3(9):1661-1665
    [8]Huber D. L. Synthesis, properties and applications of iron nanoparticles[J]. Small.2005, 1(5):482-501
    [9]He Y. Q., Sahoo Y., Wang S. M., Luo H., Prasad P. N., and Swihart M. T. Laser-driven synthesis and magnetic properties of iron nanoparticles[J]. J. Nanopart. Res.2006,8(3-4): 335-342
    [10]Zeng H., and Sun S. H. Synthesis, properties and potential application of multicomponent magnetic nanoparticles[J]. Adv. Funct. Mater.2008,18(3):391-400
    [11]Wang C., Xu C. J., Zeng H., and Sun S. H. Recent progress in syntheses and applications of dumbbell-like nanoparticles [J]. Adv. Mater.2009,21(30):1-8
    [12]Lu A. H., Salabas E. L., and Schuth F. Magnetic nanoparticles:synthesis, protection, functionalization, and application[J]. Angew. Chem. Int. Ed.2007,46(8):1222-1224
    [13]Lee Y. J., Lee J. W., Bae C. J., Park J. G., Noh H. J., Park J. H., and Hyeon T. Large-scale synthesis of uniform and crystalline magnetite nanoparticles using reverse micelles as nanoreactors under reflux conditions[J]. Adv. Funct. Mater.2005,15(3):503-509
    [14]Li Z., Sun Q., and Gao M. Y. Preparation of water-soluble magnetite nanocrystals from hydrated ferric salts in 2-pyrrolidone:mechanism leading to Fe3O4 [J]. Angew. Chem. Int. Ed. 2005,44(1):123-126
    [15]Daou T. J., Pourroy G., Begin-Colin S., Greneche J. M., Ylhaq-Bouillet C., Legare P., Bernhardt P. Leuvrey C., and Rogez G. Hydrothermal synthesis of monodisperse magnetite nanoparticles [J]. Chem. Mater.2006,18(18):4399-4404
    [16]Maurizi L., Bouyer F., Paris J., Demoisson F., Saviot L., and Millot N. One step continuous hydrothermal synthesis of very fine stabilized superparamagnetic nanoparticles of magnetite [J]. Chem. Commun.2011,47(42):11706-11708
    [17]Cao S. W., Zhu Y. J., Ma M. Y., Li L., and Zhang L. Hierarchically nanostructured magnetic hollow spheres of Fe3O4 and γ-Fe2O3:preparation and potential application in drug delivery [J]. J. Phys. Chem. C 2008,112(6):1851-1856
    [18]Chen Y., Xia H., Lu L., and Xue J. M. Synthesis of porous hollow Fe3O4 beads and their applications in lithium ion batteries [J]. J. Mater. Chem.2012,22(11):5006-5012
    [19]Huang Z. B., Zhang Y. Q., and Tang F. Q. Solution-phase synthesis of single-crystalline magnetic nanowires with high aspect ratio and uniformity [J]. Chem. Commun.2005, 3:342-344
    [20]Liu Z. Q., Zhang D. H., Han S., Li C., Lei B., Lu W. G., Fang J. Y., and Zhou C. W. Single crystalline magnetite nanotubes [J]. J. Am. Chem. Soc.2005,127(1):6-7
    [21]Zhong L. S., Hu J. S., Liang H. P., Cao A. M., Song W. G., and Wan L. J. Self-assembled 3D flowerlike iron oxide nanostructures and their application in water treatment [J]. Adv. Mater.2006,18(18):2426-2431
    [22]Laurent S., Forge D., Port M., Roch A., Robic C., Elst L. V., and Muller R. N. Magnetic iron oxide nanoparticles:synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications [J]. Chem. Rev.2008,108(6):2064-2110
    [23]Qiao R. R., Yang C. H., and Gao M. Y. Superparamagnetic iron oxide nanoparticles: from preparations to in vivo MRI applications [J]. J. Mater. Chem.2009,19(35) 6274-6293
    [24]Wu W., He Q. G., and Jiang C. Z. Magnetic iron oxide nanoparticles:synthesis and surface functionalization strategies [J]. Nanoscale Res. Lett.2008,3(11):397-415
    [25]Cummings C. Y., Marken F., Peter L. M., Upul Wijayantha K. G., and Tahir A. A. New insights into water splitting at mesoporous α-Fe2O3 Films:a study by modulated transmittance and impedance spectroscopies [J]. J. Am. Chem. Soc.2012,134(2):1228-1234
    [26]Townsend T. K., Sabio E. M., Browning N. D., and Osterloh F. E. Photocatalytic water oxidation with suspended α-Fe2O3 particles-effects of nanoscaling [J]. Energy Environ. Sci. 2011,4:4270-4275
    [27]Li L. L., Chu Y., Liu. Y., and Dong L. H. Template-free synthesis and photocatalytic properties of novel Fe2O3 hollow spheres [J]. J. Phys. Chem. C 2007,111(5):2123-2127
    [28]Zhu J. X., Yin Z. Y., Yang D., Sun T., Yu H., Hoster H. E., Hng H. H., Zhang H., and Yan Q. Y. Hierarchical hollow spheres composed of ultrathin Fe2O3 nanosheets for lithium storage and photocatalytic water oxidation [J]. Energy Environ. Sci.2013,6:987-993
    [29]Jia C. J., Sun L. D., Luo F., Han X. D., Yan C. H., and Eltschka M., Tzvetkov G. Large-scale synthesis of single-crystalline iron oxide magnetic nanorings [J]. J. Am. Chem. Soc.2008,130(50):16968-16977
    [30]Zeng S. Y., Tang K. B., Li T. W., Liang Z. H., Wang D., Wang Y. K., and Zhou W. W. Hematite hollow spindles and microspheres:selective synthesis, growth mechanism, and application in lithium ion battery and water treatment [J]. J. Phys. Chem. C 2007,111(28): 10217-10225
    [31]Zhang L., Wu H. B., Madhavi S., Hng H. H., and Lou X. W. Formation of Fe2O3 microboxes with hierarchical shell structures from metal-organic frameworks and their lithium storage properties [J]. J. Am. Chem. Soc.2012,134(42):17388-17391
    [32]Mou X. L., Zhang B. S., Li Y., Yao L. D., Wei X. J., Su D. S., and Shen W. J. Rod-shaped Fe2O3 as efficient catalyst for the selective reduction of nitrogen oxide by ammonia [J]. Angew. Chem. Int. Ed.2012,51(12):1-6
    [33]Merchan-merchan W., Saveliev A. V., and Taylor A. M. High rate flame synthesis of highly crystalline iron oxide nanorods[J]. Nanotechnology 2008,19(12):125605(5pp)
    [34]Chaudhari S. and Srinicasan M. 1D hollow α-Fe2O3 electrospun nanofibers as high performance anode materials for lithium ion batteries [J]. J. Mater. Chem.2012,22(43): 23049-23056
    [35]Qu X., Kobayashi N., and Komatsu T. Solid nanotubes comprising α-Fe2O3 nanoparticles prepared from ferritin protein[J]. ACS Nano 2010,4(3):1732-1738
    [36]Cao M. H., Liu T. F., Gao S., Sun G. B., Wu X. L., Hu C. W., and Wang Z. L. Single-crystal dendritic micro-pines of magnetic α-Fe2O3:large-scale synthesis, formation mechanism, and properties [J]. Angew. Chem. Int. Ed.2005,117(27):4269-4273
    [37]Song H. J., Jia X. H., and Zhang X. Q. Controllable fabrication, growth mechanism, and gas sensing properties of hollow hematite polyhedral [J]. J. Mater. Chem.2012, 22(42):22699-22705
    [38]Lee J., Mahendra S., and Alvarez P. J. Nanomaterials in the construction industry:a review of their application and environmental health and safety considerations [J]. ASC Nano 2010,4(7):3580-3590
    [39]Carter K. R. Nanofabrication:past, present and future [J]. J. Mater. Chem.2011,21(37): 14095-14096
    [40]Li Y. M. and Somorjai G. A. Nanoscale advances in catalysis and energy applications [J]. Nano Lett.2010,10(7):2289-2295
    [41]Qian J. F., Liu P., Xiao Y., Jiang Y., Cao Y. L., Ai X. P., and Yang H. X. TiO2-coated multilayered SnO2 hollow microspheres for dye-sensitized solar cell [J]. Adv. Mater.2009, 21(36):3663-3667
    [42]Yan X. D., Zou C. W., Gao X. D., and Gao W. ZnO/TiO2 core-brush nanostructures:processing, micro structure and enhanced photocatalytic activity [J]. J. Mater. Chem.2012,22(12):5629-5640
    [43]Yan J., Sumboja A., Khoo E., and Lee P. S. V2O5 loaded on SnO2 nanowires for high-rate Li ion batteries [J]. Adv. Mater.2011,23(6):746-750
    [44]Choi S. H. and Kang Y. C. One-pot facile synthesis of Janus-structured SnO2-CuO composite nanorods and their application as anode materials in Li-ion batteries [J]. Nanoscale 2013,5(11):4662-4668
    [45]Wang H., You T. T., Shi W. W., LI, J. H., and Guo L. Au/TiO2/Au as a plasmonic coupling photocatalyst [J]. J. Phys. Chem. C 2012,116(10):6490-6494
    [46]Du J., Qi J., Wang D., and Tang Z. Y. Facile synthesis of Au@TiO2 core-shell hollow spheres for dye-sensitized cells with remarkably improved efficiency [J]. Energy Environ. Sci. 2012,5(5):6914-6918
    [47]Paek S. M., Yoo E. J., and Honma I. Enhanced cyclic performance and lithium storage capacity of SnO2/grapheme nanoporous electrodes with three-dimensionally delaminated flexible structure [J]. Nano Lett.2009,9(1):72-75
    [48]Wang D. H., Choi D., Li J., Yang Z. G., Nie Z. M., Kou R., Hu D. H., Wang C. M., Saraf L. V., Zhang J. G., Aksay I. A., and Liu J. Self-assembled TiO2-graphene hybrid nanostructures for enhanced Li-ion insertion [J]. ACS Nano 2009,3(4):907-914
    [49]Zhou X. S., Wan L. J., and Guo Y. G. Binding SnO2 nanoscrystals in nitrogen-doped grapheme sheets as anode materials for lithium ion batteries [J]. Adv. Mater.2013, 25(15):2152-2157
    [50]Liu J., Qiao S. Z., Hu Q. H., and Lu G. Q. Magnetic nanocomposites with mesoporous structures:synthesis and application [J]. Small 2011,7(4):425-443
    [51]Wei S. Y., Wang Q., Zhu J. H., Sun L. Y., Lin H. F., and Guo Z. H. Multifunctional composites core-shell nanoparticles [J]. Nanoscale 2011,3(11):4474-4502
    [52]Shylesh S., Schunemann V., and Thiel W. R. Magnetically separable nanocatalysts: bridges between homogeneoue and heterogeneous catalysis [J]. Angew. Chem. Int. Ed.2010, 49(20):3428-3459
    [53]Fang C. and Zhang M. Q. Multifunctional magnetic nanoparticles for medical imaging applications [J]. J. Mater. Chem.2009,19(35):6258-6266
    [54]Deng Y. H., Qi D. W., Deng C. H., Zhang X. M., and Zhao D. Y. Superparamagnetic high-magnetization microspheres with an Fe3O4@SiO2 core and perpendicularly aligned mesoporous SiO2 shell for removal of microystins [J]. J. Am. Chem. Soc.2008,130(1):28-29
    [55]Deng Y. H., Cai Y., Sun Z. K., Liu J., Liu C., Wei J., Li W., Liu C. Wang Y., and Zhao D. Y. Multifunctional mesoporous composite microspheres with well-designed nanostructure: a highly integrated catalyst system [J]. J. Am. Chem. Soc.2010,132(24):8466-8473
    [56]Zhu Y. F., Ikoma T., Hanagata N., and Kaskel S. Rattle-type Fe3O4@SiO2 hollow mesoporous spheres as carriers for drug delivery[J]. Small 2010,6(3):471-478
    [57]Shen J. H., Zhu Y. H., Yang X. L., and Li C. Z. Magnetic composites microspheres with exposed{001} faceted TiO2 shells:a highly active and selective visible-light photocatalyst [J]. J. Mater. Chem.2012,22(26):13341-13347
    [58]Zhao W. R., Chen H. R., Li Y. S., Li L., Lang M. D., and Shi J. L. Uniform rattle-type hollow magnetic mesoporous spheres as drug delivery carriers and their sustained-release property[J]. Adv. Funct. Mater.2008,18(18):2780-2788
    [59]Yu X. X., Liu S. W., and Yu J. G. Superparamagnetic γ-Fe2O3@SiO2@TiO2 composite microspheres with superior photocatalytic properties [J]. Appl. Catal. B:Environ.2011, 104(1-2):12-20
    [60]Tan H., Xue J. M., Shuter B., Li X., and Wang J. Synthesis of PEOlated Fe3O4@SiO2 nanoparticles via bioinspired silification for magnetic resonance imaging [J]. Adv. Funct. Mater.2010,20(5):722-731
    [61]Shao M. F., Ning F. Y., Zhao J. W., Wei M., Evans D. G., and Duan X. Preparation of Fe3O4@SiO2@layered double hydroxide core-shell microspheres for magnetic separation of proteins [J]. J. Am. Chem. Soc.2012,134(2):1071-1077
    [62]Zhang F., Braun G. B., Pallaoro A., Zhang Y. S., Shi Y. F., Cui D. X., Moskovits M., Zhao D. Y., and Stucky G. D. Mesoporous multifunctional upconversion luminescent and magnetic "nanorattle" materials for targeted chemotherapy [J]. Nano Lett.2012,12(1):61-67
    [63]Zhu Y. F., Fang Y., and Kaskel S. Folate-conjugated Fe3O4@SiO2 hollow mesoporous spheres for targeted anticancer drug delivery [J]. J. Phys. Chem. C 2010,114(39): 16382-16388
    [64]Lou X. W., Yuan C. L., and Archer L. A. Double-walled SnO2 nano-cocoons with movable magnetic cores [J]. Adv. Mater.2007,19(20):3328-3332
    [65]Chiu W., Khiew P., Cloke M., Isa D., Lim H., Tan T., Huang N., Radiman S., Abd-shukor R., Hamid M. Q., and Chia C. Heterogeneous seeded growth:synthesis and characterization of bifunctional Fe3O4/ZnO core/shell nanocrystals [J]. J. Phys. Chem. C 2010, 114(18):8212-8218
    [66]Wu H. C., Wang T. W., Bohn M. C., Lin F. H., and Spector M. Novel magnetic hydroxyapatite nanoparticles as non-viral vectors for the glial cell line-derived neurotrophic factor gene [J]. Adv. Funct. Mater.2010,20(1):67-77
    [67]Ma W. F., Zhang Y., Li L. L., You L. J., Zhang P., Zhang Y. T., Li J. M., Yu M., Guo J., Lu H. J., and Wang C. C. Tailored-made magnetic Fe3O4@mTiO2 microspheres with a tunable mesoporous anatase shell for highly selective and effective enrichment of phosphopeptides [J]. ACS Nano 2012,6(4):3179-3188
    [68]Tong H., Ouyang S. X., Bi Y. P., Umezawa N., Mitsutake O., and Ye J. H. Nano-photocatalytic materials:possibilities and challenges [J]. Adv. Mater.2012,24(2): 229-251
    [69]Xu Z. C., Hou Y. L., and Sun S. H. Magnetic core/shell Fe3O4/Au and Fe3O4/Au/Ag nanoparticles with tunable plasmonic properties [J]. J. Am. Chem. Soc.2007, 129(28):8698-8699
    [70]Sun X. L., Guo S. J., Li Y., and Sun S. H. Dumbbell-like PtPd-Fe3O4 nanoparticles for enhanced electrochemical detection of H2O2 [J]. Nano Lett.2012,12(9):4859-4863
    [71]Sun X. L., Guo S. J., Chung C. S., Zhu W. W., and Sun S. H. A sensitive H2O2 assay based on dumbbell-like PtPd-Fe3O4 nanoparticles [J]. Adv. Mater.2013,25(1):132-136
    [72]Lee Y. M., Garcia M. A., Frey Huls N. A., and Sun S. H. Synthetic tuning of the catalytic properties of Au-Fe3O4 nanoparticles [J]. Angew. Chem. Int. Ed.2010,49(7):1271-1274
    [73]Dong W. J., Li Y. S., Niu D. C., Ma Z., Gu J. L., Chen Y., Zhao W. R., Liu X. H., Liu C S., and Shi J. L. Facile synthesis of monodisperse superparamagnetic Fe3O4 core@hybrid@Au shell nanocomposite for bimodal imaging and photothermal therapy [J]. Adv. Funct. Mater.2011,23(45):5392-5397
    [74]Jiang L. Q. and Gao L. Carbon nanotubes-magnetite nanocomposites from solvothermal processes:formation, characterization and enhanced electrical properties [J]. Chem. Mater. 2003,15(14):2848-2853
    [75]Cong H. P., He J. J., Lu Y., and Yu S. H. Water-soluble magnetic-functionalized reduced grapheme oxide sheets:in situ synthesis and magnetic resonance imaging applications [J]. Small 2010,6(2):169-173
    [76]Chandra V., Park J., Chun Y., Lee J. W., Hwang I. C., and Kim K. S. Water-dispersible magnetic-reduced grapheme oxide composites for arsenic removal [J]. ACS Nano 2010,4(7): 3979-3986
    [77]Zhu J. H., Wei S. Y., Gu H. B., Rapole S. B., Wang Q., Luo Z. P., Haldolaarachchige N., Young D. P., and Guo Z. H. One-pot synthesis of magnetic grapheme nanocomposites decorated with core@double-shell nanoparticles for fast chromium removal[J]. Environ. Sci. Technol.2012,46(2):977-985
    [78]Zhang W. M., Wu X. L., Hu J. S., Guo Y. G., and Wan L. J. Carbon coated Fe3O4 nanospindles as a superior anode materials for lithium-ion batteries [J]. Adv. Funct. Mater. 2008,18(24):3941-3946
    [79]Liu M. C., Chen C. H., Hu J., Wu X. L., and Wang X. K. Synthesis of magnetite/grapheme oxide composite and application for cobalt(Ⅱ) removal [J]. J. Phys. Chem. C 2011,115(51):25234-25240
    [80]Zhou G. M., Wang D. W., Li F., Zhang L. L., Li N., Wu Z. S., Wen L., Lu G. Q., and Cheng H. M. Graphene-wrapped Fe3O4 Anode material with improved reversible capacity and cyclic stability for lithium ion batteries [J]. Chem. Mater.2010,22(18):5306-5313
    [81]Hu Y. S., Shwarsctein A. K., Forman A. J., Hazen D., Park J. N., and Mcfarland E. W. Pt-doped α-Fe2O3 thin films active for phtoelectrochemical water splitting [J]. Chem. Mater. 2008,20(12):3803-3805
    [82]Thimsen E., Formal F. L., Gratzel M., and Warren S. C. Influence of plasmonic Au nanoparticles on the photoactivity of Fe2O3 electrodes for water splitting [J]. Nano Lett.2011, 11(1):35-43
    [83]Zhang J., Liu X. H., Wang L. W., Yang T. L., Guo X. Z., Wu S. H., Wang S. R., and Zhang S. M. Au-functionalized hematite hybrid nanospindles:general synthesis, gas sensing and catalytic properties[J]. J. Phys. Chem. C 2011,115(13):5352-5357
    [84]Liu X. H., Zhang J., Guo X. Z., Wang S. R., and Wu S. H. Core-shell α-Fe2O3@SnO2/Au hybrid structures and their enhanced gas sensing properties [J]. RSC Advances 2012,2(4): 1650-1655
    [85]Zhu C. L., Yu H. L., Zhang Y., Wang T. S., Ouyang Q. Y., Qi L. H., Chen Y. J., and Xue X. Y. Fe2O3/TiO2 tube-like nanostructures:synthesis, structural, transformation and the enhanced sensing properties [J]. ACS Appl. Mater. Interfaces 2012,4(2):665-671
    [86]Wu W., Zhang S. F., Xiao X. H., Zhou J., Ren F., Sun L. L., and Jiang C. Z. Controllable synthesis, magnetic properties, and enhanced photocatalytic activity of spindlelike mesoporous α-Fe2O3/ZnO core-shell heterostructures [J]. ACS Appl. Mater. Interfaces 2012, 4(7):3602-3609
    [87]Zhou W. W., Cheng C. W., Liu J. P., Tay Y. Y., Jiang J., Jia X. T., Zhang J. X., Gong H., Hng H. H., Yu T., and Fan H. J. Epitaxial growth of branched α-Fe2O3/SnO2 nanoheterostructures with improved lithium-ion battery performance [J]. Adv. Funct. Mater. 2011,21(13):2439-2445
    [88]Dekrafft K. E., Wang C., and Lin W. B. Metal-organic framework template synthesis of Fe2O3/TiO2 nanocomposite for hydrogen production [J]. Adv. Mater.2012,24(15): 2014-2018
    [89]Qin L. M., Zhu Q., Li G. R., Liu F. T., and Pan Q. M. Controlled fabrication of flower-like ZnO-Fe2O3 nanostructure films with excellent lithium storage properties through a partly sacrificed template method [J]. J. Mater. Chem.2012,22(15):7544-7550
    [90]Niu M. T., Huang F., Cui L. F., Huang P., Yu Y. L., and Wang Y. S. Hydrothermal synthesis, structural characteristics, and enhanced photocatalysis of SnO2/α-Fe2O3 semiconductor nanoheterostructures [J]. ACS Nano 2010,4(2):681-688
    [91]Sarkar D., Khan G. G., Singh A. K., and Mandal K. Enhanced electrical, optical, and magnetic properties in multifunctional ZnO/α-Fe2O3 semiconductor nanoheterostructures by heterojunction engineering [J]. J. Phys. Chem. C 2012,116(44):23540-23546
    [92]Wang G., Liu T., Luo Y. J., Zhao Y., Ren Z. Y., Bai J. B., and Wang H. Preparation of Fe2O3/grapheme composite and its electrochemical performance as an anode material for lithium ion batteries [J]. J. Alloy. Compd.2011,509(24):L216-L220
    [93]Zhu J. X., Zhu T., Zhou X. Z., Zhang Y. Y., Lou X. W., Chen X. D., Zhang H., Hng H. H., and Yan Q. Y. Facile synthesis of metal oxide/reduced grapheme oxide hybrids with high lithium storage capacity and stable cyclability [J]. Nanoscale 2011,3(3):1084-1089
    [94]Zhou G. W., Wang J. L., Gao P. F., Yang X. W., He Y. S., Liao X. Z., Yang J., and Ma Z. F. Facile spray drying route for the three-dimensional grapheme encapsulated Fe2O3 nanoparticles for lithium ion battery anodes [J]. Ind. Eng. Chem. Res.2013,52(3):1197-1204
    [95]Kim I. T., Magasinski A., Jacob K., Yushin G., and Tannenbaum R. Synthesis and electrochemical performance of reduced grapheme oxide/maghemite composite anode for lithium ion batteries [J]. Carbon 2013,52:56-64
    [96]Zhu X. J., Zhu Y. W., Murali S., Stoller M. D., and Ruoff R. S. Nanostructured reduced grapheme oxide/Fe2O3 composite as a high-performance anode material for lithium ion batteries[J]. ACS Nano 2011,5(4):3333-3338
    [97]Cao Z. Y. and Wei B. Q. F. Fe2O3/Single-walled carbon nanotube hybrid films as high performance anodes for rechargeable lithium-ion batteries [J]. J. Power Sources 2013,241: 330-340
    [98]Scrosati B., Hassoun J., and Sun Y. K. Lithium-ion batteries. A look into the future[J]. Energy Environ. Sci.2011,4(9):3287-3295
    [99]Wu H. B., Chen J. S., Hng H. H., and Lou X. W. Nanostructured metal oxide-based materials as advanced anodes for lithium-ion batteries [J]. Nanoscale 2012,4(8):2526-2542
    [100]Yu S. H., Conte D. E., Baek S., Lee D. C., Park S. K., Lee K. J., Piao Y. Z., Sung Y. E and Pinna N. Structure-properties relationship in iron oxide-reduced graphene oxide nanostructures for Li-ion batteries [J]. Adv. Funct. Mater.2013,23(35):4293-4305
    [101]李群.纳米材料的制备与应用技术.化学工业出版社.北京:2008
    [102]倪星元,姚兰芳,沈军,周斌.纳米材料制备技术.化学工业出版社.北京:2011
    [103]曹国忠,王颖,董星龙.纳米结构和纳米材料:合成、性能及应用(第二版).高等教育出版社.北京:2012
    [104]赵玉宝,黄传敬,陈陆千,翁维正,万惠霖.湿化学法制备纳米氧化钇的研究[J].化学学报.2004,62(18):1845-1848
    [105]Han R. L., Zhu C. L., Wang X. Y., and Yao K. H. Synthesis and characterization of hexagonal-like SmF3:Eu3+ nanocrystals [J]. J. Zhejiang Sci-Tech. University.2008,25(2): 203-206
    [106]胡季帆,钟定永,解廷秀,赵曰侠.溶胶凝胶法制备α-Fe2O3纳米微粒及其材料形貌研究[J].功能材料.2001,31(2):217-218
    [107]陈志君,赵高凌,李红,张俊娟,宋斌,韩高荣.低温下溶胶凝胶法制备TiO2纳米晶[J].无机化学学报.2010,26(5):860-866
    [108]Gutsch A., Muhlenweg H., and Kramer. Tailored-made nanoparticles via gas-phase synthesis [J]. Small.2005,1(1):30-46
    [109]Pratsinis S. E. Aerosol-based technologies in nanoscale manufacturing:from functional materials to devices through core chemical engineering[J]. AIChE J.2010,56(12): 3028-3035
    [110]Buesser B. and Grohn A. J. Multiscale aspects of modeling gas-phase nanoparticle synthesis[J]. Chem. Eng. Technol.2012,35(7):1133-1143
    [111]Stark W. J. and Pratsinis S. E. Aerosol flame reactors for manufacture of nanoparticles [J]. Powder Technol.2002,126(2):103-108
    [112]Johannessen T., Hensen J. R., Mosleh M., Johansen J., Quaade U., and Livbjerg H. Flame synthesis of nanoparticles:applications in catalysis and product/process engineering [J]. Chem. Eng. Res. Des.2004,82(A11):1444-1452
    [113]Wegner K. and Pratsinis S. E. Gas-phase synthesis of nanoparticles:scale-up and design of flame reactor[J]. Powder Technol.2005,150(2):117-122
    [114]Roth P. Particle synthesis in flames [J]. P. Combust. Inst.2007,31(2):1773-1788
    [115]Wegner K. and Pratsinis S. E. Scale-up of nanoparticles synthesis in diffusion flame reactors [J]. Chem. Eng. Sci.2003,58(20):4581-4589
    [116]Kammler H. K. and Pratsinis S. E. Scaling-up the production of nanosized SiO2-particles in a double diffusion flame aerosol reactor [J]. J. Nanopart. Res.1999, 1(4):467-477
    [117]Pratsinis S. E. Flame aerosol synthesis of ceramic powders [J]. Prog. Energy Combust. Sci.1998,24(3):197-219
    [118]Tsantilis S., Kammler H. K., and Pratsinis S. E. Population balance modeling of flame synthesis of titania nanoparticles [J]. Chem. Eng. Sci.2002,57(12):2139-2156
    [119]Strobel R. and Pratsinis S. E. Flame aerosol synthesis of smart nanostructured materials [J]. J. Mater. Chem.2007,17(45):4743-4756
    [120]Jung D. S., Park S. B., and Kang Y. C. Design of particles by spray pyrolysis and recent progress in its application [J]. Korean J. Chem. Eng.2010,27(6):1621-1645
    [121]Athanassiou E. K., Grass R. N., and Strak W. J. Chemical aerosol engineering as a novel tool for material science:from oxides to salt and metal nanoparticles [J]. Aerosol Sci. Technol.2010,44(2):161-172
    [122]Teoh W. Y., Amal R., and Madler L. Flame spray pyrolysis:an enabling technology for nanoparticles design and fabrication [J]. Nanoscale.2010,2(8):1324-1347
    [123]胡彦杰,李春忠.气相燃烧法制备纳米材料的研究进展[J].中国材料进展.2012,3 1(3):41-55
    [124]Schatz A., Reiser O., and Stark W. J. Nanoparticles as semi-heterogeneous catalyst supports [J]. Chem. Eur. J.2010,16(30):8950-8967
    [125]Camenzind A., Caseri W. R., and Pratsinis S. E. Flame-made nanoparticles for nanocomposites [J]. Nanotoday.2010,5(l):48-65
    [126]Schimmoeller B., Pratsinis S. E., and Baiker A. Flame aerosol synthesis of metal oxide catalysts with unprecedented structural and catalytic properties [J]. ChemCatChem.2011, 3(8):1234-1256
    [127]Tricoli A. and Elmoe T. D. Flame spray pyrolysis synthesis and aerosol deposition of nanoparticle films [J]. AIChE J.2012,58(11):3578-3588
    [128]程永亮,宋武林,谢长生.燃烧法制备氧化物纳米材料的研究进展[J].材料导报.2003,7(17):70-72
    [129]Bickmore C. R., Waldner K. F., Treadwell D. R., and Laine R. M. Ultrafine spinel powders by flame spray pyrolysis of a magnesium alumninum double alkoxide [J]. J. Am. Ceram. Soc.1996,79(5):1419-1423
    [130]Tani T., Madler L., and Pratsinis S. E. Synthesis of zinc oxide/silica composite nanoparticles by flame spray pyrolysis [J]. J. Mater. Sci.2002,37(21):4627-4632
    [131]Madler L., Roessler A., Pratsinis S. E., Sahm T., Gurlo A., Barsan N., and Weimar U. Direct formation of highly porous gas-sensing films by in situ thermophoretic deposition of flame-made Pt/SnO2 nanoparticles [J]. Sensor. Actuat. B.2006,114(1):283-295
    [132]Tricoli A., Graf M., and Pratsinis S. E. Optimal doping for enhanced SnO2 Sensitivity and thermal stability [J]. Adv. Funct. Mater.2008,18(13):1969-1976
    [133]Kuhne S., Graf M., Tricoli A., Mayer F., Pratsinis S. E., and Hierlemann A. Wafer-level flame spray pyrolysis deposition of gas-sensitive layers on microsensors [J]. J. Micromech. Microeng.2008,18(3):035040(10pp)
    [134]Tricoli A., Graf M., Mayer F., Kuhne S., Hierlemann A., and Pratsinis S. E. Micropatterning layers by flame aerosol deposition-annealing [J]. Adv. Mater.2008, 20(16):3005-3010
    [135]Thimsen E., Rastgar N., and Biswas P. Nanostructured TiO2 films with controlled morphology synthesized in a single step process:performance of dye-sensitized solar cells and photo watersplitting [J]. J. Phys. Chem. C 2008,112(11):4134-4140
    [136]Wegner K. and Pratsinis S. E. Nozzle-quenching process for controlled flame synthesis of titania nanoparticles [J]. AIChE J.2003,49(7):1667-1675
    [137]Grass R. N. and Stark W. J. Flame synthesis of calcium-, strontium-, barium fluoride nanoparticles and sodium chloride[J]. Chem. Commun.2005, (13):1767-1769
    [138]Loher S., Stark W. J., Maciejewski M., Baiker A., Pratsinis S. E., Reichardt D., Maspero F., Krumeich F., and Gunther D. Fluoro-apatite and calcium phosphate nanoparticles by flame synthesis [J]. Chem. Mater.2005,17(1):36-42
    [139]Athanassion E. K., Grass R. N., and Stark W. J. Large-scale production of carbon-coated copper nanoparticles for sensor applications [J]. Nanotechnology.2006, 17(6):1668-1673
    [140]Grass R. N. and Stark W. J. Flame spray synthesis under a non-oxidizing atmosphere: preparation of metallic bismuth nanoparticles and nanocrystalline bulk bismuth metal [J]. J. Nanopart. Res.2006,8(5):729-736
    [141]Strobel R., Madler L., Piacentini M., Maciejewski M., Baiker A., and Pratsinis S. E. Two-nozzle flame synthesis of Pt/Ba/Al2O3 for NOx storage [J]. Chem. Mater.2006, 18(10):2532-2537
    [142]Teleki A., Heine M. C., Krumeich F., Akhtar M. K., and Pratsinis S. E. In situ coating of flame-made TiO2 particles with nanothin SiO2 films [J]. Langmuir.2008, 24(21):12553-12558
    [143]Sotiriou G. A., Sannomiya T., Teleki A., Krumeich F., Voros J., and Pratsinis S. E. Non-toxic dry-coated nanosilver for plasmonic biosensors [J]. Adv. Funct. Mater.2010, 20(24):4250-4257
    [144]Teleki A., Bielobrk N., and Pratsinis S. E. Continuous surface functionalization of flame-made TiO2 nanoparticles [J]. Langmuir.2010,26(8):5815-5822
    [145]Heine M. C. and Pratsinis S. E. Droplet and particle dynamics during flame spray synthesis of nanoparticles [J]. Ind. Eng. Chem. Res.2005,44(16):6222-6232
    [146]Heine M. C. and Pratsinis S. E. Polydispersity of primary particles in agglomerates made by coagulation and sintering [J]. Aerosol Sci.2007,38(1):17-38
    [147]Heine M. C. and Pratsinis S. E. Brownian coagulation at high concentration [J]. Langmuir.2007,23(19):9882-9890
    [148]Heine M. C. and Pratsinis S. E. Agglomerate TiO2 aerosol dynamics at high concentration [J]. Part. Part. Syst. Charact.2007,24(1):56-65
    [149]Strobel R., Metz H. J., and Prasinis S. E. Brilliant yellow, transparent pure, and SiO2-coated BiVO4 nanoparticles made in flames [J]. Chem. Mater.2008,20(20):6346-6351
    [150]Strobel R., Grunwaldt J. D., Camenzind A., Pratsinis S. E., and Baiker A. Flame-made alumina supported Pd-Pt nanoparticles:structural properties and catalytic behavior in methane combustion [J]. Catal. Lett.2005,104(1):9-16
    [151]Schimmoeller B., Delaigle R., Debecker D. P., and Gaigneaus E. M. Flame-made vs. wet-impregnated vanadia/titania in the total oxidation of chlorobenzene:Possible role of VOx species [J]. Catal. Today.2010,157(1-4):198-203
    [152]Waser O., Buchel R., Hintennach A., Novak P., and Pratsinis S. E. Continuous flame aerosol synthesis of carbon-coated nano-LiFePO4 for Li-ion batteries [J]. J. Aerosol Sci.2011, 42(10):657-667
    [153]Pawinrat P., Mekasuwandumrong O., and Panpranot J. Synthesis of Au-ZnO and Pt-ZnO nanocomposites by one-step flame spray pyrolysis and its application for photocatalytic degradation of dyes [J]. Catal. Commun.2009,10(10):1380-1385
    [154]Mekasuwandumrong O., Somboonthanakij S, Praserthdam P., and Panpranot J. Preparation of nano-Pd/SiO2 by one-step flame spray pyrolysis and its hydrogenation activities:comparison to the concentional impregnation method [J]. Ind. Eng. Chem. Res. 2009,48(6):2819-2825
    [155]Schulz H., Madler L., Pratsinis S. E., Burtscher P., and Moszner N. Transparent nanocomposites of radiopaque, flame-made Ta2O5/SiO2 particles in an acrylic matrix [J]. Adv. Funct. Mater.2005,15(5):830-837
    [156]Yi J. H., Kim J. H., Koo H. Y., Ko Y. N., Kang Y. C., and Lee J. H. Nanosized LiMn2O4 powders prepared by flame spray pyrolysis from aqueous solution [J]. J. Power Sources.2011,196(5):2858-2862
    [157]Ernst F.O., Kammler H. K., Roessler A., Pratsinis S. E., Strak W. J., Ufheil J., and Novak P. Electrochemically active flame-made nanosized spinels:LiMn2O4, LiTi5O12 and LiFe5O8[J]. Mater. Chem. Phys.2007,101(2-3):372-378
    [158]Grimm S., Schultz M., and Barth S. Flame pyrolysis-a preparation route for ultrafine pure gama-Fe2O3 powders and the control of their particle size and properties [J]. J. Mater. Res.1997,32(4):1083-1092
    [159]Janzen C. and Roth P. Formation and charateristics of Fe2O3 nanoparticles in doped low pressure H2/O2/Ar flames [J]. Combust. Flame.2001,125:1150-1161
    [160]Li D., Teoh W. Y.. Selomulya C., Woodward R. C., Amal R., and Rosche B. Flame-sprayed superparamagnetic bare and silica-coated maghemite nanoparticles:synthesis characterization, and protein adsorption-desorption [J]. Chem. Mater.2006, 18(26):6403-6413
    [161]Li D., Teoh W. Y., Selomulya C., Woodward R. C., Munroe P., and Amal R. Insight into microstructural and magnetic properties of flame-made γ-Fe2O3 nanoparticles [J]. J. Mater, Chem.2007,17:4876-4884
    [162]Li D., Teoh W. Y., Djunaedi D., Gooding J. J., Selomulya C., and Amal R. Facile functionalization and phase reduction route of magnetic iron oxide nanoparticles for conjugation of matrix metalloproteinase [J]. Adv. Eng. Mater.2010,12(6):B210-B 214
    [163]Li D., Teoh W. Y., Gooding J. J., Selomulya C., and Amal R. Functionalization strategies for protease immobilization on magnetic nanoparticles [J]. Adv. Funct. Mater.2010, 20(11):1767-1777
    [164]Zhao N, Ma W., Cui Z. M., Song W. G., Xu C. L., and Gao M. Y. Polyhedral maghemite nanocrystals prepared by a flame synthetic method:preparations, characterization, and catalytic properties[J]. ACS Nano.2010,3(7):1775-1780
    [165]Inamdar S., Choi H. S., Kim M. S., Chaudhari K., and Yu J. S. Flame Synthesis of 26-faceted maghemite polyhedrons grown via 14-faceted polyhedrons and their carbon composites for Li-ion battery application[J]. CrystEngComm.2012,14(20)7009-7014
    [166]Strobel S. and Pratsinis S. E. Direct synthesis of maghemite, magnetite and wustite nanoparticles by flame spray pyrolysis [J]. Adv. Powder Technol.2009,20(2):190-194
    [167]Herrmann I. K., Grass R. N., Mazunin D., and Stark W. J. Synthesis and covalent surface functionalzization of nonoxidic iron core shell nanomagnets[J]. Chem. Mater.2009, 21(14):3275-3281
    [168]Herrmann I. K., Urner M., Koehler F. M., Hasler M., Grass R. N., Ziegler U., Schimmer B., and Stark W. J. Blood purification using functionalized core/shell nanomagnets [J]. Small.2010,6(13):1388-1392
    [169]Herrmann I. K., Bernabei R. B.,Urner M., Grass R. N., Schimmer B., and Stark W. J. Device for continuous extracorporeal blood purification using target-specific metal nanomagnets [J]. Nephrol Dial Transplant.2011,26(9):2948-2954
    [170]Merchan W. M., Saveliev A. V., and Jimenez C. Novel flame-gradient method for synthesis of metal-oxide channels, nanowires and nanorods [J]. J. Exp. Nanosci.2010, 5(3):199-212
    [171]Rao P. M. and Zheng X. L. Unique magnetic properties of single crystal γ-Fe2O3 nanowires synthesized by flame vapor deposition [J]. Nano Lett.2011,11(6):2390-2395
    [172]Teleki A., Suter M., Kidambi P. R., Ergeneman O., Krumeich F., Nelson B. J., and Pratsinis S. E. Hermetically coated superparamagnetic Fe2O3 particles with SiO2 nanofilms [J]. Chem. Mater.2009,21(10):2094-2100
    [173]Guo B., Yim H., Khasanov A., and Stevens J. Formation of Magnetic FexOy/Silica core-shell particles in a one-step flame aerosol process [J]. Aerosol Sci. Technol.2010, 44(4):281-291
    [174]Sotiriou G. A., Hirt A. M., Lozach P. Y., Teleki A., Krumeich F., and Pratsinis S. E. Hybrid, silica-coated, Janus-like Plasmonic-magnetic nanoparticles [J]. Chem. Mater.2011, 23(7):1985-1992
    [175]Li D., Teoh W. Y., Woodward R. C., Cashion J. D., Selomulya C., and Amal R. Evolution of morphology and magnetic properties in silica/maghemite nanocomposites [J]. J. Phys. Chem. C 2009,113(28):12040-12047
    [176]Janzen C., Knipping J., Rellinghaus B., and Roth P. Formation of silica-embedded iron-oxide nanoparticles in low-pressure flames [J]. J. Nanopart. Res.2003,5(5-6):589-596
    [177]Ehrman S. H. and Friedlander S. K. Phase segregation in binary SiO2/TiO2 and SiO2/Fe2O3 nanoparticles aerosols formed in a premixed flame [J]. J. Mater. Sci.1999, 14(12):4551-4561
    [178]Zhao N. and Gao M. Y. Magnetic Janus particles prepared by a flame synthetic approach:synthesis, characterizations and properties [J]. Adv. Mater.2009,21(2):184-187
    [179]Zhu W. M., Ren J. W., Gu X., Azmat M. U., Lu G. Z., and Wang Y. Q. Synthesis of hermetically-sealed graphite-encapsulated metaalic cobalt(alloy) core/shell nanostructures [J]. Carbon.2011,49(4):1462-1472
    [180]Ferrando R., Jellinek J., and Johnston R. L. Nanoalloys:from theory to applications of alloy clusters and nanoparticles [J]. Chem. Rev.2008,108(3):845-910
    [181]Su X. B., Zheng H. G., Yang Z. P., Zhu Y. C., and Pan A. Preparation of nanosized particles of FeNi and FeCo alloy in solution [J]. J. Mater. Sci.2003,38(22):4581-4585
    [182]Li C. Z., Hu Y. J., and Yuan W. K. Nanomaterials synthesized by gas combustion flame: morphology and structure [J]. Particuology.2010,8(6):556-562
    [183]Hu Y. J., Li C. Z., Gu F., and Zhao Y. Facile flame synthesis and photoluminescent properties of core/shell TiO2/SiO2 nanoparticles [J]. J. Alloys Compd.2007,432(1-2):L5-L9
    [184]Liu J., Hu Y. J., Gu F., and Li C. Z. Flame synthesis of ball-in-shell structured TiO2 nanospheres [J]. Ind. Eng. Chem. Res.2009,48(2):735-739
    [185]Liu J., Gu F., Hu Y. J., and Li C. Z. Flame synthesis of tin oxide nanorods:A continuous and scalable approach[J]. J. Phys. Chem. C 2010,114(13):5867-5870
    [186]Liu J., Hu Y. J., Gu F., Ma J., and Li C. Z. Tin oxide nanowires synthesized via flat flame deposition:structures and formation mechanism [J]. Ind. Eng. Chem. Res.2011, 50(9):5584-5588
    [187]Brunner T. J., Bohner M., Dora C., Gerber C., and Strak W. J. Comparison of amorphous TCP nanoparticles to micro-sized a-TCP as starting materials for calcium phosphate cemnets [J]. J. Biomed. Mater. Res.2007,83B(2):400-407
    [188]Kim M. and Laine R. M. One-step synthesis of core-shell (Ce0.7Zr0.3O2)x(Al2O3)1-x[(Ce0.7Zr0.302)@Al2O3] nanopowders via liquid-feed flame spray pyrolysis (LF-FSP) [J]. J. Am. Chem. Soc.2009,131(26):9220-9229
    [189]Byeon J. H., Park J. H., Yoon K. Y., and Hwang J. Ambient spark generation to synthesize carbon-encapsulated metal nanoparticles in continuous aerosol manner [J]. Nanoscale.2009,1(3):339-343
    [190]Byeon J. H. and Kim J. W. Morphplogy and structure of aerosol carbon-encapsulated metal nanoparticles from various ambient metalcarbon spark discharges [J]. ACS Appl. Mater. Interfaces.2010,2(4):947-951
    [191]Sundar R. S. and Deevi S. C. Soft magnetic FeCo alloys:alloy development, processing, and properties [J]. Int. Mater. Rev.2005,50(3):157-192
    [192]Gubin S. P. Magnetic nanoparticles.Wiley-VCH Verlag GmbH & Co.KGaA. Winheim:2009
    [193]Mooney K. E. and Wagner M. J. Nanocrystalline Co3oFe7o alloy synthesized by alkalide reduction[J]. J. Mater. Chem.2009,19(5):611-616
    [194]Holodelshikov E., Perelshtein I., and Gedanken A. Synthesis of air stable FeCo/C alloy nanoparticles by decomposing a mixture of the corresponding metal-acetyl acetonates under their autogenic pressure [J]. Inorg. Chem.2011,50(4):1288-1294
    [195]Kodama D., Shinoda K., Sato K., Konno Y., and Jeyadevan B. Chemical synthesis of sub-micrometer-to nanometer-sized magnetic FeCo dice [J]. Adv. Mater.2006, 18(23):3154-3159
    [196]Wang C., Peng S., Lacroix L. M., and Sun S. H. Synthesis of high magnetic moment CoFe nanoparticles via interfacial diffusion in core/shell structured Co/Fe nanoparticles [J]. Nano Res.2009,2(5):380-385
    [197]Seo W. S., Lee J. H., Sun X. M., Suzuki Y., Mann D., Liu Z., Terashima M., Yang P. C., McConnell M. V., Nishimura D. G., and Dai H. J. FeCo/graphitic-shell nanocrystals as advanced magnetic-resonance-imaging and near-infrared agents [J]. Nat. Mater.2006, 5(12):971-976
    [198]Chaubey G. S., Barcena C., Poudyal N., Rong C. B., Gao J. M., Sun S. H., and Liu J. P. Synthesis and stabilization of FeCo nanoparticles [J]. J. Am. Chem. Soc.2007, 129(23):7214-7215
    [199]Robinson I., Zacchini S., Tung L. D., Maenosono S., and Thanh T. K. Synthesis and characterization of magnetic nanoalloys from bimetallic carbonyl clusters [J]. Chem. Mater. 2009,21(13):3021-3026
    [200]Grass R. N. and Stark W. J. Gas phase synthesis of facc-cobalt nanoparticles [J].2006, 16(19):1825-1830
    [201]Qi X. Y., Pu K. Y., Li H., Zhou X. Z., Wu S. X., Fan Q. L., Liu B., Boey F., Huang W., and Zhang H. Amphiphilic graphene composites [J]. Angew. Chem. Int. Ed.2010, 49(49):9426-9429
    [202]Choi S. Q., Jang S. G., Pascall A. J., Dimitriou M. D., Kang T., hawker C. J. and Squires T. M. Synthesis of multifunctional micrometer-sized particles with magnetic, amphiphilic, and anisotropic properties [J]. Adv. Mater.2011,23(20):2348-2352
    [203]Peng J. X., Liu Q. X., Xu Z. H., and Masliyah J. Synthesis of interfacially active and magnetically responsive nanoparticles for multiphase separation applications [J]. Adv. Funct. Mater.2012,22(8):1732-1740
    [204]Ling X. Y., Phang I. Y., Acikgoz C., Yilmaz M. D., Hempenius M. A., Vancso G. J., and Huskens J. Janus particles with controllable patchiness and their chemical functionalization and supramolecular assembly [J]. Angew. Chem. Int. Ed.2009, 48(41):7677-7682
    [205]Okada M., Maeda H., Fujii S., Nakamura Y., and Furuzono T. Formation of pickering emulsions stabilized via interaction between nanoparticles dispersed in aqueous phase and polymer end groups dissolved in oil phase [J]. Langmuir.2012,28(25):9405-9412
    [206]Smith K. L. and Pozzo D. C. Pickering emulsions stabilized by nanoparticle surfactant [J]. Langmuir.2012,28(32):11725-11732
    [207]Song J. B., Cheng L., Li A. P., Yin J., Kuang M., and Duan H. W. Plasmonic vesicles of amphiphilic gold nanocsrystals:self-assembly and external-stimuli-triggered destruction [J]. J. Am. Chem. Soc.2011,133(28):10760-10763
    [208]Tan H. Y., Zhang P., Wang L., Yang D., and Zhou K. Multifunctional amphiphilic carbonaceous microcapsules catalyze water/oil biphasic reactions [J]. Chem. Commun.2011, 47(43):11903-11905
    [209]Nisar A., Zhuang J., and Wang X. Construction of amphiphilic polyoxometalate mesostructures as a highly efficient desulfurization catalyst [J]. Adv. Mater.2011,23(9): 1130-1135
    [210]Gennes P. G. Soft matter [J]. Rev. Mod. Phys.1992,64(3):645-648
    [211]Gennes P. G. Nanoparticles and dendrimers:hopes and illusions [J]. Croat. Chem. Acta. 1998,71(4):833-836
    [212]Kim S. H., Lee S. Y., and Yang S. M. Janus microspheres for a highly flexible and impregnable water repelling interface [J]. Angew. Chem. Int. Ed.2010,49(14):2535-2538
    [213]Kim S. H., Jeon S. J., Jeong W. C., Park H. S., and Yang S. M. Optofluidic synthesis of electroresponsive photonic Janus balls with isotropic structural colors [J]. Adv. Mater.2008, 20(21):4129-4134
    [214]Perro A., Reculusa S., Ravaine S., Bourgeat-Lami E., and Duguet E. Design and synthesis of Janus micro- and nanoparticles [J]. J. Mater. Chem.2005,15(35-36):3745-3760
    [215]Yin S. N., Wang C. F., Yu Z. Y., Wang J., Liu S. S., and Chen S. Versatile bifunctional magnetic-fluorescent responsive Janus supraballs towards the flexible bead display [J]. Adv. Mater.2001,23 (26):2915-2919
    [216]Guell O., Sagues F., and Tierno P. Magnetically driven Janus micro-ellipsoids realized via asymmetric gathering of the magnetic charge[J]. Adv. Mater.2011,23(32):3674-3679
    [217]Gao W., Agostino M. D., Gradilla V. G., Orozco J., and Wang J. Multi-fuel driven Janus micromotor [J]. Small.2012,9(3):467-271
    [218]Hu S. H. and Gao X. H. Nanocomposites with spatially separated functionalities for combined imaging and magnetolytic therapy [J]. J. Am. Chem Soc.2010,132(21):7234-7237
    [219]Zhang L., Zhang F., Dong W. F., Song J. F., Huo Q. S., and Sun H. B. Magnetic-mesoporous Janus nanoparticles [J]. Chem. Commun.2011,47(4):1225-1227
    [220]Erb R. M., Jenness N. J., Clark R. L., and Yellen B. B. Towards holonomic control of Janus particles in optomagnetic traps [J]. Adv. Mater.2009,21(47):4825-4829
    [221]Liang F. X., Shen K., Qu X. Z., Zhang C. L., Wang Q., Li J. L., Liu J. G., and Yang Z. Z. Inorganic Janus nanosheets [J]. Angew. Chem. Int. Ed.2011,50(10):2379-2382
    [222]Loget G., Roche J., and Kuhn A. True bulk synthesis of Janus objects by bipolar electrochemistry[J]. Adv. Mater.2012,24(37):5111-5116
    [223]Shah R. K., Kim J. W., and Weitz D. A. Janus supraparticles by induced phase separation of nanoparticles in droplets [J]. Adv. Mater.2009,21(19):1949-1953
    [224]Dendukuri D., Pregibon D. C., Collins J., Hatton T. A., and Doyle P. S. Continuous-flow lithography for high-throughput microparticle synthesis [J]. Nat. Mater. 2006,5(5):365-369
    [225]Guo B. and Kennedy I. M. The speciation and morphology of chromium oxide nanoparticles in a diffusion flame [J]. Aerosol Sci. Technol.2004,38(5):424-436
    [226]Mueller R., Kammler H. K, Wegner K., and Pratsinis S. E. OH surface density of SiO2 and TiO2 by thermogravinetric analysis [J]. Langmuir.2003,19(1):160-165
    [227]Aussillous P. and Quere D. Liquid marbles [J]. Nature.2001,411:924-927
    [228]Dupin D., Armes S. P., and Fujii S. Stimulus-responsive liquid marbles [J]. J. Am. Chem. Soc.2009,131(15):5386-5387
    [229]Li J. F., Huang Y. F., Ding Y., Yang Z. L., Li S. B., Zhou X. S., Fan F. R., Zhang W. Zhou Z. Y., Wu D. Y., Ren B., Wang Z. L., and Tian Z. Q. Shell-isolated nanoparticle-enhanced raman spectroscopy [J]. Nature.2010,464:392-395
    [230]Liu K. W., Sakurai M., and Aono M. Enhancing the humidity sensitivity of Ga2O3/SnO2 core/shell microribbon by applying mechanical strain and its application as a flexible strain sensor [J]. Small.2012,8(23):3599-3604
    [231]Hou Y., Zuo F., Dagg A., and Feng P. Y. A Three-dimensional branched cobalt-doped α-Fe2O3 nanorod/MgFe2O4 heteroj unction array as a flexible photoanode for efficient photoelectrochemical water oxidation [J]. Angew. Chem. Int. Ed.2012,52(4):1248-1252
    [232]Chen X., Guo Z., Xu W. H., Yao H. B., Li M. Q., Liu J. H., Huang X. J., and Yu S. H. Templating synthesis of SnO2 nanotubes loaded with Ag2O nanoparticles and their enhanced gas sensing properties [J]. Adv. Funct. Mater.2011,21(11):2049-2056
    [233]Zhou F. Z., Xu L. L., Ma H. R., Guan J. G., Chen D. R., and Wang S. H. Facile preparation of magnetic α-Fe2O3/TiO2 Janus hollow bowls with efficient visible-light photocatalytic activities by asymmetric shrinkage [J]. Nanoscale.2012,4(15):4650-4657
    [234]In S. I., Vaughn II D., and Schaak R. E. Hybrid CuO-TiO2-xNx hollow nanocubes for photocatalytic conversion of CO2 into methane under solar irradiation [J]. Angew. Chem. Int Ed.2012,51(16):3915-3918
    [235]Height M. J., Madler L., and Pratsinis S. E. Nanorods of ZnO made by flame spray pyrolysis [J]. Chem. Mater.2006,18(2):572-578
    [236]Hilty F. M., Knijnenburg J. T., Teleki A., Krumeich F., Hurrell R. F., Pratsinis S. E and Zimmermann M. B. Incorporation of Mg and Ca into nanostructured Fe2O3 improves Fe solubility in dilute acid and sensory characteristics in foods [J]. J. Food Sci.2011, 76(1):N2-N10
    [237]Castro R. H., Hidalgo P., Muccillo R., and Gouvea D. Microstructure and structure of NiO-SnO2 and Fe2O3-SnO2 systems [J]. Appl. Surf. Sci.2003,214(1-4):172-177
    [238]Castro R. H., Hidalgo P., Coaquira J. A., Bettini J., Zanchet D., and Gouvea D. Surface segregation in SnO2-Fe2O3 nanopowders and effects in Mossbauer spectroscopy [J]. Eur. J. Inorg. Chem.2005,2005(11):2134-2138
    [239]Wang Y. L., Xu J. J., Wu H., Xu M., Peng Z., and Zheng G. F. Hierarchical SnO2-Fe2O3 heterostructures as lithium-ion battery abodes [J]. J. Mater. Chem.2012, 22(41):21923-21927

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700