用户名: 密码: 验证码:
模具钢硬态切削过程刀具磨损及表面淬火效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
硬态切削工艺由于具有良好的加工环保性和加工柔性,该工艺已逐步取代磨削工艺成为模具钢的精加工工艺,它是具有广泛应用前景的先进加工技术。但硬态切削加工工艺中诸如刀具磨损、切削过程热流特性和已加工表面完整性等方面的理论与技术还存在诸多没有彻底揭示之处。所以应该在上述方面展开深入研究,以便促进此新兴工艺在实际加工中的应用。
     为了建立切削过程的精确仿真模型,本研究系统阐述了切削仿真技术的关键技术,并采用仿真手段利用Abaqus软件研究了工件材料本构关系,针对典型高强度钢Cr12MoV的霍普金森实验得到了工件材料Joshon-Cook模型参数的敏感性关系;联合综合优化软件Isight,通过Abaqus仿真软件的二次开发实现了切削力的仿真控制,为选择合适的切削条件提供理论工具。
     为实现模具钢硬态切削过程中刀具磨损的机理研究,本文揭示了PCBN刀具切削模具钢Cr12MoV过程的刀具磨损规律,研究了刀具磨损量对切屑生成机制、切削力、切削应力和切削温度的变化规律;采用功率谱均方根的方法研究了不同切削条件下系统稳定性判据的变化规律,并通过数值建模的方法得到了刀具磨损对切削系统稳定阈极限的影响,结果显示在选定切削条件下刀具磨损加剧会导致切削稳定阈极限变宽。
     为揭示硬态切削过程已加工表面淬火效应,本文研究了不同升温速率下工件材料相变点在切削状态下相变图谱位移情况;结合数值方法得到了不同刀具磨损情况下工件温度场分布情况,对已加工表面的变质层厚度进行了预测,并利用实验手段得到了已加工表面变质层受刀具磨损和切削速度的影响规律,同时也分析了淬火效应对已加工表面硬度的影响。
     为揭示条件对已加工表面完整性的影响机制,本文研究了硬态切削工艺切削条件对表面粗糙度的影响,建立了考虑最小切削厚度表面粗糙度仿真模型,并采用实验手段验证了模型精度;分析了刀具磨损对加工表面形貌的影响;研究了切削条件、刀具圆弧半径和刀具磨损对残余应力分布的影响机制。
     本文以PCBN刀具硬态切削模具钢Cr12MoV工艺为研究对象,通过理论分析、数值模拟和切削试验相结合的方法,在刀具磨损、已加工表面淬火效应和表面完整性等方面研究了硬态切削机理,研究结果可为模具钢硬态切削加工技术推广提供理论依据和技术支撑。
Hard cutting processing technology has gradually become a high strength steelfinishing process and has replaced the grinding process in certain occasions aswell, for its good processing environmental protection, flexible and precision.Thus, this technology is an advanced processing technology with wideapplication prospects. But many special cutting law of the hard cuttingprocessing technology still need to explore, especially cutting tool wear incutting, surface quenching effect, processing surface integrity and other aspectsof the theory and technology need a systemic research, which could furtherpromote the advanced technology.
     In order to establish the precise cutting process simulation model, this studyintroduced the key technology of the cutting simulation technology andresearched the workpiece material constitutive relation using Abaqus softwarewith the simulation method, in view of the typical high strength steel Cr12MoVof the Hopkinson experiment get the parameter sensitivity relationship ofmaterial Joshon-Cook model. Through the secondary development of Abaqussimulation software and combining multidisciplinary system optimization Isightsoftware to realize the control of cutting force, which provide theoretical toolsthe choice of appropriate cutting conditions.
     The system studied the tool wear mechanism of the process that PCBN toolscut die steel Cr12MoV, and analyzed the change rules of the tool wear amount tochip generation, cutting force, cutting stress and cutting temperature; The systemused the way of root mean square to study the change rules of the system stabilityin different cutting rate and tool wear quantity, and through the numericalmodeling ways to get the influence of the tool wear to cutting system stability,and realized the prediction of the stability domain limit with the simulationmethod.
     In order to reveal the die steel Cr12MoV already processing surface quenchingeffect mechanism, this paper studied the workpiece material phase transition point in different heating rate and the phase diagram of displacement in differentcutting state; Combining with numerical method to get the workpiecetemperature field distribution in the different tool wear condition, and predictingthe thickness of already processing surface metamorphic layer, beside, by usingexperimental method to get the influence mechanism of the tool wear and cuttingspeed to finished surface metamorphic layer. At the same time, the paper alsoevaluated how quenching effect influence the processing surface hardness.
     This paper has studied the effect of cutting conditions on surface roughness inthe hard cutting processing, and established the minimum cutting thicknesssurface roughness simulation model, and verified the accuracy of model meanscombining with the experiment; it also has analyzed the effect of tool wear onmachining surface morphology and the side flow generation mechanism underdifferent cutting conditions, done a systematic research on influence of cuttingcondition, tool nose radius and tool wear on residual stress distribution.
     In this study PCBN tool hard cutting die steel Cr12MoV process as theresearch object, through the combination of theoretical analysis, numericalsimulation and cutting test, study hard state cutting mechanism in the tool wear,processed surface quenching effect surface integrity and other aspects, the resultscould provide the theory basis and the technical support for application of hardcutting processing technology.
引文
[1] Sasahara, H, Obikawa, T. and Shirakashi.The prediction of effects of cuttingcondition on mechanical characteristics in machined layer[J]. Advancementof Intelligent Production,1994,58:473-478.
    [2] H.K.T nshoff, C.Arendt, R.B.Amor. Cutting of hardened steel [J]. Annals ofthe CIRP.2000,49(2):547-566.
    [3] Altan T. Process Modeling of High Speed Cutting using2D-FEM [C].Proceedings of the NIST-Machining Conference,Washington,2007,599-602.
    [4] W.K nig, A.Verktold and K.F.Koch. Turning Versus Grinding-A Comparisonof Surface Integrity Aspects and Attainable Accuracy[J]. Annals of the CIRP,1993,42(1):39-44.
    [5] Byrne G, Dornfeld D, Denkena B. Advancing cutting technology [J]. Annalsof the CIRP,2003,52(2):483-508.
    [6]袁巨龙.功能陶瓷的超精密加工技术[M].哈尔滨:哈尔滨工业大学出版社,2000.8.
    [7] M.Fleming, P.K.Bossom. PCBN-Performance Goals for the21st Century.Industrial Diamond Review[J],2000,(4):259-268.
    [8]杨叔子,吴波.依托基金项目开展创新研究[J].中国机械工程,1999,10(9):987-990
    [9]雷源忠,黎明.21世纪的制造科学[J].中国机械工程,1999,10(6):689-691.
    [10] Msaoubi R, Outeiro J C, Chandrasekaran. A review of surface integrity inmachining and its impact on functional performance and life of machinedproducts. Sustainable manufacturing[J].International Journal of SustainableManufacturing,2008,1(1/2):203-236.
    [11]郑力,刘大成,李志忠等.数字化加工过程:概念、结构及其应用[J].中国机械工程,1999,10(9):1060-1062.
    [12] F. Hashimotoa, Y.B. Guo, A.W. Warren. Surface Integrity Differencebetween Hard Turned and Ground Surfaces and Its Impact on Fatigue Life
    [C]. CIRP Annals-Manufacturing Technology Volume,2006,55(1):81-84.
    [13] Maekawa K, Maeda M. Simulation analysis of three-dimensional continuouschip formation processes-FEM formulation and a few results. J. Japan Soc.Prec. Eng,1993,59(11):1827-1833.
    [14] Tonshoff HK, Wobker HG, Brandt D.Tool wear and surface integrity in hardturning. International Journal of Machine Tools and Manufacture[J].1996.3(1):19-24
    [15] Y.B.Guo, Q. Wen, K. A. Woodbury. Dynamic Material Behavior ModelingUsing Internal State Variable Plasticity and Its Application in HardMachining Simulations[J]. Journal of Manufacturing Science andEngineering.2006,128:749-759.
    [16] L.Chuzhoy, RE.DeVor, S.G.Kapoor. Machining Simulation of Ductile Ironand Its Constituents, Part2: Numerical Simulation and ExperimentalValidation of Machining [J]. Transactions of the ASME,2003,125:192-201.
    [17]韩荣第,于启勋.难加工材料的切削加工[M].北京:机械工业出版社,1996.11.
    [18] Becze, C.E., Clayton, P., Chen, L., El-Wardany, T.I. and Elbestawi, M.A.High-speed five-axis milling of hardened tool steel[J], International Journalof Machine Tools and Manufacture.2000,40:869-885.
    [19]龙震海,赵文祥,王西彬.基于切削热-力耦合效应的表面强化技术及其工艺试验研究[J].航空材料学报,2007,27(6):45-49.
    [20]岳彩旭,刘献礼,姬生园,贾东开,王宇.硬态切削技术[J].航空制造技术.2008, vol18:26-29.
    [21]黄宁秋.淬硬钢的高速加工[J].工具展望,2008,2007,3:14-17.
    [22] Poulachon, G., Moisan, A. and Jawahir, I.S.‘Evaluation of chip morphologyin hard turning using constitutive models and material property data’, ASMEManufacturing Science and Engineering [J].2007.129:41-47.
    [23] M.M.W.Knuefermann, R.F.J.Read and R.Nunn. Ultra-precision turning ofhardened steel with Amborite DBN45on the DeltaTurn40lathe[C].Industrial Diamond Review,2000,(2):107-114.
    [24]叶邦彦,彭锐涛,唐新姿,梁忠伟.预应力硬态切削的残余应力及表面形态[J].华南理工大学学报:自然科学版,2008,36(4):21-26.
    [25]文东辉,刘献礼.硬态切削机理研究的现状与发展[J].工具技术,2002,6:3-7.
    [26] S.Akcan, S Shahs. Formation of White Layers in Steels by Machining andTheir Characteristics [J]. Metallurgical And Materials Transaction A.2002,33:1245-1254.
    [27]文东辉,刘献礼,严复钢.CBN磨削和车削淬硬轴承钢的表面完整性[J].金刚石与磨料磨具工程,2001,6:4-8.
    [28] Y Kevin Chou,ChrisJ Evans.White layers and thermal modeling of hardturned surfaces[J]. Machine Tools&Manufacture,1999,25:1863-1881.
    [29] M.Abr o, D.K.Aspinwall. The surface integrity of turned and groundhardened bearing steel[J].Wear,1996,196:279-284.
    [30] Y.B. Guo, David W. Yen. A FEM study on mechanisms of discontinuouschip formation in hard machining[J]. Journal of Materials ProcessingTechnology.2004,155:1350-1356.
    [31] Ibrahim A. Finite Element Modeling of Hard Turning[D].The Ohio StateUniversity.2007.
    [32] Yen Y C, Jain A, Altan T. A finite element analysis of orthogonal machiningusing different tool edge geometries [J]. Journal of materials processingtechnology,2004,145:72-81.
    [33] Oxley P L B. Mechanics of Machining [M].Chicester: Ellis Horwood,1989.
    [34] L. Filice, D. Umbrello, F. Micari and L. Settineri. On the Finite ElementSimulation of ThermalPhenomena in Machining Processes. On the FiniteElement Simulation of Thermal Phenomena in Machining Processes [M]2007.263-278.
    [35] Guo YB, Li W, Jawahir IS.Surface integrity characterization and predictionin machining of hardened and difficult-tomachine alloys, a state-of-the-artresearch review and analysis. Micromach Sci Tech[J].2009.13:437-470
    [36] Rahman, M., Wong, Y.S. and Zareena. Machinability of titanium alloys[J],JSME Series C,2003.46(1):107-115.
    [37] Prevéy, P.S. and Cammett, J.T. The influence of surface enhancement by lowplasticity burnishing on the corrosion fatigue performance of AA7075-T6,Int. Journal of Fatigue[J],2004.26(9):975-982.
    [38] Guo, Yuebin. Finite element analysis of superfinish hard turning[D]. PurdueUniversity,2000.
    [39] E.G.Ng, D.K.Aspinwall, D.Brazil, J.Monaghan. Modelling of Temperatureand Forces When Orthogonally Machining Hardened Steel[J]. InternationalJournal of Machine Tools&Manufacture,1999,39:885-903.
    [40] X.L. Liu, H.M.Pen, T. Chen. Effect of different edge preparation on highspeed turning hardened steel process[C]. Proceedings of the12thInternational Conference on IMCC, Xi’an, China. Materials Science Forum,2006,532-533:412-415.
    [41] Tugrul zel, Erol ZerenA. Methodology to Determine Work Material FlowStress and Tool-Chip Interfacial Friction Properties by Using Analysis ofMachining. Journal of Manufacturing Science and Engineering2006,128:119-129.
    [42] Tugrul zel, Erol Zeren.Determination of work material flow stress andfriction for FEA of machining using orthogonal cutting tests[J]. Journal ofMaterials Processing Technology,2004,153-154:1019-1025.
    [43] X.L.Liu, H.M.Pen, T. Chen. Effect of different edge preparation on highspeed turning hardened steel process[C]. Proceedings of the12thInternational Conference on IMCC, Xi’an, China. Materials Science Forum,2006,532-533:412-415.
    [44] Q. Wei, T. Jiao, K.T. Ramesh, Mechanical behavior and dynamic failure ofhigh-strength ultrafine grained tungsten under uniaxial compression[C].Acta Materialia,54(2006)77-87.
    [45] Thiele JD, Melkote SN, Peascoe RA, Watkins TR.Effect of cutting edgegeometry and workpiece hardness on surface residual stresses in finish hardturning of AISI2100steel. J Manuf Sci Eng[J].2000.122:642-649
    [46] Jeffrey D.Thiele, Shreyes N. Melkote. Effect of Cutting-Edge Geometry andWorkpiece Hardness on Surface Residual Stresses in Finish Hard Turning ofAISI52100Steel[C]. Transactions of the ASME,2000,122:642-649.
    [47] Partchapol Sartkulvanich, Determination Of Material Properties For Use InFem Simulations Of Machining And Roller Burnishing[D], School of TheOhio State University,2007.
    [48] Jacobson M.Surface integrity of hard-turned M50steel. Proc Inst MechEng,2002, Part B: J Eng Manuf216(1):47-54
    [49] Brinksmeier, E., Cammett, J.T., K nig, W., Leskovar, P.J. and Peters, H.K.‘T nshoff,Residual stresses-measurement and causes in machiningprocesses[J], Annals of the CIRP,1982.31(2):491-510.
    [50]刘东,陈五一.大型薄壁整体结构件加工变形仿真[J].系统仿真学报,2008,20(6):1589-1593
    [51]方斌,黄传真,许崇海.仿真技术在切削、磨削加工和陶瓷刀具开发中的应用[J],机械工程师,2005,8:24-26
    [52] Sasahara, H., Obikawa, T. and Shirakashi, T. Prediction model of surfaceresidual stress within a machined surface by combining two orthogonalplane models[J], Int. J. Machine Tools and Manufacture,2004.44:815-822
    [53] Prevey, P., Hombach, D. and Mason, P. Thermal residual stress relaxationand distortion in urface enhanced gas turbine engine components[C], Proc.17th eat Treating Society Conference and Exposition, and the1st Int.Induction Heat Treating ymposium, ASM, Materials Park,,1998:3-12.
    [54] J.C. Aurich, H. Bil.3D Finite Element Modelling of Segmented ChipFormation [C].Annals of the CIRP,2006,47:29-32.
    [55] Altan T. Status of FEM in Modeling High Speed Cutting[C]. Annals of theCIRP,2006,583-589.
    [56]闫洪,夏巨谌. H13淬硬模具钢精车过程的有限元模拟[J].中国机械工程,2006,11:985-989.
    [57] Outeiro, J.C., Pina, J.P., Rodrigues, J.M. and Dias, A.M. Experimental andnumerical analysis of residual stress induced by machining inconel690alloy,IV International Materials Symposium-A Materials Science Forum, Facultyof Engineering of University of Porto, Porto, Portugal.2007.(1-4):118-121.
    [58] Palanikumar K.Application of Taguchi and response surface methodologiesfor surface roughness in machining glass fiber reinforced plastics by PCDtooling. Int J Adv Manuf Technol[J].2008.36:19-27.
    [59] Ee, K.C, Dillon Jr, O.W. and Jawahir, I.S.Finite element modeling ofresidual stresses in machining induced by cutting tool with a finite edgeradius[J], Int. J. Mechanical Sciences,200547:1611-1628.
    [60] Partchapol Sartkulvanich, Ibrahim Al-Zkeri, Yung-Chang Yen, and TaylanAltan. Investigation of the Effect of Tool Edge Geometry upon CuttingVariables, Tool Wear and Burr Formation Using Finite Element Simulation-A Progress Report. Materials Processing and Design: Modeling[J],Simulation and Applications.2004,712:1347-1352
    [61] Tugrul Ozel. Modeling of hard part machining: effect of insert edgepreparation in CBN cutting tools[J]. Journal of Materials ProcessingTechnology,2003,141:284-293.
    [62] C.R.Liu, S.Mittal. Single-step superfinish hard machining: feasibility andfeasible cutting conditions[J]. Robotics&Computer-IntegratedManufacturing,1996,12(1):15-27
    [63] Ekinovic, S, Dolinsek, S. and Jawahir, I.S.Some observations of the chipformation process and the white layer formation in high speed milling ofhardened steel[J], Machining Science and Technology.2004,8,(2):327-340.
    [64] S.Y. Luo, Y.S. Liao, Y.Y. Tsai, Wear characteristics in turning high hardnessalloy steel by ceramic and CBN tools, J. Mater. Process. Technol[J].1999.88:114-121.
    [65] PAVEL R. Tool Wear, Surface Quality, and Chip Formation in Continuousand Interrupted Hard Turning [J]. International Journal of PrecisionEngineering and Manufacturing,2003, pp21-27.
    [66] Tugrul Ozel, Yigit Karpat. Predictive modeling of surface roughness andtool wear in hard turning using regression and neural networks. InternationalJournal of Machine Tools&Manufacture,2005,45:467-479.
    [67] Liu Xianli, Li Zhenjia, Hou Shixiang, Xiao Lu and Chen Liguo. Wear andlife of PCBN tools when dry-cutting bearing steel GCr15[J]. ChineseJournal of Mechanical Engineering.2002,(3):218-221
    [68] Y.B.Guo, A.W. Warren.The impact of surface integrity by hard turning vs.grinding on fatigue damage mechanisms in rolling contact [J]. Surface&Coatings Technology,2008,203:291-299.
    [69] William J. Endres, Raja K. Kountanya. The Effects of Corner Radius andEdge Radius on Tool Flank Wear [J]. Journal of Manufacturing Processes,2002,4(2):89-96.
    [70] J.P. Costes, Y. Guillet, G. Poulachon, M. Dessoly. Tool-life and wearmechanisms of CBN tools in machining [J]. International Journal ofMachine Tools&Manufacture,2007,47(7-8):1081-1087.
    [71] Y.-C. Yen; J. S hner; H. Weule; J. Schmidt; T. Altan. Estimation of ToolWear of Carbide tool in orthogonal cutting using FEM Simulation [J].Machining Science and Technology,2002,6,467-486.
    [72] L.J. Xie, J. Schmidt, C. Schmidt, F. Biesinger.2D FEM estimate of toolwear in turning operation [J]. Wear.2005,258,1479-1490.
    [73] Mukherjee N P, Ravi B. An Integrated Framework for Die and Mold CostEstimation Using Design Features and Tooling Parameters [J]. InternationalJournal of Advanced Manufacturing Technology,2005.26:1138-1149.
    [74] Insperger T, Mnna B P, Stepan G., Byaly P V. Stability of up milling anddown milling Part1: alternative analytical methods, Part2Experimentalverification[J].International Journal of Machine Tools andManufacture,2003,43:25-40.
    [75] Bailey, J.A., Jeelani, S. and Becker, S.E.‘Surface integrity in machiningAISI4340steel[J],ASME J. Eng. Industry,1976,Vol.98,(3), pp.999-1007.
    [76] Altintas Y, Weckb`M. Chatter Stability of Metal Cutting and Grinding.CIRP Annals Manufacturing Technology,2004,53(2):619-642.
    [77] Tang W X, Ai X, Zhang S. Dynamic modeling for high-speed milling systemwith centrifugal force and gyroscopic effect. Key Engineering Materials,2004,258-259:848-852.
    [78] Gradisek J, Kalveram M, Insperger T, etal. On stability prediction formilling[J], International Journal of Machine Tools and Manufacture2005,45:769-781.
    [79] Liu Z Q, Liu Q. Solution and analysis of chatter stability for end milling inthe time-domain[J].Chinese Journal of Aeronautics,2008,2(21):169-178.
    [80] Liu Q, Yin L. Study on milling process dynamics simulation system aboutthe process parameter optimization of NC machine tool[J]. ChinaMechanical Engineering,2005,16(13):1146-1150.
    [81]刘安民,彭程,刘吉兆.高速铣削时颤振的诊断和稳定加工区域的预报[J].机械工程学报,2007,43(1):164-169.
    [82]Reginaldo T. Coelho, Eu-Gene Ng, M. A. Elbestawib. A study of wear oncoated PCBN tools when turning hardened AISI4340using FEM simulation[J]. Industrial Diamond Review,2006,4:60-67.
    [83] Toh C K. Static and dynamic cutting force analysis when high speed roughmilling hardened steel[J]. Materials and design,2004,25:41-50.
    [84] Soils E, Peres C R, Jimenez J E, etal. A new analytical–experimental methodfor the identification of stability lobes in high-speed milling[J]. InternationalJournal of Machine Tools and Manufacture,2004,44(15):1591-1597.
    [85] Chou K Y, Liang S Y. Dynamic Modeling of Cutting Acoustic Emission viaPiezo-electric Actuator Wave Control[J]. International Journal of MachineTools and Manufacture,2000,40:641-659.
    [86] Li H, Li X. Modelling and Simulation of Chatter in Milling Using aPredictive Force Model[J]. International Journal of Machine ToolsManufacture,2000,40:2047-2071.
    [87] Campomanes M L, Altintas Y. An improved time domain simulation fordynamic milling at small radial immersions[J]. ASME Journal ofManufacturing Science and Engineering,2003,125(3):16-422.
    [88] Liu X W, Cheng K., Webbm D, etal. Improved Dynamic Cutting ForceModel in Peripheral Milling[J]. International Journal of AdvancedManufacture Technology,2002,(20):631-638.
    [89] Tounsi N, Otho A.Dynamic Cutting Force Measuring[J]. InternationalJournal of Machine Tools and Manufacture,2000,40:1157-1170.
    [90] Poulachon, G., Albert, A., Schluraff, M. and Jawahir, I.SAn experimentalinvestigation of work material microstructure effects on white layerformation in PCBN hard turning[J].Machine Tools and Manufacture,2005,45:211-218.
    [91] P.V.S.Surech, P.Venkateswara Bao.S.G.Deshmukh. A genetic algorithmicapproach for optimization of surface roughness prediction model[J].International Journal of Machine Tool&Manufacture.2002,42:675-680.
    [92] Y. Kevin Chou, Hui Song.Thermal modeling for white layer predictions infinish hard turning[J]. International Journal of Machine Tools&Manufacture.2005,45:481-495.
    [93]查文炜,何宁.高速铣削淬硬钢表面粗糙度的试验研究[J].工具技术,2007,41:12-15.
    [94] M. Shatla, C. Kerk, T. Altan, Process modelling in machining. Part I:determination of flow stress data, Int. J. Mach. Tools Manufact[J].2001.41:1511-1534.
    [95] Tugrul Ozel,Tsu-Kong Hsu, Erol Zeren.Effects of cutting edge geometry,workpiece hardness, feed rate and cutting speed on surface roughness andforces in finish turning of hardened AISI H13steel [J]. Int J Adv ManufTechnol (2005)25:262-269
    [96] Tong Chao Ding, Song Zhang, Z.M. Li, Yuan Wei Wang. Optimization ofCutting Parameters for Desirable Surface Roughness in End-MillingHardened AISI H13Steel under a Certain Metal Removal Rate [J].Advanced Materials Research,2011,188:307-313
    [97] A. Aramcharoen,P. T. Mativenga.White layer formation and hardeningeffects in hard turning of H13tool steel with CrTiAlN and CrTiAlN/MoST-coated carbide tools [J].International Journal of Sustainable Manufacturing,2008,36:650-657.
    [98] Poulachon G, Albert A, Schluraff M, Jawahir I.S.An Experimentalinvestigation of work material microstructure effects on white layerformation in PCBN hard turning[J]. Machine and manufactures.2005,45:211-218.
    [99] Hiroyuki Sasahara,Toshiyuki Obikawa,Takahiro Shirakashi. Predictionmodel of surface residual stress within a machined surface by combiningtwo orthogonal plane models[J], International Journal of Machine Tools andManufacture.2004,44(7-8):815-822
    [100]Sangil Han, Shreyes N. Melkote, Michael S. Haluska, Thomas R. Watkins.White layer formation due to phase transformation in orthogonal machiningof AISI1045annealed steel[J]. Materials Science and Engineering2008,488:195-204.
    [101]Y.B.Guo,J. Sahni.A comparative study of hard turned and cylindricallyground white layers [J].International Journal of Machine Tools&Manufacture,2004,44:135-145.
    [102]C.R.Liu, M.M.Barash. The mechanical state of the sub-layer of a surfacegenerated by chip-removal process[J]. Journal of Engineering for Industry.1976,26:1192-1208.
    [103]Zhang X P,Gao E W,Liu C R. Optimization of process parameter residualstresses for hard turned surfaces [J]. Journal of materials processingtechnology,2009,209:4286-4291.
    [104]Umbrello D, Ambrogio G, Flice L. A hybrid finite element method-artificialneural network approach for predicting residual stresses and the optimalcutting conditions during hard turning of AISI52100bearing steal[J].Materials and design,2008,29:873-883.
    [105]Komanduri R, Hou ZB.Thermal Modelling of the Metal Cutting ProcessPart I-Temperature Rise Distribution Due to Shear Plane Heat Source.International Journal of Mechanical Sciences[J].2000.42:1715-1752.
    [106]R. Komanduri, Z.B. Hou, Thermal modeling of the metal cutting process-Part I: temperature rise distribution due to shear plane heat source[J],International Journal of Mechanical Sciences,2000:42,1715-1752.
    [107]R. Komanduri, Z.B. Hou, Thermal modeling of the metal cutting process-Part II: temperature rise distribution due to frictional heat source at the tool-chip interface[J], International Journal of Mechanical Sciences,2001,43:57-88.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700