用户名: 密码: 验证码:
存储器用铁电薄膜界面和应变效应的第一性原理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铁电薄膜存储器是一类公认的具有极大发展潜力的非挥发性存储器件。而要使铁电薄膜存储器实现广泛的应用,则必须要更好地解决由铁电失效导致的可靠性问题。铁电薄膜的电学失效主要包括疲劳、印记、保持性损失等。造成铁电失效的因素主要有:退极化、晶格缺陷、界面层、漏电流等。随着薄膜制备技术的发展以及铁电器件的日趋小型化,铁电薄膜的界面和应变应变得相当突出,这给铁电薄膜的应用带来了巨大的挑战,也为铁电性能的调控提供了巨大的空间。本论文中,我们采用第一性原理的计算方法,研究了铁电薄膜的界面和应变效应与铁电失效之间的关联,并探索了铁电性能的界面和应变调控规律。我们的研究为铁电薄膜的界面和应变工程提供了理论基础。本论文取得的创新性研究成果包括以下几个方面:
     (1)合适的外延应变可以有效地调控铁电薄膜的极化性质。以铁电存储应用中最有前景的几类铁电体PbTiO_3(PTO)、SrBi_2Ta_2O_9(SBT)、Bi_4Ti_3O_(12)(BiT)为研究对象,采用第一性原理和Berry-phase方法我们研究了铁电薄膜自发极化的应变效应。研究表明,合适地引入外延应变,可以有效地调控铁电薄膜的极化性质。特别地,对于简单钙钛矿铁电体PTO,在3%的ab轴压应变下,其自发极化可提高40%,同时也有效提高了PTO的极化稳定性。而对于铋层状钙钛矿的SBT,当ab双轴张应变达到2.4%时,其自发极化可以提高45%。对于铋层状钙钛矿的BiT,单斜的B1a1相比正交的B2cb相更稳定,2.4%的c轴压应变和ab双轴张应变分别可使BiT的极化主分量Pa提高10%和21%。铁电薄膜自发极化应变效应的研究,对铁电薄膜极化性能的外延应变调控具有重要指导意义;
     (2) ab轴压应变可以抑制氧空位造成的铁电性能失效。以PbTiO_3(PTO)和BaTiO_3(BTO)为研究对象,我们研究了钙钛矿铁电体中氧空位对极化和畴的影响,同时研究了外延应变与氧空位的结构和演化规律的关联。众所周知,钙钛矿铁电体中V_c(沿极化方向B-O链上的氧空位)能够造成tail-to-tail的极化花样,从而钉扎电畴翻转,造成铁电疲劳。我们发现,适当的ab平面压应变能有效地使钙钛矿铁电体PTO中引起tail-to-tail畴结构的V_c~(ud)转化成为head-to-tail畴结构的Vswc。而另一类对极化无害、但是在无应变的时候能量较高的氧空位Vab(垂直于极化方向的BO_2平面内的氧空位)能够在压应变下变得比V_c更稳定。这表明,压应变能够将氧空位由缺陷钉扎中心转变为非钉扎中心。另外,压应变能够提高氧空位的形成能和迁移势垒,从而抑制了氧空位的形成几率和流动性,这可以阻止氧空位由V_(ab)向V_c转变,同时氧空位的聚集现象也可以得到缓解。氧空位应变效应的研究表明,钙钛矿铁电体中氧空位对铁电极化的影响能够被ab轴压应变所抑制,因此应变调控是克服铁电薄膜失效问题的有效方法;
     (3)合理地构造界面能有效地克服死层效应并改善极化性质。以PTO、BTO钙钛矿铁电薄膜与Pt、LaNiO_3(LNO)和SrRuO_3(SRO)电极构成的电极/铁电/电极结构的铁电电容为研究对象,我们研究了界面效应对铁电薄膜极化性质的影响,并且探索了铁电薄膜极化性质的界面改善和应变改善。我们发现氧化物电极与铁电薄膜之间具有较强的界面结合性能,这可能是氧化物电极覆盖的铁电薄膜具有较强的抗疲劳性能的原因之一。然而,具有氧化物电极的铁电薄膜,特别是TiO_2终端的情况,其极化强度和极化稳定性较差。我们发现在TiO_2终端LNO/BTO/LNO电容的界面处,甚至会产生极化反向的死层效应。我们分析这可能是由于界面电场与TiO_2终端铁电薄膜本身的极化不稳定性共同导致的。我们发现引入LaXO_3(X=Fe, Co)和YNiO_3(Y=Sr, Ba)缓冲层能够有效地消除极化死层效应,极大地改善铁电薄膜的极化性质。同时我们发现,在界面效应的影响下,氧化物电极LNO覆盖的铁电薄膜以及TiO_2终端的铁电薄膜具有较大的面内极化分量,即铁电薄膜r相结构在能量上要比c相结构稳定许多。通过施加一定的压应变,薄膜的面内极化分量得到抑制,垂直于界面的极化分量极大地提高。通过以上研究,我们对铁电薄膜的界面效应的微观机理有了更深刻的认识,这也为铁电薄膜电性能的界面和应变调控提供了有力的指导;
     (4)合适的掺杂可以抑制氧空位的界面聚集和漏电流。以Pt/PTO/Pt铁电电容为对象,我们研究了氧空位在界面附近的演化规律及其对铁电薄膜漏电流的影响,同时探索了掺杂的方法对漏电流的调控能力。我们发现氧空位在Pt/PTO界面附近的形成能要远低于PTO薄膜内部的形成能,最大可相差1.6eV以上。这表明氧空位容易在界面处产生或者从薄膜内部迁移到界面处,从而形成所谓的界面死层。通过对PTO薄膜输运性质的计算,我们发现氧空位的出现使PTO铁电薄膜的漏电流为原来的数倍以上,而且氧空位越靠近界面,铁电薄膜的漏电流越大。我们研究了离子掺杂对氧空位以及漏电流的调控能力。我们发现Cu和V掺杂能够俘获氧空位,从而有效地抑制铁电薄膜的漏电流。通过对含有氧空位的铁电电容的研究,我们更加清晰地认识了氧空位所造成的界面失效、漏电流等的微观机理。同时漏电流掺杂调控的研究,有助于我们更好地实现铁电薄膜性能的优化。
Ferroelectric film memory is believed to be the most promising nonvolatilememory technology. For the wide application of ferroelectric film memory, itsreliability due to the ferroelectric failure should be better solved. The electricalfailure of ferroelectric film includes fatigue, imprint and retention loss. There aremany factors which result in the ferroelectric failure, such as depolarization, latticedefects, interface layer and leakage current. With the development of filmpreparation technology and the miniaturization trend of ferroelectric device, theinterface and strain effects in ferroelectric film become increasingly prominent. Theinterface and strain effects make the practical application of ferroelectric filmchallenging and meanwhile bring about a considerable adjustable range offerroelectricity. In this thesis, we studied the interface and strain effects on theferroelctricity and its failure mechanism by first principles calculation and theninvestigated the interface and strain tuning of ferroelectric film. Our works offeruseful information and theoretical basis for improving the ferroelectricity byinterface and strain engineering. The primary coverage of this thesis is as follows:
     (1) The polarization properties of ferroelectric film can be effectivelyimproved by proper epitaxial strain. With the most promising types offerroelectrics for memory use, shch as PbTiO_3(PTO), SrBi_2Ta_2O_9(SBT) andBi_4Ti_3O_(12)(BiT), we studied the strain effects on the spontaneous polarization offerroelectric films by first principles calculation and Berry-phase method. Resultsshow that the polarization properties of ferroelectric films can be effectivelyimproved by introducing proper epitaxial strain. Particularly, the spontaneouspolarization of perovskite ferroelectric PTO is improved by40%under3%ab-biaxial compressive strain, and the polarization stability of PTO is also enhancedby the compressive strain. For the bismuth-layer-structured ferroelectric SBT, whenthe ab-biaxial tensile strain reaches2.4%, spontaneous polarization is improved by45%. For bismuth-layer-structured ferroelectric BiT, the monoclinic B1a1structureis more stable than the orthorhombic B2cb structure. Under2.4%c-uniaxialcompressive strain or2.4%ab-biaxial tensile strain, the principal component ofpolarization Pais increased by10%or21%, respectively. The spontaneous polarization-strain coupling study is instructive for the improvement of polarizationproperties of ferroelectric film by epitaxial strain tuning;
     (2) The oxygen vacancy induced ferroelectric failure can be suppressed byab-biaxial compressive strain. With typical perovskite ferreoectrics PbTiO_3(PTO)and BaTiO_3(BTO), we investigated the influence of oxygen vacancy on theferroelectric polarization and domain, and the strain effects on the oxygen vacancyconfiguration and evolution properties were also studied. It is known that the Vc(oxygen vacancy located in the B-O-B chains along the polarization axis) inperovskite ferroelectrics can cause a tail-to-tail polarization pattern and pin thedomain switching, which is the important origin of electrical fatigue. We found thatthe tail-to-tail domain configuration of Vc(Vudc) in PTO can be tuned to be ahead-to-tail one (Vswc) by applying proper ab-biaxial compressive strain. And theoriginally polarization-harmless Vab(oxygen vacancy located in the BO_2-plane thepolarization axis), with a higher energy than Vcin the strain-free case, can bestabilized by the compressive strain. This indicates that the compressive strain cantransform the oxygen vacancy from a domain pinning centre to be a non-pinningcentre. In addition, the formation and migration energies of oxygen vacancy can bothbe increased and thus the possibility and the mobility of oxygen vacancy can besuppressed by the compressive strain. It suggests that, under compressive strain, thetransformation of Vabto Vccan be impeded and oxygen vacancy clusteringphenomenon can be mitigated. The study of strain effects on the oxygen vacancyindicates that the influence of oxygen vacancy on the ferroelectric polarization canbe reduced by ab-biaxial compressive strain. Therefore, strain tuning is an effectiveway to overcome the ferroelectric failure problems;
     (3) The dead layer effects of ferroelectric film can be effectively overcome andpolarization properties can be significantly improved by constructing properinterface structures. With the electrode/ferroelectric/electrode capacitors consistingof PTO and BTO perovskite ferroelectric films and Pt, LaNiO_3(LNO), SrRuO_3(SRO)electrodes, the interface effects on the polarization properties of ferroelectric filmswere studied, and the improvement of polarization properties by interface and straintuning was also investigated. It is found that the oxide electrodes possess strongerinterface adhesion with ferroelectric film, which may be one of the reasons for thebetter endurance of ferroelectric film with oxide electrodes. However, theferroelectric film with oxide electrodes exhibits poorer polarization magnitude and stability, especially for the TiO_2-terminated film. In the TiO_2-terminatedLNO/BTO/LNO capacitor, we even found a reversed polarization dead layer nearthe top interface. This may be induced by the interface electric field and the inherentpolarization instability of TiO_2-terminated ferroelectric films. It is found that theLaXO_3(X=Fe, Co) and YNiO_3(Y=Sr, Ba) buffer layers can effectively eliminatethe dead layer effect and significantly improve the polarization properties. We alsofound that, under the interface effects, the ferroelectric films with oxide electrodes orTiO_2-termination show a large in-plane polarization component. It means that ther-phase is much more stable than the c-phase. By applying proper compressive strain,the in-plane polarization component is suppressed and out-plane component can belargely increased. The above studies lead to a more profound understanding for themicroscopic mechanism of interface effect and provide guidance for the interfacetuning of ferroelectricities;
     (4) The interface gathering of oxygen vacancy and its related leakage can byeffectively suppressed by proper doping. With Pt/PTO/Pt ferroelectric capacitors,the evolution of oxygen vacancy near the interface and its effects on the leakagecurrent were studied, and we also investigated the doping modification of theleakage. It is found that the formation energy of oxygen vacancy near the Pt/PTOinterface is much lower than that in the inner film. The maximum energy differenceis more than1.6eV. This indicates that the oxygen vacancy can readily form at theinterface or migrate from inner film to the interface, resulting in the so-calledinterface dead layer. By calculating the transport, we found that the appearance ofoxygen vacancy would increase the current by more than several times, and thenearer of the oxygen vacancy from the interface, the larger of the leakage caused byoxygen vacancy. The doping tuning of oxygen vacancy and leakage were studied. Itis found that the Cu and V doping could trap the oxygen vacancy and thereby greatlysuppress the leakage. Through the study of oxygen vacancy in the ferroelectriccapacitors, the mechanisms of oxygen vacancy induced interface problem andleakage current are clearer. And the doping modification study is meaningful for theimprovement of electrical properties of ferroelectric films.
引文
[1]《国家中长期科学和技术发展规划(2006-2020)》[S].中华人民共和国国务院发布,2006年2月9日.
    [2] J. F. Scott and C. A. Paz de Araujo. Ferroelectric memories [J]. Science,1989,246:1400-1405.
    [3]刘梅东,许毓春.压电铁电材料与器件[M].武汉:华中科技大学出版社,1990.
    [4] L. Geppert. The new indelible memories [J]. IEEE Spectrum,2003,40:48-54.
    [5]钟维烈.铁电体物理学[M].北京:科学出版社,1996.
    [6] J. Valasek. Piezo-electric and allied phenomena in Rochelle salt [J]. Physical Review,1921,17:475-481.
    [7] Y. Shichi, S. Tanimoto, T. Goto, K. Kuroiwa, and Y. Tarui. Interaction of PbTiO3films with Sisubstrate [J]. Japanese Journal of Applied Physics,1994,33:5172-5177.
    [8] W. Ren, Y. Liu, J. H. Qiu, L. Y. Zhang, and X. Yao. Properties of PLT thin films by thermaldecomposition of metallo-organic compounds [J]. Ferroelectrics,1994,152:201-206.
    [9] E. B. Araujo and J. A. Eiras. Effect of temperature and frequency on dielectric and ferroelectricproperties of PZT thin films [J]. Materials Letters,2000,46:265-269.
    [10] Q. Y. Jiang and L. E. Cross. Effects of porosity on electric fatigue behaviour in PLZT and PZTferroelectric ceramics [J]. Journal of Materials Science,1993,28:4536-4543.
    [11] B. Aurivillius. Mixed bismuth oxides with layer lattices [J]. Ark Kemi,1949,1:463-471.
    [12] C. A. Paz de Araujo, J. D. Cuchiaro, L. D. McMillan, M. C. Scott, and J. F. Scott. Fatigue-freeferroelectric capacitors with platinum electrodes [J]. Nature,1995,374:627-629.
    [13]钟向丽.存储器用BiT基无铅铁电薄膜及纳米线的制备与改性[D].湘潭大学博士论文,2008.
    [14] X. L. Zhong, J. B. Wang, X. J. Zheng, Y. C. Zhou, and G. W. Yang. Structure evolution andferroelectric and dielectric properties of Bi3.5Nd0.5Ti3O12thin films under a moderate temperatureannealing [J]. Applied Physics Letters,2004,85:5661(1-3).
    [15] D. Wu, A. D. Li, T. Zhu, Z. G. Liu, and N. B. Ming. Ferroelectric properties of Bi3.25La0.75Ti3O12thin films prepared by chemical solution deposition [J]. Journal of Applied Physics,2000,88:5941(1-5).
    [16] X. L. Zhong, J. B. Wang, L. Z. Sun, C. B. Tan, X. J. Zheng, and Y. C. Zhou. Improvedferroelectric properties of bismuth titanate films by Nd and Mn cosubstitution [J]. AppliedPhysics Letters,2007,90:012906(1-3).
    [17] M. A. Subramanian, G. Aravamudan, and G. V. Subba Rao. Oxide pyrochlores-a review [J].Progress in Solid State Chemistry,1983,15:55-143.
    [18]方俊鑫,殷之文.电介质物理学[M].北京:科学出版社,2000:305-325.
    [19] N. Setter, D. Damjanovic, L. Eng, G. Fox, S. Gevorgian, S. Hong, A. Kingon, H. Kohlstedt, N. Y.Park, and G. B. Stephenson. Ferroelectric thin films: Review of materials, properties, andapplications [J]. Journal of Applied Physics,2006,100:051606(1-46).
    [20]王耘波,李东,郭冬云.几种新型非易失性存储器[J].电子产品世界,2004,3:75-77.
    [21] J. F. Scott. Ferroelectric Memories [M]. Berlin: Springer,2000;[译]朱劲松,吕笑梅,朱旻.铁电存储器[M].北京:清华大学出版社,2004.
    [22] A. Sheikholeslami and P. G. Gulak. A survey of circuit innovations in ferroelectricrandom-access memories [J]. Proceedings of the IEEE,2000,88:667-689.
    [23] D. Takashima. Overview and trend of chain FeRAM architecture [J]. IEICE transactions onelectronics,2001,84:747-756.
    [24] H. Ishiwara, M. Okuyama, and Y. Arimoto. Ferroelectric Random Access Memories:Fundamentals and Applications [M]. Berlin: Springer,2004.
    [25] Y. Arimoto and H. Ishiwara. Current status of ferroelectric random-access memory [J]. MRSBulletin,2004,29:823-828.
    [26] S. L. Miller and P. J. McWhorter. Physics of the ferroelectric nonvolatile memory field effecttransistor [J]. Journal of Applied Physics,1992,72:5999-6010.
    [27] S. Mathews, R. Ramesh, T. Venkatesan, and J. Benedetto. Ferroelectric field effect transistorbased on epitaxial perovskite heterostructures [J]. Science,1997,276:238-240.
    [28]付承菊,郭冬云.铁电存储器的研究进展[J].纳米器件与技术,2006,9:414-419.
    [29] F. Yang, M. H. Tang, Z. Ye, Y. C. Zhou, X. J. Zheng, J. X. Tang, J. J. Zhang, and J. He. Eightlogic states of tunneling magnetoelectroresistance in multiferroic tunnel junctions [J]. Journal ofApplied Physics,2007,102:044504(1-5).
    [30] M. Y. Zhuravlev, R. F. Sabirianov, S. S. Jaswal, and E. Y. Tsymbal. Giant electroresistance inferroelectric tunnel junctions [J]. Physical Review Letters,2005,94:246802(1-4).
    [31] E. Y. Tsymbal and H. Kohlstedt. Tunneling across a ferroelectric [J]. Science,2006,313:181-183.
    [32] A. Gruverman, D. Wu, H. Lu, Y. Wang, H. W. Jang, C. M. Folkman, M. Y. Zhuravlev, D. Felker,M. Rzchowski, and C. B. Eom. Tunneling electroresistance effect in ferroelectric tunnel junctionsat the nanoscale [J]. Nano Letters,2009,9:3539-3543.
    [33]潘瑞琨,章天金,杨凤霞,马志军,何苗.铁电隧道结的研究进展[J].材料导报:综述篇,2010,24:10-13.
    [34] J. T. Evans and R. Womack. An experimental512-bit nonvolatile memory with ferroelectricstorage cell [J]. IEEE Journal of Solid-State Circuits,1988,23:1171-1175.
    [35] J. F. Scott. Applications of modern ferroelectrics [J]. Science,2007,315:954-959.
    [36] C. H. Ahn, K. M. Rabe, and J. M. Triscone. Ferroelectricity at the nanoscale: Local polarizationin oxide thin films and heterostructures [J]. Science,2004,303:488-491.
    [37] http://www.ITRS.com.
    [38] H. Shiga, D. Takashima, S. Shiratake, K. Hoya, T. Miyakawa, R. Ogiwara, R. Fukuda, R.Takizawa, K. Hatsuda, and F. Matsuoka. A1.6GB/s DDR2128Mb chain FeRAM with scalableoctal bitline and sensing schemes [J]. IEEE Journal of Solid-State Circuits,2010,45:142-152.
    [39] T. Tybell, P. Paruch, T. Giamarchi, and J. M. Triscone. Domain wall creep in epitaxialferroelectric Pb(Zr0.2Ti0.8)O3thin films [J]. Physical Review Letters,2002,89:097601(1-4).
    [40] http://www.ramtron.com.
    [41] T. M. Shaw, S. Trolier-McKinstry, and P. C. McIntyre. The properties of ferroelectric films atsmall dimensions [J]. Annual Review of Materials Science,2000,30:263-298.
    [42] M. Dawber, K. M. Rabe, and J. F. Scott. Physics of thin-film ferroelectric oxides [J]. Reviews ofModern Physics,2005,77:1083-1130.
    [43] X. J. Lou. Polarization fatigue in ferroelectric thin films and related materials [J]. Journal ofApplied Physics,2009,105:024101(1-24).
    [44] H. M. Duiker, P. D. Beale, J. F. Scott, C. A. Paz de Araujo, B. M. Melnick, J. D. Cuchiaro, and L.D. McMillan. Fatigue and switching in ferroelectric memories: Theory and experiment [J].Journal of Applied Physics,1990,68:5783-5791.
    [45] W. L. Warren, B. A. Tuttle, and D. Dimos. Ferroelectric fatigue in perovskite oxides [J]. AppliedPhysics Letters,1995,67:1426-1428.
    [46] W. L. Warren, B. A. Tuttle, D. Dimos, G. E. Pike, H. N. Al-Shareef, R. Ramesh, and J. T. Evans.Imprint in ferroelectric capacitors [J]. Japanese Journal of Applied Physics,1996,35:1521-1524.
    [47] W. L. Warren, D. Dimos, G. E. Pike, B. A. Tuttle, M. V. Raymond, R. Ramesh, and J. T. Evans.Voltage shifts and imprint in ferroelectric capacitors [J]. Applied Physics Letters,1995,67:866-868.
    [48] J. F. Scott, C. A. Araujo, H. B. Meadows, L. D. McMillan, and A. Shawabkeh. Radiation effectson ferroelectric thin-film memories: Retention failure mechanisms [J]. Journal of Applied Physics,1989,66:1444-1453.
    [49] J. W. Hong, W. Jo, D. C. Kim, S. M. Cho, H. J. Nam, H. M. Lee, and J. U. Bu. Nanoscaleinvestigation of domain retention in preferentially oriented PbZr0.53Ti0.47O3thin films on Pt andon LaNiO3[J]. Applied Physics Letters,1999,75:3183-3185.
    [50] A. Gruverman, H. Tokumoto, A. S. Prakash, S. Aggarwal, B. Yang, M. Wuttig, R. Ramesh, O.Auciello, and T. Venkatesan. Nanoscale imaging of domain dynamics and retention inferroelectric thin films [J]. Applied Physics Letters,1997,71:3492-3494.
    [51] R. R. Mehta, B. D. Silverman, and J. T. Jacobs. Depolarization fields in thin ferroelectric films[J]. Journal of Applied Physics,1973,44:3379-3385.
    [52] P. Wurfel and I. P. Batra. Depolarization-field-induced instability in thin ferroelectricfilms-experiment and theory [J]. Physical Review B,1973,8:5126-5133.
    [53] I. P. Batra, P. Wurfel, and B. D. Silverman. Phase transition, stability, and depolarization field inferroelectric thin films [J]. Physical Review B,1973,8:3257-3265.
    [54] B. S. Kang, J. G. Yoon, D. J. Kim, T. W. Noh, T. K. Song, Y. K. Lee, J. K. Lee, and Y. S. Park.Mechanisms for retention loss in ferroelectric Pt/Pb(Zr0.4Ti0.6)O3/Pt capacitors [J]. AppliedPhysics Letters,2003,82:2124-2126.
    [55] P. Ghosez and J. Junquera. First-Principles Modeling of Ferroelectric Oxide Nanostructures [M].Stevenson Ranch: American Scientific Publisher,2006.
    [56] A. Morelli, S. Venkatesan, G. Palasantzas, B. J. Kooi, and J. T. M. De Hosson. Polarizationretention loss in PbTiO3ferroelectric films due to leakage currents [J]. Journal of Applied Physics,2007,102:84103-84103.
    [57] M. Lim and T. S. Kalkur. The role of leakge current on the memory window and memoryretention in MFIS structure [J]. Integrated Ferroelectrics,1998,22:205-211.
    [58] C. L. Jia and K. Urban. Atomic-resolution measurement of oxygen concentration in oxidematerials [J]. Science,2004,303:2001-2004.
    [59] V. C. Lo. Modeling the role of oxygen vacancy on ferroelectric properties in thin films [J].Journal of Applied Physics,2002,92:6778-6786.
    [60] C. H. Park and D. J. Chadi. Microscopic study of oxygen-vacancy defects in ferroelectricperovskites [J]. Physical Review B,1998,57: R13961-R13964
    [61] C. Brennan. Model of ferroelectric fatigue due to defect/domain interactions [J]. Ferroelectrics,1993,150:199-208.
    [62] L. X. He and D. Vanderbilt. First-principles study of oxygen-vacancy pinning of domain walls inPbTiO3[J]. Physical Review B,2003,68:134103(1-7).
    [63] L. Hong, A. K. Soh, Q. G. Du, and J. Y. Li. Interaction of O vacancies and domain structures insingle crystal BaTiO3: Two-dimensional ferroelectric model [J]. Physical Review B,2008,77:094104(1-7).
    [64] E. K. H. Salje. Multiferroic domain boundaries as active memory devices: Trajectories towardsdomain boundary engineering [J]. ChemPhysChem,2010,11:940-950.
    [65] L. Goncalves-Ferreira, S. A. T. Redfern, E. Artacho, E. Salje, and W. T. Lee. Trapping ofoxygen vacancies in the twin walls of perovskite [J]. Physical Review B,2010,81:024109(1-7).
    [66] W. L. Warren, K. Vanheusden, D. Dimos, G. E. Pike, and B. A. Tuttle. Oxygen vacancy motionin perovskite oxides [J]. Journal of the American Ceramic Society,1996,79:536-538.
    [67] L. Chen, X. M. Xiong, H. Meng, P. Lv, and J. X. Zhang. Migration and redistribution of oxygenvacancy in barium titanate ceramics [J]. Applied Physics Letters,2006,89:071916(1-3).
    [68] J. F. Scott and M. Dawber. Oxygen-vacancy ordering as a fatigue mechanism in perovskiteferroelectrics [J]. Applied Physics Letters,2000,76:3801-3803.
    [69] D. I. Woodward, I. M. Reaney, G. Y. Yang, E. C. Dickey, and C. A. Randall. Vacancy orderingin reduced barium titanate [J]. Applied Physics Letters,2004,84:4650-4652.
    [70] J. F. Scott, C. A. Araujo, B. M. Melnick, L. D. McMillan, and R. Zuleeg. Quantitativemeasurement of space-charge effects in lead zirconate-titanate memories [J]. Journal of AppliedPhysics,1991,70:382-388.
    [71] S. P ykk and D. J. Chadi. Dipolar defect model for fatigue in ferroelectric perovskites [J].Physical Review Letters,1999,83:1231-1234.
    [72] R. A. Eichel, P. Erhart, P. Tr skelin, K. Albe, H. Kungl, and M. J. Hoffmann. Defect-dipoleformation in copper-doped PbTiO3ferroelectrics [J]. Physical Review Letters,2008,100:095504(1-4).
    [73] X. B. Ren. Large electric-field-induced strain in ferroelectric crystals by point-defect-mediatedreversible domain switching [J]. Nature Materials,2004,3:91-94.
    [74] S. M. Yang, T. H. Kim, J. G. Yoon, and T. W. Noh. Nanoscale observation of time-dependentdomain wall pinning as the origin of polarization fatigue [J]. Advanced Functional Materials,2012,22:2310-2317.
    [75] P. Gao, C. T. Nelson, J. R. Jokisaari, S. H. Baek, C. W. Bark, Y. Zhang, E. G. Wang, D. G.Schlom, C. B. Eom, and X. Q. Pan. Revealing the role of defects in ferroelectric switching withatomic resolution [J]. Nature Communications,2011,2:591(1-6).
    [76] R. Meyer, R. Liedtke, and R. Waser. Oxygen vacancy migration and time-dependent leakagecurrent behavior of Ba0.3Sr0.7TiO3thin films [J]. Applied Physics Letters,2005,86:112904(1-3).
    [77] C. Zhou and D. M. Newns. Intrinsic dead layer effect and the performance of ferroelectric thinfilm capacitors [J]. Journal of Applied Physics,1997,82:3081-3088.
    [78] L. J. Sinnamon, R. M. Bowman, and J. M. Gregg. Investigation of dead-layer thickness inSrRuO3/Ba0.5Sr0.5TiO3/Au thin-film capacitors [J]. Applied Physics Letters,2001,78:1724-1726.
    [79] A. M. Bratkovsky and A. P. Levanyuk. Abrupt appearance of the domain pattern and fatigue ofthin ferroelectric films [J]. Physical Review Letters,2000,84:3177-3180.
    [80] P. K. Larsen, G. J. M. Dormans, D. J. Taylor, and P. J. van Veldhoven. Ferroelectric propertiesand fatigue of PbZr0.51Ti0.49O3thin films of varying thickness: Blocking layer model [J]. Journalof Applied Physics,1994,76:2405-2413.
    [81] Z. Ye, M. H. Tang, Y. C. Zhou, X. J. Zheng, C. P. Cheng, Z. S. Hu, and H. P. Hu. Modeling ofimprint in hysteresis loop of ferroelectric thin films with top and bottom interface layers [J].Applied Physics Letters,2007,90:042902(1-3).
    [82] B. Chen, H. Yang, J. Miao, L. Zhao, L. X. Cao, B. Xu, X. G. Qiu, and B. R. Zhao. Leakagecurrent of Pt/(Ba0.7Sr0.3)TiO3interface with dead layer [J]. Journal of Applied Physics,2005,97:024106(1-4).
    [83] T. Nakamura, Y. Nakao, A. Kamisawa, and H. Takasu. Preparation of Pb(Zr,Ti)O3thin films onelectrodes including IrO2[J]. Applied Physics Letters,1994,65:1522-1524.
    [84] Y. Matsui, M. Suga, M. Hiratani, H. Miki, and Y. Fujisaki. Oxygen diffusion in Pt bottomelectrodes of ferroelectric capacitors [J]. Japanese Journal of Applied Physics,1997,36:L1239-L1241.
    [85] X. J. Lou, M. Zhang, S. A. T. Redfern, and J. F. Scott. Local phase decomposition as a cause ofpolarization fatigue in ferroelectric thin films [J]. Physical Review Letters,2006,97:177601(1-4).
    [86] M. S. Majdoub, R. Maranganti, and P. Sharma. Understanding the origins of the intrinsic deadlayer effect in nanocapacitors [J]. Physical Review B,2009,79:115412(1-8).
    [87] L. J. Sinnamon, M. M. Saad, R. M. Bowman, and J. M. Gregg. Exploring grain size as a causefor “dead-layer” effects in thin film capacitors [J]. Applied Physics Letters,2002,81:703-705.
    [88] I. B. Misirlioglu, A. L. Vasiliev, M. Aindow, and S. P. Alpay. Strong degradation of physicalproperties and formation of a dead layer in ferroelectric films due to interfacial dislocations [J].Integrated Ferroelectrics,2005,71:67-80.
    [89] X. L. Li, B. Chen, H. Y. Jing, H. B. Lu, B. R. Zhao, Z. H. Mai, and Q. J. Jia. Experimentalevidence of the “dead layer” at Pt/BaTiO3interface [J]. Applied Physics Letters,2005,87:222905(1-3).
    [90] M. Stengel and N. A. Spaldin. Origin of the dielectric dead layer in nanoscale capacitors [J].Nature,2006,443:679-682.
    [91] Y. S. Kim, J. Y. Jo, D. J. Kim, Y. J. Chang, J. H. Lee, T. W. Noh, T. K. Song, J. G. Yoon, J. S.Chung, S. I. Baik, Y. W. Kim, and C. U. Jung. Ferroelectric properties ofSrRuO3/BaTiO3/SrRuO3ultrathin film capacitors free from passive layers [J]. Applied PhysicsLetters,2006,88:072909(1-3).
    [92] R. Plonka, R. Dittmann, N. A. Pertsev, E. Vasco, and R. Waser. Impact of the top-electrodematerial on the permittivity of single-crystalline Ba0.7Sr0.3TiO3thin films [J]. Applied PhysicsLetters,2005,86:202908(1-3).
    [93] L. W. Chang, M. Alexe, J. F. Scott, and J. M. Gregg. Settling the “dead layer” debate innanoscale capacitors [J]. Advanced Materials,2009,21:4911-4914.
    [94] M. Stengel, D. Vanderbilt, and N. A. Spaldin. Enhancement of ferroelectricity at metal-oxideinterfaces [J]. Nature Materials,2009,8:392-397.
    [95] G. W. Dietz, M. Schumacher, R. Waser, S. K. Streiffer, C. Basceri, and A. I. Kingon. Leakagecurrents in Ba0.7Sr0.3TiO3thin films for ultrahigh-density dynamic random access memories [J].Journal of Applied Physics,1997,82:2359-2364.
    [96] R. Meyer, R. Waser, K. Prume, T. Schmitz, and S. Tiedke. Dynamic leakage currentcompensation in ferroelectric thin-film capacitor structures [J]. Applied Physics Letters,2005,86:142907(1-3).
    [97] J. F. Scott, B. M. Melnick, C. A. Araujo, L. D. McMillan, and R. Zuleeg. DC leakage currents inferroelectric memories [J]. Integrated Ferroelectrics,1992,1:323-331.
    [98] G. W. Pabst, L. W. Martin, Y. H. Chu, and R. Ramesh. Leakage mechanisms in BiFeO3thinfilms [J]. Applied Physics Letters,2007,90:072902(1-3).
    [99] S. T. Chang and J. Y. M. Lee. Electrical conduction mechanism in high-dielectric-constant(Ba0.5,Sr0.5)TiO3thin films [J]. Applied Physics Letters,2002,80:655-657.
    [100] B. Nagaraj, S. Aggarwal, T. K. Song, T. Sawhney, and R. Ramesh. Leakage currentmechanisms in lead-based thin-film ferroelectric capacitors [J]. Physical Review B,1999,59:16022-16027.
    [101] J. Seidel, L. W. Martin, Q. He, Q. Zhan, Y. H. Chu, A. Rother, M. E. Hawkridge, P.Maksymovych, P. Yu, and M. Gajek. Conduction at domain walls in oxide multiferroics [J].Nature Materials,2009,8:229-234.
    [102] R. K. Vasudevan, W. Wu, J. R. Guest, A. P. Baddorf, A. N. Morozovska, E. A. Eliseev, N.Balke, V. Nagarajan, P. Maksymovych, and S. Kalinin. Domain wall conduction andpolarization-mediated transport in ferroelectrics [J]. Advanced Functional Materials,2013:1-25.
    [103] W. D. Wu, Y. Horibe, N. Lee, S. W. Cheong, and J. R. Guest. Conduction of topologicallyprotected charged ferroelectric domain walls [J]. Physical Review Letters,2012,108:077203(1-5).
    [104] D. D. Fong, G. B. Stephenson, S. K. Streiffer, J. A. Eastman, O. Auciello, P. H. Fuoss, and C.Thompson. Ferroelectricity in ultrathin perovskite films [J]. Science,2004,304:1650-1653.
    [105] A. Q. Jiang, Y. Y. Lin, and T. A. Tang. Interfacial-layer modulation of domain switchingcurrent in ferroelectric thin films [J]. Journal of Applied Physics,2007,101:104105(1-5).
    [106] C. L. Jia, V. Nagarajan, J. Q. He, L. Houben, T. Zhao, R. Ramesh, K. Urban, and R. Waser.Unit-cell scale mapping of ferroelectricity and tetragonality in epitaxial ultrathin ferroelectricfilms [J]. Nature Materials,2006,6:64-69.
    [107] C. L. Jia, K. W. Urban, M. Alexe, D. Hesse, and I. Vrejoiu. Direct observation of continuouselectric dipole rotation in flux-closure domains in ferroelectric Pb(Zr,Ti)O3[J]. Science,2011,331:1420-1423.
    [108] C. T. Nelson, B. Winchester, Y. Zhang, S. J. Kim, A. Melville, C. Adamo, C. M. Folkman, S. H.Baek, C. B. Eom, and D. G. Schlom. Spontaneous vortex nanodomain arrays at ferroelectricheterointerfaces [J]. Nano Letters,2011,11:828-834.
    [109] M. F. Chisholm, W. D. Luo, M. P. Oxley, S. T. Pantelides, and H. N. Lee. Atomic-scalecompensation phenomena at polar interfaces [J]. Physical Review Letters,2010,105:197602(1-4).
    [110] A. M. Kolpak, F. J. Walker, J. W. Reiner, Y. Segal, D. Su, M. S. Sawicki, C. C. Broadbridge, Z.Zhang, Y. Zhu, and C. H. Ahn. Interface-induced polarization and inhibition of ferroelectricity inepitaxial SrTiO3/Si [J]. Physical Review Letters,2010,105:217601(1-4).
    [111] S. J. Callori, J. Gabel, D. Su, J. Sinsheimer, M. V. Fernandez-Serra, and M. Dawber.Ferroelectric PbTiO3/SrRuO3superlattices with broken inversion symmetry [J]. Physical ReviewLetters,2012,109:067601(1-5).
    [112] X. Q. Pan, J. C. Jiang, C. D. Theis, and D. G. Schlom. Domain structure of epitaxial Bi4Ti3O12thin films grown on (001) SrTiO3substrates [J]. Applied Physics Letters,2003,83:2315-2317.
    [113] H. W. Jang, D. Ortiz, S. H. Baek, C. M. Folkman, R. R. Das, P. Shafer, Y. Chen, C. T. Nelson,X. Q. Pan, and R. Ramesh. Domain engineering for enhanced ferroelectric properties of epitaxial(001) BiFeO3thin films [J]. Advanced Materials,2009,21:817-823.
    [114] V. Shelke, D. Mazumdar, G. Srinivasan, A. Kumar, S. Jesse, S. Kalinin, A. Baddorf, and A.Gupta. Reduced coercive field in BiFeO3thin films through domain engineering [J]. AdvancedMaterials,2011,23:669-672.
    [115] H. Lu, X. Liu, J. D. Burton, C. W. Bark, Y. Wang, Y. Zhang, D. J. Kim, A. Stamm, P.Lukashev, D. A. Felker, C. M. Folkman, P. Gao, M. S. Rzchowski, X. Q. Pan, C. B. Eom, E. Y.Tsymbal, and A. Gruverman. Enhancement of ferroelectric polarization stability by interfaceengineering [J]. Advanced Materials,2012,24:1209-1216.
    [116] K. J. Choi, M. Biegalski, Y. L. Li, A. Sharan, J. Schubert, R. Uecker, P. Reiche, Y. B. Chen, X.Q. Pan, V. Gopalan, L. Q. Chen, D. G. Schlom, and C. B. Eom. Enhancement of ferroelectricityin strained BaTiO3thin films [J]. Science,2004,306:1005-1009.
    [117] D. G. Schlom, L. Q. Chen, C. B. Eom, K. M. Rabe, S. K. Streiffer, and J. M. Triscone. Straintuning of ferroelectric thin films [J]. Annual Review of Materials Research,2007,37:589-626.
    [118]李金隆. BST类铁电薄膜生长机理与应力调制研究[D].电子科技大学博士论文,2005.
    [119] G. Catalan, B. Noheda, J. McAneney, L. J. Sinnamon, and J. M. Gregg. Strain gradients inepitaxial ferroelectrics [J]. Physical Review B,2005,72:020102(1-4).
    [120] D. Lee, A. Yoon, S. Y. Jang, J. G. Yoon, J. S. Chung, M. Kim, J. F. Scott, and T. W. Noh.Giant flexoelectric effect in ferroelectric epitaxial thin films [J]. Physical Review Letters,2011,107:057602(1-4).
    [121] N. A. Pertsev, A. G. Zembilgotov, and A. K. Tagantsev. Effect of mechanical boundaryconditions on phase diagrams of epitaxial ferroelectric thin films [J]. Physical Review Letters,1998,80:1988-1991.
    [122] N. A. Pertsev, A. K. Tagantsev, and N. Setter. Phase transitions and strain-inducedferroelectricity in SrTiO3epitaxial thin films [J]. Physical Review B,2000,61: R825-R829.
    [123] J. H. Haeni, P. Irvin, W. Chang, R. Uecker, P. Reiche, Y. L. Li, S. Choudhury, W. Tian, M. E.Hawley, B. Craigo, A. K. Tagantsev, X. Q. Pan, S. K. Streiffer, L. Q. Chen, S. W. Kirchoefer, J.Levy, and D. G. Schlom. Room-temperature ferroelectricity in strained SrTiO3[J]. Nature,2004,430:758-761.
    [124] S. Choudhury, Y. L. Li, L. Q. Chen, and Q. X. Jia. Strain effect on coercive field of epitaxialbarium titanate thin films [J]. Applied Physics Letters,2008,92:142907(1-3).
    [125] N. A. Pertsev, J. Rodríguez Contreras, V. G. Kukhar, B. Hermanns, H. Kohlstedt, and R. Waser.Coercive field of ultrathin Pb(Zr0.52Ti0.48)O3epitaxial films [J]. Applied Physics Letters,2003,83:3356-3358.
    [126] V. Garcia, S. Fusil, K. Bouzehouane, S. Enouz-Vedrenne, N. D. Mathur, A. Barthelemy, and M.Bibes. Giant tunnel electroresistance for non-destructive readout of ferroelectric states [J]. Nature,2009,460:81-84.
    [127] X. Luo, B. Wang, and Y. Zheng. Tunable tunneling electroresistance in ferroelectric tunneljunctions by mechanical loads [J]. ACS Nano,2011,5:1649-1656.
    [128] A. K. Tagantsev, N. A. Pertsev, P. Muralt, and N. Setter. Strain-induced diffuse dielectricanomaly and critical point in perovskite ferroelectric thin films [J]. Physical Review B,2001,65:012104(1-4).
    [129]周又和,郑晓静.电磁固体结构力学[M].北京:科学出版社,1999.
    [130]仲政,吴林志,陈伟球.功能梯度材料与结构的若干力学问题研究进展[J].力学进展,2010,40:528-541.
    [131]余寿文.微电子机械系统的几个力学问题[J].机械强度,2001,23:380-384,.
    [132] F. X. Li and D. N. Fang. Effects of electrical boundary conditions and poling approaches on themechanical depolarization behavior of PZT ceramics [J]. Acta Materialia,2005,53:2665-2673.
    [133]杨卫.力电失效学[M].北京:清华大学出版社-Springer Verlag,2001.
    [134] J. Welser, J. L. Hoyt, and J. F. Gibbons. Electron mobility enhancement in strained-Si n-typemetal-oxide-semiconductor field-effect transistors [J]. IEEE Electron Device Letters,1994,15:100-102.
    [135] Q. Gan, R. A. Rao, C. B. Eom, J. L. Garrett, and M. Lee. Direct measurement of strain effectson magnetic and electrical properties of epitaxial SrRuO3thin films [J]. Applied Physics Letters,1998,72:978-980.
    [136] I. Bozovic, G. Logvenov, I. Belca, B. Narimbetov, and I. Sveklo. Epitaxial strain andsuperconductivity in La2-xSrxCuO4thin films [J]. Physical Review Letters,2002,89:107001(1-4).
    [137] M. Ieong, B. Doris, J. Kedzierski, K. Rim, and M. Yang. Silicon device scaling to thesub-10-nm regime [J]. Science,2004,306:2057-2060.
    [138] M. H. Tang, X. L. Xu, Z. Ye, Y. Sugiyama, and H. Ishiwara. Impact of HfTaO buffer layer ondata retention characteristics of ferroelectric-gate FET for nonvolatile memory applications [J].IEEE Transactions on Electron Devices,2011,58:370-375.
    [139]唐明华. MFIS结构铁电薄膜场效应晶体管的制备及性能表征[D].湘潭大学博士论文,2007.
    [140] C. L. Wang and S. R. P. Smith. Landau theory of the size-driven phase transition inferroelectrics [J]. Journal of Physics: Condensed Matter,1995,7:7163-7171.
    [141] Y. L. Li, S. Y. Hu, Z. K. Liu, and L. Q. Chen. Phase-field model of domain structures inferroelectric thin films [J]. Applied Physics Letters,2001,78:3878-3880.
    [142] C. L. Wang, S. R. P. Smith, and D. R. Tilley. Ferroelectric thin films described by an Isingmodel in a transverse field [J]. Journal of Physics: Condensed Matter,1994,6:9633-9646.
    [143] G. Shirane, J. D. Axe, J. Harada, and J. P. Remeika. Soft ferroelectric modes in lead titanate [J].Physical Review B,1970,2:155-159.
    [144] R. Resta. Ab initio simulation of the properties of ferroelectric materials [J]. Modelling andSimulation in Materials Science and Engineering,2003,11: R69-R96.
    [145] R. E. Cohen and H. Krakauer. Lattice dynamics and origin of ferroelectricity in BaTiO3:Linearized-augmented-plane-wave total-energy calculations [J]. Physical Review B,1990,42:6416-6423.
    [146] R. E. Cohen and H. Krakauer. Electronic structure studies of the differences in ferroelectricbehavior of BaTiO3and PbTiO3[J]. Ferroelectrics,1992,136:65-83.
    [147] R. E. Cohen. Origin of ferroelectricity in perovskite oxides [J]. Nature,1992,358:136-138.
    [148] R. D. King-Smith and D. Vanderbilt. Theory of polarization of crystalline solids [J]. PhysicalReview B,1993,47:1651-1654
    [149] D. Vanderbilt and R. D. King-Smith. Electric polarization as a bulk quantity and its relation tosurface charge [J]. Physical Review B,1993,48:4442-4455.
    [150] R. Resta, M. Posternak, and A. Baldereschi. Towards a quantum theory of polarization inferroelectrics: The case of KNbO3[J]. Physical Review Letters,1993,70:1010-1013.
    [151] R. Resta and D. Vanderbilt. Theory of Polarization: A Modern Approach [M]. BerlinHeidelberg: Springer,2007.
    [152] K. M. Rabe and P. Ghosez. First-Principles Studies of Ferroelectric Oxides [M]. BerlinHeidelberg: Springer,2007.
    [153] J. Junquera and P. Ghosez. Critical thickness for ferroelectricity in perovskite ultrathin films [J].Nature,2003,422:506-509.
    [154] Y. S. Kim, D. H. Kim, J. D. Kim, Y. J. Chang, T. W. Noh, J. H. Kong, K. Char, Y. D. Park, S.D. Bu, J. G. Yoon, and J. S. Chung. Critical thickness of ultrathin ferroelectric BaTiO3films [J].Applied Physics Letters,2005,86:102907(1-3).
    [155] N. Sai, A. M. Kolpak, and A. M. Rappe. Ferroelectricity in ultrathin perovskite films [J].Physical Review B,2005,72:020101(1-4).
    [156] G. Gerra, A. K. Tagantsev, N. Setter, and K. Parlinski. Ionic polarizability of conductive metaloxides and critical thickness for ferroelectricity in BaTiO3[J]. Physical Review Letters,2006,96:107603(1-3).
    [157] X. H. Liu, Y. Wang, P. V. Lukashev, J. D. Burton, and E. Y. Tsymbal. Interface dipole effecton thin film ferroelectric stability: First-principles and phenomenological modeling [J]. PhysicalReview B,2012,85:125407(1-8).
    [158] H. L. Yu, H. B. Zhang, X. F. Jiang, and G. W. Yang. Prediction of stable ferroelectricity inepitaxial BaTiO3on Si [J]. Applied Physics Letters,2012,101:102903(1-4).
    [159] M. Stengel, N. A. Spaldin, and D. Vanderbilt. Electric displacement as the fundamental variablein electronic-structure calculations [J]. Nature Physics,2009,5:304-308.
    [160] C. G. Duan, R. F. Sabirianov, W. N. Mei, S. S. Jaswal, and E. Y. Tsymbal. Interface effect onferroelectricity at the nanoscale [J]. Nano Letters,2006,6:483-487.
    [161] Y. Wang, M. K. Niranjan, K. Janicka, J. P. Velev, M. Y. Zhuravlev, S. S. Jaswal, and E. Y.Tsymbal. Ferroelectric dead layer driven by a polar interface [J]. Physical Review B,2010,82:094114(1-10).
    [162] J. Junquera, M. Zimmer, P. Ordejón, and P. Ghosez. First-principles calculation of the bandoffset at BaO/BaTiO3and SrO/SrTiO3interfaces [J]. Physical Review B,2003,67:155327(1-12).
    [163] F. Liu, Y. Ma, F. Yang, and Y. C. Zhou. Schottky barrier height and conduction mechanisms inferroelectric bismuth titanate [J]. Applied Physics Letters,2010,96:052102(1-3).
    [164] J. P. Velev, C. G. Duan, K. D. Belashchenko, S. S. Jaswal, and E. Y. Tsymbal. Effect offerroelectricity on electron transport in Pt/BaTiO3/Pt tunnel junctions [J]. Physical Review Letters,2007,98:137201(1-4).
    [165] M. K. Niranjan, Y. Wang, S. S. Jaswal, and E. Y. Tsymbal. Prediction of a switchabletwo-dimensional electron gas at ferroelectric oxide interfaces [J]. Physical Review Letters,2009,103:016804(1-4).
    [166] Z. Zhang, P. Wu, L. Chen, and J. L. Wang. First-principles prediction of a two dimensionalelectron gas at the BiFeO3/SrTiO3interface [J]. Applied Physics Letters,2011,99:062902(1-3).
    [167] W. Zhong, D. Vanderbilt, and K. M. Rabe. Phase transitions in BaTiO3from first principles [J].Physical Review Letters,1994,73:1861-1864.
    [168] W. Zhong, D. Vanderbilt, and K. M. Rabe. First-principles theory of ferroelectric phasetransitions for perovskites: The case of BaTiO3[J]. Physical Review B,1995,52:6301-6312.
    [169] J. í iguez and D. Vanderbilt. First-principles study of the temperature-pressure phase diagramof BaTiO3[J]. Physical Review Letters,2002,89:115503(1-4).
    [170] C. Bungaro and K. M. Rabe. Epitaxially strained [001]-(PbTiO3)1(PbZrO3)1superlattice andPbTiO3from first principles [J]. Physical Review B,2004,69:184101(1-8).
    [171] O. Diéguez, S. Tinte, A. Antons, C. Bungaro, J. B. Neaton, K. M. Rabe, and D. Vanderbilt. Abinitio study of the phase diagram of epitaxial BaTiO3[J]. Physical Review B,2004,69:212101(1-4).
    [172] O. Diéguez, K. M. Rabe, and D. Vanderbilt. First-principles study of epitaxial strain inperovskites [J]. Physical Review B,2005,72:144101(1-9).
    [173] J. B. Neaton, C. L. Hsueh, and K. M. Rabe. Enhanced polarization in strained BaTiO3from firstprinciples [J]. arXiv: cond-mat/0204511,2002.
    [174] C. Ederer and N. A. Spaldin. Effect of epitaxial strain on the spontaneous polarization of thinfilm ferroelectrics [J]. Physical Review Letters,2005,95:257601(1-4).
    [175] Y. P. Yao and H. X. Fu. Density-functional theory study of polarization saturation in strainedferroelectrics [J]. Physical Review B,2009,80:035126(1-6).
    [176] X. Luo, S. P. Lin, B. Wang, and Y. Zheng. Impact of applied strain on the electron transportthrough ferroelectric tunnel junctions [J]. Applied Physics Letters,2010,97:012905(1-3).
    [177] Y. R. Yang, W. Ren, M. Stengel, X. H. Yan, and L. Bellaiche. Revisiting properties offerroelectric and multiferroic thin films under tensile strain from first principles [J]. PhysicalReview Letters,2012,109:057602(1-5).
    [178] W. Ren, Y. R. Yang, O. Diéguez, J. í iguez, N. Choudhury, and L. Bellaiche. Ferroelectricdomains in multiferroic BiFeO3films under epitaxial strains [J]. Physical Review Letters,2013,110:187601(1-5).
    [179] E. Schr dinger. An undulatory theory of the mechanics of atoms and molecules [J]. PhysicalReview,1926,28:1049-1070.
    [180]谢希德,陆栋.固体能带理论[M].上海:复旦大学出版社.1998.
    [181] E. H. Lieb. Thomas-Fermi and related theories of atoms and molecules [J]. Reviews of ModernPhysics,1981,53:603-641.
    [182] P. Hohenberg and W. Kohn. Inhomogeneous electron gas [J]. Physical Review,1964,136:B864-B871.
    [183] W. Kohn and L. J. Sham. Self-consistent equations including exchange and correlation effects[J]. Physical Review,1965,140: A1133-A1138.
    [184] J. P. Perdew, K. Burke, and M. Ernzerhof. Generalized gradient approximation made simple [J].Physical Review Letters,1996,77:3865-3868.
    [185] A. D. Becke. Density-functional exchange-energy approximation with correct asymptoticbehavior [J]. Physical Review A,1988,38:3098-3100.
    [186] J. P. Perdew and Y. Wang. Accurate and simple analytic representation of the electron-gascorrelation energy [J]. Physical Review B,1992,45:13244-13249.
    [187] M. Brandbyge, J. L. Mozos, P. Ordejón, J. Taylor, and K. Stokbro. Density-functional methodfor nonequilibrium electron transport [J]. Physical Review B,2002,65:165401(1-17).
    [188] S. Datta. Electronic Transport in Mesoscopic Systems [M]. London: Cambridge UniversityPress,1997.
    [189] B. H. Park, B. S. Kang, S. D. Bu, T. W. Noh, J. Lee, and W. Jo. Lanthanum-substituted bismuthtitanate for use in non-volatile memories [J]. Nature,1999,401:682-684.
    [190] H. N. Lee, D. Hesse, N. Zakharov, and U. G sele. Ferroelectric Bi3.25La0.75Ti3O12films ofuniform a-axis orientation on silicon substrates [J]. Science,2002,296:2006-2009.
    [191] T. Watanabe and H. Funakubo. Controlled crystal growth of layered-perovskite thin films as anapproach to study their basic properties [J]. Journal of Applied Physics,2006,100:051602(1-11).
    [192] C. J. Lu, Y. Qiao, Y. J. Qi, X. Q. Chen, and J. S. Zhu. Large anisotropy of ferroelectric anddielectric properties for Bi3.15Nd0.85Ti3O12thin films deposited on Pt/Ti/SiO2/Si [J]. AppliedPhysics Letters,2005,87:222901(1-3).
    [193] H. J. Monkhorst and J. D. Pack. Special points for Brillouin-zone integrations [J]. PhysicalReview B,1976,13:5188-5192.
    [194] F. D. Murnaghan. The compressibility of media under extreme pressures [J]. Proceedings of thenational academy of sciences of the United States of America,1944,30:244-247.
    [195] P. Erhart, R. A. Eichel, P. Tr skelin, and K. Albe. Association of oxygen vacancies withimpurity metal ions in lead titanate [J]. Physical Review B,2007,76:174116(1-12).
    [196] S. A. Mabud and A. M. Glazer. Lattice parameters and birefringence in PbTiO3single crystals[J]. Journal of Applied Crystallography,1979,12:49-53.
    [197] Y. F. Duan, H. L. Shi, and L. X. Qin. Studies of tetragonal PbTiO3subjected to uniaxial stressalong the c-axis [J]. Journal of Physics: Condensed Matter,2008,20:175210(1-5).
    [198] R. J. Nelmes and W. F. Kuhs. The crystal structure of tetragonal PbTiO3at room temperatureand at700K [J]. Solid State Communications,1985,54:721-723.
    [199] D. A. Tenne, A. Bruchhausen, N. D. Lanzillotti-Kimura, A. Fainstein, R. S. Katiyar, A.Cantarero, A. Soukiassian, V. Vaithyanathan, J. H. Haeni, and W. Tian. Probing nanoscaleferroelectricity by ultraviolet Raman spectroscopy [J]. Science,2006,313:1614-1616.
    [200] H. Amorin, V. V. Shvartsman, A. Kholkin, and M. E. V. Costa. Ferroelectric and dielectricanisotropy in high-quality SrBi2Ta2O9single crystals [J]. Applied Physics Letters,2004,85:5667-5669.
    [201] A. D. Rae, J. G. Thompson, and R. L. Withers. Structure refinement of commensuratelymodulated bismuth strontium tantalate, Bi2SrTa2O9[J]. Acta Crystallographica Section B:Structural Science,1992,48:418-428.
    [202] Y. Shimakawa, Y. Kubo, Y. Nakagawa, S. Goto, T. Kamiyama, H. Asano, and F. Izumi.Crystal structure and ferroelectric properties of ABi2Ta2O9(A=Ca, Sr, and Ba)[J]. PhysicalReview B,2000,61:6559-6564.
    [203] A. Onodera, K. Yoshio, and H. Yamashita. Structural study of intermediate phase in layeredperovskite SrBi2Ta2O9single crystal [J]. Japanese Journal of Applied Physics,2003,42:6218-6221.
    [204] J. P. Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vydrov, G. E. Scuseria, L. A. Constantin, X.Zhou, and K. Burke. Restoring the density-gradient expansion for exchange in solids and surfaces[J]. Physical Review Letters,2008,100:136406(1-4).
    [205] Q. Yang, J. X. Cao, Y. Ma, and Y. C. Zhou. First principles study of polarization-straincoupling in SrBi2Ta2O9[J]. AIP Advances,2013,3:052134(1-7).
    [206] H. B. Shu, L. Z. Sun, X. L. Zhong, J. B. Wang, and Y. C. Zhou. Bonding mechanism andrelaxation energy of SrBi2B2O9(B=Ta, Nb): First-principles study [J]. Journal of Physics andChemistry of Solids,2009,70:707-712.
    [207] H. Ke, W. Wang, Z. X. Zheng, C. L. Tang, D. C. Jia, Z. Lu, and Y. Zhou. First-principles studyof spontaneous polarization in SrBi2Ta2O9[J]. Journal of Physics: Condensed Matter,2011,23:015901(1-5).
    [208] C. H. Hervoches and P. Lightfoot. A variable-temperature powder neutron diffraction study offerroelectric Bi4Ti3O12[J]. Chemistry of Materials,1999,11:3359-3364.
    [209] A. D. Rae, J. G. Thompson, R. L. Withers, and A. C. Willis. Structure refinement ofcommensurately modulated bismuth titanate, Bi4Ti3O12[J]. Acta Crystallographica Section B:Structural Science,1990,46:474-487.
    [210] Q. Yang, H. Liao, J. X. Cao, Y. Ma, and Y. C. Zhou. Spontaneous polarization and its straineffects for orthorhombic and monoclinic Bi4Ti3O12: A first principle study [J]. InternationalJournal of Modern Physics B,2013,27:1350138(1-7).
    [211] W. L. Warren, D. Dimos, B. A. Tuttle, G. E. Pike, and H. N. Al-Shareef. Relationships amongferroelectric fatigue, electronic charge trapping, defect-dipoles, and oxygen vacancies inperovskite oxides [J]. Integrated Ferroelectrics,1997,16:77-86.
    [212] W. L. Warren, D. Dimos, B. A. Tuttle, G. E. Pike, R. W. Schwartz, P. J. Clews, and D. C.McIntyre. Polarization suppression in Pb(Zr,Ti)O3thin films [J]. Journal of Applied Physics,1995,77:6695-6702.
    [213] A. K. Tagantsev, I. Stolichnov, N. Setter, J. S. Cross, and M. Tsukada.Non-Kolmogorov-Avrami switching kinetics in ferroelectric thin films [J]. Physical Review B,2002,66:214109(1-6).
    [214] A. V. Kimmel, P. M. Weaver, M. G. Cain, and P. V. Sushko. Defect-mediated lattice relaxationand domain stability in ferroelectric oxides [J]. Physical Review Letters,2012,109:117601(1-5).
    [215] H. S. Lee, T. Mizoguchi, T. Yamamoto, S. J. L. Kang, and Y. Ikuhara. First-principlescalculation of defect energetics in cubic-BaTiO3and a comparison with SrTiO3[J]. ActaMaterialia,2007,55:6535-6540.
    [216] W. Y. Pan, C. F. Yue, and O. Tosyali. Fatigue of ferroelectric polarization and the electric fieldinduced strain in lead lanthanum zirconate titanate ceramics [J]. Journal of the American CeramicSociety,1992,75:1534-1540.
    [217] Y. Ma, B. N. Liu, Y. C. Zhou, and J. W. Ding. Alignment of Ba-O divacancies as a mechanismfor polarization imprint in BaTiO3as revealed by first principles and classical moleculardynamics simulations [J]. Applied Physics Letters,2010,96:122904(1-3).
    [218] J. Kim, C. J. Kim, and I. Chung. Retention behavior of ferroelectric memory devices dependingon the capacitor processes [J]. Integrated Ferroelectrics,2001,33:133-143.
    [219] Q. Yang, J. X. Cao, Y. Ma, Y. C. Zhou, L. M. Jiang, and X. L. Zhong. Strain effects onformation and migration energies of oxygen vacancy in perovskite ferroelectrics: Afirst-principles study [J]. Journal of Applied Physics,2013,113:184110(1-5).
    [220] D. J. Shu, S. T. Ge, M. Wang, and N. B. Ming. Interplay between external strain and oxygenvacancies on a rutile TiO2(110) surface [J]. Physical Review Letters,2008,101:116102(1-4).
    [221] Q. Yang, J. X. Cao, Y. C. Zhou, Y. Zhang, Y. Ma, and X. J. Lou. Tunable oxygen vacancyconfiguration by strain engineering in perovskite ferroelectrics from first-principles study [J].Applied Physics Letters,2013,103:142911(1-5).
    [222] C. H. Park. Microscopic study on migration of oxygen vacancy in ferroelectric perovskite oxide[J]. Journal of the Korean Physical Society,2003,42: S1420-S1424.
    [223] T. Tanaka, K. Matsunaga, Y. Ikuhara, and T. Yamamoto. First-principles study on structuresand energetics of intrinsic vacancies in SrTiO3[J]. Physical Review B,2003,68:205213(1-8).
    [224] S. H. Wemple. Polarization fluctuations and the optical-absorption edge in BaTiO3[J]. PhysicalReview B,1970,2:2679-2689.
    [225] B. N. Liu, Y. Ma, Y. C. Zhou, and J. W. Ding. Single vacancies and vacancy pairs in tetragonalBaTiO3: A first principles study [J]. Ferroelectrics,2010,401:36-44.
    [226] D. D. Cuong, B. Lee, K. M. Choi, H. S. Ahn, S. Han, and J. Lee. Oxygen vacancy clusteringand electron localization in oxygen-deficient SrTiO3: LDA+U study [J].2007,98:115503(1-4).
    [227] R. Ramesh, S. Aggarwal, and O. Auciello. Science and technology of ferroelectric films andheterostructures for non-volatile ferroelectric memories [J]. Materials Science and Engineering: R:Reports,2001,32:191-236.
    [228] A. K. Tagantsev and G. Gerra. Interface-induced phenomena in polarization response offerroelectric thin films [J]. Journal of Applied Physics,2006,100:051607(1-29).
    [229] D. Chen, L. Deng, Y. L. Zhu, and X. L. Ma. Interface effect on properties of Fe/BaTiO3/Fejunction [J]. Advanced Materials Research,2012,465:244-247.
    [230] Q. Yang, J. X. Cao, Y. Ma, Y. C. Zhou, X. J. Lou, and J. Yang. Interface effect on themagnitude and stability of ferroelectric polarization in ultrathin PbTiO3films from first-principlesstudy [J]. Journal of Applied Physics,2013,114:034109(1-6).
    [231] I. I. Oleynik and E. Y. Tsymbal. Metal-oxide interfaces in magnetic tunnel junctions [J].Interface Science,2004,12:105-116.
    [232] Y. Wei and J. W. Hutchinson. Toughness of Ni/Al2O3interfaces as dependent on micron-scaleplasticity and atomistic-scale separation [J]. Philosophical Magazine,2008,88:3841-3859.
    [233] W. Zhang, J. R. Smith, and A. G. Evans. The connection between ab initio calculations andinterface adhesion measurements on metal/oxide systems: Ni/Al2O3and Cu/Al2O3[J]. ActaMaterialia,2002,50:3803-3816.
    [234] Q. Y. Jiang, E. C. Subbarao, and L. E. Cross. Effects of electrodes and electroding methods onfatigue behavior in ferroelectric materials [J]. Ferroelectrics,1994,154:119-124.
    [235] D. P. Vijay and S. B. Desu. Electrodes for PbZrxTi1xO3ferroelectric thin films [J]. Journal ofthe Electrochemical Society,1993,140:2640-2645.
    [236] I. Stolichnov, A. Tagantsev, N. Setter, J. S. Cross, and M. Tsukada. Top-interface-controlledswitching and fatigue endurance of (Pb,La)(Zr,Ti)O3ferroelectric capacitors [J]. Applied PhysicsLetters,1999,74:3552-3554.
    [237] H. Han, J. Zhong, S. Kotru, P. Padmini, X. Y. Song, and R. K. Pandey. Improved ferroelectricproperty of LaNiO3/Pb(Zr0.2Ti0.8)O3/LaNiO3capacitors prepared by chemical solution depositionon platinized silicon [J]. Applied Physics Letters,2006,88:092902(1-3).
    [238] Y. R. Luo and J. M. Wu. BaPbO3perovskite electrode for lead zirconate titanate ferroelectricthin films [J]. Applied Physics Letters,2001,79:3669-3671.
    [239] C. Guerrero, F. Sánchez, C. Ferrater, J. Roldan, M. V. García-Cuenca, and M. Varela. Pulsedlaser deposition of epitaxial PbZrxTi1-xO3ferroelectric capacitors with LaNiO3and SrRuO3electrodes [J]. Applied Surface Science,2000,168:219-222.
    [240] R. W. G. Wyckoff. Crystal Structures [M]. New York: Interscience,1963.
    [241] K. P. Rajeev, G. V. Shivashankar, and A. K. Raychaudhuri. Low-temperature electronicproperties of a normal conducting perovskite oxide (LaNiO3)[J]. Solid State Communications,1991,79:591-595.
    [242] E. Vasco, R. Dittmann, S. Karthauser, and R. Waser. Early self-assembled stages in epitaxialSrRuO3on LaAlO3[J]. Applied Physics Letters,2003,82:2497-2499.
    [243] B. C. Chakoumakos, D. G. Schlom, M. Urbanik, and J. Luine. Thermal expansion of LaAlO3and (La,Sr)(Al,Ta)O3, substrate materials for superconducting thin-film device applications [J].Journal of Applied Physics,1998,83:1979-1982.
    [244] K. Huang, R. S. Tichy, and J. B. Goodenough. Superior perovskite oxide-Ion conductor;Strontium-and magnesium-doped LaGaO3: I, Phase relationships and electrical properties [J].Journal of the American Ceramic Society,1998,81:2565-2575.
    [245] W. Zhong, R. D. King-Smith, and D. Vanderbilt. Giant LO-TO splittings in perovskiteferroelectrics [J]. Physical Review Letters,1994,72:3618-3621.
    [246] M. Fechner, S. Ostanin, and I. Mertig. Effect of the surface polarization in polar perovskitesstudied from first principles [J]. Physical Review B,2008,77:094112(1-4).
    [247] R. Lei, Y. B. Ren, X. T. Liu, L. J. Qiao, Z. X. Yue, D. Xie, and J. L. Cao. Interfacemodifications of lead zirconate titanate thin films [J]. Ferroelectrics,2010,402:43-46.
    [248] W. Gong, J. F. Li, X. C. Chu, Z. L. Gui, and L. T. Li. Preparation and characterization ofsol-gel derived (100)-textured Pb(Zr,Ti)O3thin films: PbO seeding role in the formation ofpreferential orientation [J]. Acta Materialia,2004,52:2787-2793.
    [249] T. Shimada, S. Tomoda, and T. Kitamura. Ab initio study of ferroelectric closure domains inultrathin PbTiO3films [J]. Physical Review B,2010,81:144116(1-6).
    [250] B. Nagaraj, S. Aggarwal, and R. Ramesh. Influence of contact electrodes on leakagecharacteristics in ferroelectric thin films [J]. Journal of Applied Physics,2001,90:375-382.
    [251] H. Yang, M. Jain, N. A. Suvorova, H. Zhou, H. M. Luo, D. M. Feldmann, P. C. Dowden, R. F.DePaula, S. R. Foltyn, and Q. X. Jia. Temperature-dependent leakage mechanisms ofPt/BiFeO3/SrRuO3thin film capacitors [J]. Applied Physics Letters,2007,91:072911(1-3).
    [252] K. Yamamoto, Y. Kitanaka, M. Suzuki, M. Miyayama, Y. Noguchi, C. Moriyoshi, and Y.Kuroiwa. High-oxygen-pressure crystal growth of ferroelectric Bi4Ti3O12single crystals [J].Applied Physics Letters,2007,91:162909(1-3).
    [253] A. Z. Simoes, C. S. Riccardi, M. L. Dos Santos, F. G. Garcia, E. Longo, and J. A. Varela. Effectof annealing atmosphere on phase formation and electrical characteristics of bismuth ferrite thinfilms [J]. Materials Research Bulletin,2009,44:1747-1752.
    [254] S. M. Cho and D. Y. Jeon. Effect of annealing conditions on the leakage current characteristicsof ferroelectric PZT thin films grown by sol-gel process [J]. Thin Solid Films,1999,338:149-154.
    [255] J. Yan, G. D. Hu, X. M. Chen, W. B. Wu, and C. H. Yang. Ferroelectric properties,morphologies, and leakage currents of Bi0.97La0.03FeO3thin films deposited on indium tinoxide/glass substrates [J]. Journal of Applied Physics,2008,104:076103(1-3).
    [256] H. Y. Chou, T. M. Chen, and T. Y. Tseng. Electrical and dielectric properties oflow-temperature crystallized Sr0.8Bi2.6Ta2O9+xthin films on Ir/SiO2/Si substrates [J]. MaterialsChemistry and Physics,2003,82:826-830.
    [257] X. Luo, B. Wang, and Y. Zheng. Microscopic mechanism of leakage currents in silica junctions[J]. Journal of Applied Physics,2009,106:073711(1-4).
    [258] G. Zhang, X. Li, C. H. Tung, K. L. Pey, and G. Q. Lo. A nanoscale analysis of the leakagecurrent in SiO2breakdown [J]. Applied Physics Letters,2008,93:022901(1-3).
    [259] X. Wu, D. B. Migas, X. Li, M. Bosman, N. Raghavan, V. E. Borisenko, and K. L. Pey. Role ofoxygen vacancies in HfO2-based gate stack breakdown [J]. Applied Physics Letters,2010,96:172901(1-3).
    [260] H. B. Sharma, H. N. K. Sarma, and A. Mansingh. Fatigue in sol-gel derived barium titanatefilms [J]. Journal of Applied Physics,1999,85:341-346.
    [261] K. H. Ahn, S. Baik, and S. S. Kim. Significant suppression of leakage current in (Ba,Sr)TiO3thin films by Ni or Mn doping [J]. Journal of Applied Physics,2002,92:2651-2654.
    [262] S. Y. Wang, B. L. Cheng, C. Wang, S. Y. Dai, H. B. Lu, Y. L. Zhou, Z. H. Chen, and G. Z.Yang. Reduction of leakage current by Co doping in Pt/Ba0.5Sr0.5TiO3/Nb-SrTiO3capacitor [J].Applied Physics Letters,2004,84:4116-4118.
    [263] X. J. Zheng, L. He, Y. C. Zhou, and M. H. Tang. Effects of europium content on themicrostructural and ferroelectric properties of Bi4-xEuxTi3O12thin films [J]. Applied PhysicsLetters,2006,89:252908(1-3).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700