用户名: 密码: 验证码:
面向磨削烧伤问题的间接监测技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
过程监控系统是连接底层生产制造设备和上层生产决策管理的咽喉要道,是实现加工过程自动化不可或缺的一环,是保证产品制造质量的的重要课题。囿于现代机械加工设备和方法的复杂性与多样性,尽管在该研究领域涌现了许多有价值的探索,实际生产领域中的应用依然屈指可数。究其原因,关键在于缺乏对加工过程的清晰理解,缺乏对被监控对象发生机理的透彻认识,缺乏对监控方法的系统构建。因此,本文针对机械加工领域的典型应用—精密平面磨削加工,以间接监测技术为手段,以声发射传感器为主,以加速度传感器、电流传感器和电压传感器为辅,围绕磨削烧伤及其相关科学问题展开研究,旨在厘清精密磨削加工过程中加工参数与传感器信号特征之间的关系,准确提取磨削烧伤等问题发生时对应信号的不变性特征值,解决磨削加工中磨削烧伤及其相关问题的特征提取问题,提出一套切实可行的精密磨削加工过程间接监测方法。本文主要做了以下工作:
     第一章:介绍了本课题的研究背景和意义、本研究领域内与本课题密切相关的国内外技术研究现状、本研究领域存在的科学问题以及本文的研究内容等。
     第二章:初步建立了单颗磨粒作用工件时切削应变能与声发射有效值之间的数学模型;探讨了加工参数与声发射等信号之间的关系,研究了激光激发热损伤前后声发射信号的特征,以求在后续开展磨削过程监测研究时,能够消除磨削参数变化对信号特征的影响,从而在后续磨削烧伤研究中,去伪存真,准确提取磨削烧伤的信号特征。
     第三章:针对具体工程应用,以精密平面磨削为对象,开展了磨削烧伤的不变性特征提取方法研究。将声发射传感器、电流传感器、电压传感器和加速度传感器应用到磨削加工过程的监测之中,提出了基于声发射“频谱矩心”的磨削烧伤不变性特征表征方法。
     第四章:结合离散小波分析方法,提取出声发射信号5级分解系数的有效值作为磨削烧伤的特征值之一。同时,首次将希尔伯特—黄变换应用到声发射信号的磨削烧伤预测中,提出了以IMF平均能量值占比作为衡量IMF分量与磨削烧伤相关性大小的标准,提取了基于IMF边际谱的磨削烧伤不变性特征。
     第五章:提出了以经验模态分解作为时域滤波器的信号去噪方法,获得了更加准确的砂轮—工件初始接触特征;提出了基于离散小波分解的砂轮磨损特征值提取方法。
     第六章:开发了砂轮—工件初始接触检测系统和基于支持向量机的磨削加工智能监测系统,实现了砂轮—工件初始接触检测、磨削烧伤识别和砂轮磨损判断的自动化。
Process monitoring system is the bridge between equipments and management roles. It could bring considerable benefits such as automation and intelligence into modern manu-facturing process. However, due to the complexity and diversity of modern manufacturing equipments, applications of process monitoring system in real industries are rarely seen. The major reason of such phenomena is the lack of interpretation and understanding of manufacturing process, and the short of process monitoring methods. To alleviate such kind of problems, this thesis focuses on grinding burn and its interrelated scientific problems, to get to the bottom of the relationship between sensor features and grinding parameters, to extract signal features closely related with grinding burn and its interrelated problems, and to build a feasible indirect monitoring system for precision grinding. Several efforts have been achieved concentrating around these specific themes and list as follows:
     In Chapterl, scientific backgrounds and state-of-art concerning this field are compre-hensively elaborated. The structure and contents of this thesis are depicted at the end of this chapter.
     Chapter2constructs mathematical models for AE RMS and cutting strain energy under single-grit-workpiece condition. Relations between grinding parameters and AE sensor are also studied both in theory and experiment. In order to make a thorough inquiry into thermal damage of metallic materials, AE features in laser-induced burn are extracted by virtue of preliminary time domain and frequency domain methods.
     In Chapter3, focus is shifted from laser-induced burn to practical grinding. Grinding burn features, i.e., spectral centroid of PSD and maximum power, are extracted, by means of AE sensor, current transducers, voltage transducers and accelerator.
     In order to go deep into grinding burn feature extraction methods, Chapter4keeps on studying issues raised in Chapter3. Discrete Wavelet Tranform(DWT) and Hilbert-Huang Transform(HHT) are utilized in grinding burn feature extraction. Results indicate that RMS value of the first5details yielded from DWT and marginal spectra of HHT can successfully reflect the occurrence of grinding burn.
     Chapter5focuses on interrelated problems of grinding burn, e.g., grinding wheel wear and wheel-workpiece initial contact detection. Wheel-workpiece contact detection method based on Empirical Mode Decomposition is proposed in this chapter. Solutions of wheel wear detection and prediction are also given in Chapters.
     A grinding process monitoring system is constructed in Chapter6, based on Support Vector Machine(SVM) and features extracted in previous chapters.
     Conclusions and prospects are briefly depicted at the end of this thesis.
引文
[1]中华人民共和国国务院办公厅.国务院关于印发工业转型升级规划(2011-2015年)的通知,国发[2011)47号.http://www.gov.cn/zwgk/2012-01/18/ content 2047619. htm 2012.
    [2]中华人民共和国国务院.国家中长期科学和技术发展规划纲要(2006-2020年).http://www.gov.cn/jrzg/2006-02/09/content_183787.htm 2006.
    [3]Marsh P.新工业革命[M].1sted.北京:中信出版社,2013.
    [4]中国贸易救济信息网.2012年日本数控机床产值.http://www.c-cnc. com/news/newsfile/2013/3/26/1038251.shtml 2013.
    [5]李伯民,赵波.现代磨削技术[M].北京:机械工业出版社,2003.
    [6]Isermann R. Fault-diagnosis systems:An introduction from fault detection to fault tolerance[M]. Berlin:Springer-Verlag,2006.
    [7]Micheletti D F, Konig W, Victor H R. In process tool wear sensor for cutting oper-ations[J]. CIRP Annals-Manufacturing Technology,1976,25(2):483-496.
    [8]Tlusty J, Andrews G C. A critical review of sensors for unmanned machining[J]. CIRP Annals-Manufacturing Technology,1983,32(2):563572.
    [9]Tonshoff H K, Wulfsberg J P, Kals H J J, et al. Developments and trends in moni-toring and control of machining processes[J]. CIRP Annals-Manufacturing Tech-nology,1988,37(2):611-622.
    [10]Byrne G, Dornfeld D, Inasaki I, et al. Tool condition monitoring(TCM)-The status of research and industrial application [J]. CIRP Annals-Manufacturing Technology, 1995,44(2):541-567.
    [11]Teti R, Jemielniak K., O'Donnell G, et al. Advanced monitoring of machining oper-ations[J]. CIRP Annals-Manufacturing Technology,2010,59(2):717-739.
    [12]Spies T, Eisenblatter J. Acoustic emission investigation of microcrack generation at geological boundaries[J]. Engineering geology,2001,61(2):181-188.
    [13]Lockner D. The role of acoustic emission in the study of rock fracture[C]//Interna-tional Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, vol 30. Elsevier.1993:883-899.
    [14]Heiple C, Carpenter S, Thomas R. Acoustic emission produced by deformation of metals and alloys[R]. Rockwell International Corp., Golden, CO (USA). Rocky Flats Plant,1987.
    [15]Prosser W, Jackson K, Kellas S, et al. Advanced waveform-based acoustic emission detection of matrix cracking in composites[J]. Materials evaluation,1995,53(9): 1052-1058.
    [16]Nair A, Cai C. Acoustic emission monitoring of bridges:Review and case studies[J]. Engineering structures,2010,32(6):1704-1714.
    [17]Li X. A brief review:Acoustic emission method for tool wear monitoring during turning[J]. International Journal of Machine Tools and Manufacture,2002,42(2): 157-165.
    [18]Shiroishi J, Li Y, Liang S, et al. Bearing condition diagnostics via vibration and acoustic emission measurements[J]. Mechanical systems and signal processing, 1997,11(5):693-705.
    [19]Toutountzakis T, Tan C K, Mba D. Application of acoustic emission to seeded gear fault detection[J]. NDT & E International,2005,38(1):27-36.
    [20]Dornfeld D. An investigation of grinding and wheel loading using acoustic emis-sion[J]. Journal of Engineering for Industry,1984,106(1):28.
    [21]Tonshoff H K, Friemuth T, Becker J C. Process monitoring in grinding[J]. CIRP Annals-Manufacturing Technology,2002,51 (2):551-571.
    [22]Bourne K A. An acoustic emission-based method for determining contact between a tool and workpiece at the microscale[J]. Journal of Manufacturing Science and Engineering,2008,130(3):031101.
    [23]傅杰才.磨削原理与工艺[M].1st ed.长沙:湖南大学出版社,1986.
    [24]Malkin S, Guo C. Thermal analysis of grinding[J]. CIRP Annals-Manufacturing Technology,2007,56(2):760-782.
    [25]Tarasov L. Machining-Theory and practice[J]. American Society for Metals,1950.
    [26]Griffiths B. Manufacturing surface technology:Surface integrity and fuctional per-formance[M].1st ed. London:Penton Press,2001.
    [27]Guo C, Malkin S. Analytical and experimental investigation of burnout in creep-feed grinding[J]. CIRP Annals-Manufacturing Technology,1994,43(1):283-286.
    [28]Kim N K, Guo C, Malkon S. Heat flux distribution and energy partition in creep-feed grinding[J]. CIRP Annals-Manufacturing Technology,1997,46(1):227-232.
    [29]Rowe W B, Morgan M N, Black S C E, et al. A simplified approach to control of thermal damage in grinding[J]. CIRP Annals-Manufacturing Technology,1996, 45(1):299-302.
    [30]Guo C, Wu Y, Varghese V, et al. Temperatures and energy partition for grinding with vitrified CBN wheels[J]. CIRP Annals-Manufacturing Technology,1999,48(1): 247-250.
    [31]Jin T, Stephenson D J. Investigation of the heat partitioning in high efficiency deep grinding[J]. International Journal of Machine Tools and Manufacture,2003,43(11): 1129-1134.
    [32]Shih A J. An inverse heat transfer method for determining workpiece temperature in minimum quantity lubrication deep hole drilling[J]. Ann Arbor,2012,1001:48109.
    [33]Jin T, Cai G Q, Jeong H D, et al. Study on heat transfer in super-high-speed grind-ing:Energy partition to the workpiece in HEDG[J]. Journal of Materials Processing Technology,2001,111(1-3):261-264.
    [34]Jaeger J C. Moving sources of heat and the temperature of sliding contacts[J]. Journal and Proceedings of the Royal Society of New South Wales,1942,76:202.
    [35]贝季瑶.磨削温度的分析与研究[J].上海交通大学学报,1964,28(3):45.
    [36]Malkin S, Guo C. Grinding technology:Theory and applications of machining with abrasives[M].2nd ed. New York:Industrial Press,2008.
    [37]Lefebvre A, Vieville P, Lipinski P, et al. Numerical analysis of grinding temperature measurement by the foil/workpiece thermocouple method[J]. International Journal of Machine Tools and Manufacture,2006,46(14):1716-1726.
    [38]Lefebvre A, Lanzetta F, Lipinski P, et al. Measurement of grinding temperatures using a foil/workpiece thermocouple[J]. International Journal of Machine Tools and Manufacture,2012,58(0):1-10.
    [39]Brosse A, Naisson P, Hamdi H, et al. Temperature measurement and heat flux charac-terization in grinding using thermography[J]. Journal of Materials Processing Tech-nology,2008,201(1-3):590-595.
    [40]Mahdi M, Zhang L C. Applied mechanics in grinding:Part V-Thermal residual stresses[J]. International Journal of Machine Tools and Manufacture,1997,37(5): 619-633.
    [41]Rowe W B, Black S C E, Mills B, et al. Grinding temperatures and energy parti-tioning[J]. Proceedings of the Royal Society of London. Series A:Mathematical, Physical and Engineering Sciences,1997,453(1960):1083-1104.
    [42]Pavel R, Srivastava A. An experimental investigation of temperatures during con-ventional and CBN grinding[J]. The International Journal of Advanced Manufactur-ing Technology,2007,33(3):412-418.
    [43]Brinksmeier E, Heinzel C, Meyer L. Development and application of a wheel based process monitoring system in grinding[J]. CIRP Annals-Manufacturing Technol-ogy,2005,54(1):301-304.
    [44]Curry A C, Shih A J, Kong J, et al. Grinding temperature measurements in magnesia-partially-stabilized zirconia using infrared spectrometry[J]. Journal of the American Ceramic Society,2003,86(2):333-341.
    [45]Liu Q, Chen X, Gindy N. Fuzzy pattern recognition of AE signals for grinding burn[J]. International Journal of Machine Tools and Manufacture,2005,45(7-8): 811-818.
    [46]Deiva Nathan R, Vijayaraghavan L, Krishnamurthy R. In-process monitoring of grinding burn in the cylindrical grinding of steel[J]. Journal of Materials Processing Technology,1999,91(1-3):37-42.
    [47]Vedhavalli L, Lavanya T D, Annamalai V E. The presence of carbon content in chips as an indicator of grinding temperature [J]. Materials and Manufacturing Processes, 2007,22(7-8):830-832.
    [48]Karpuschewski B, Wehmeier M, Inasaki I. Grinding monitoring system based on power and acoustic emission sensors[J]. CIRP Annals-Manufacturing Technology, 2000,49(1):235-240.
    [49]Jin T, Stephenson D, Corbett J. Burn threshold of high-carbon steel in high-efficiency deep grinding[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture,2002,216(3):357-364.
    [50]Kwak J S, Ha M K. Neural network approach for diagnosis of grinding operation by acoustic emission and power signals[J]. Journal of Materials Processing Technology, 2004,147(1):65-71.
    [51]Liu Q, Chen X, Gindy N. Investigation of acoustic emission signals under a simu-lative environment of grinding burn[J]. International Journal of Machine Tools and Manufacture,2006,46(3-4):284-292.
    [52]Wang Z, Willett P, DeAguiar P R, et al. Neural network detection of grinding burn from acoustic emission[J]. International Journal of Machine Tools and Manufacture, 2001,41(2):283-309.
    [53]Oliveira J, Silva E, Guo C, et al. Industrial challenges in grinding[J]. CIRP Annals-Manufacturing Technology,2009,58(2):663-680.
    [54]Kegg R L. Industrial problems in grinding[J]. CIRP Annals-Manufacturing Tech-nology,1983,32(2):559-561.
    [55]Wegener K, Hoffmeister H W, Karpuschewski B, et al. Conditioning and monitoring of grinding wheels[J]. CIRP Annals-Manufacturing Technology,2011,60(2):757-777.
    [56]Matsuno Y, Yamada H, Harada M, et al. The microtopography of the grinding wheel surface with SEM[J]. Annals of CIRP,1975,24(1):237.
    [57]Blunt L, Ebdon S. The application of three-dimensional surface measurement tech-niques to characterizing grinding wheel topography [J]. International Journal of Ma-chine Tools and Manufacture,1996,36(11):1207-1226.
    [58]Butler D L, Blunt L A, See B K, et al. The characterisation of grinding wheels using 3D surface measurement techniques[J]. Journal of Materials Processing Technology, 2002,127(2):234-237.
    [59]Brinksmeier E, Werner F. Monitoring of grinding wheel wear[J]. CIRP Annals-Manufacturing Technology,1992,41 (1):373-376.
    [60]Greer D. Triangulation sensors go 3-d. http://www.photonics.com/ Article.aspx?AID=28675 2007.
    [61]Fan K C, Lee M Z, Mou J I. On-line non-contact system for grinding wheel wear measurement[J]. The International Journal of Advanced Manufacturing Technology, 2002,19(1):14-22.
    [62]Lachance S, Warkentin A, Bauer R. Development of an automated system for mea-suring grinding wheel wear flats[J]. Journal of Manufacturing Systems,2003,22(2): 130-135.
    [63]De Oliveira J F G, Dornfeld D A. Application of AE contact sensing in reliable grinding monitoring[J]. CIRP Annals-Manufacturing Technology,2001,50(1): 217-220.
    [64]Lee D E, Hwang I, Valente C M O, et al. Precision manufacturing process monitoring with acoustic emission[J]. International Journal of Machine Tools and Manufacture, 2006,46(2):176-188.
    [65]Lezanski P. An intelligent system for grinding wheel condition monitoring[J]. Jour-nal of Materials Processing Technology,2001,109(3):258-263.
    [66]Inasaki I. Sensor fusion for monitoring and controlling grinding processes[J]. The International Journal of Advanced Manufacturing Technology,1999,15(10):730-736.
    [67]Varghese B, Pathare S, Gao R, et al. Development of a sensor-integrated "intelligent"grinding wheel for in-process monitoring[J]. CIRP Annals-Manu-facturing Technology,2000,49(1):231-234.
    [68]Hwang T W, Whitenton E P, Hsu N N, et al. Acoustic emission monitoring of high speed grinding of silicon nitride[J]. Ultrasonics,2000,38(1-8):614-619.
    [69]Hassui A, Diniz A E, Oliveira J F G, et al. Experimental evaluation on grinding wheel wear through vibration and acoustic emission[J]. Wear,1998,217(1):7-14.
    [70]Inasaki I. Application of acoustic emission sensor for monitoring machining pro-cesses[J]. Ultrasonics,1998,36(1-5):273-281.
    [71]Shibata J, Goto T, Yamamoto M, et al. Characteristics of air flow around a grinding wheel and their availability for assessing the wheel wear[J]. CIRP Annals-Manu-facturing Technology,1982,31(1):233-238.
    [72]Furutani K, Nguyen T H, Ohguro N, et al. Automatic compensation for grinding wheel wear by pressure based in-process measurement in wet grinding[J]. Precision Engineering,2003,27(1):9-13.
    [73]De Oliveira J F G, Dornfeld D A. Dimensional characterization of grinding wheel surface through acoustic emission[J]. CIRP Annals-Manufacturing Technology, 1994,43(1):291-294.
    [74]Liao W T. Feature extraction and selection from acoustic emission signals with an application in grinding wheel condition monitoring[J]. Engineering Applications of Artificial Intelligence,2010,23(1):74-84.
    [75]Subrahmanya N. Automated sensor selection and fusion for monitoring and diag-nostics of plunge grinding[J]. Journal of Manufacturing Science and Engineering, 2008,130(3):031014.
    [76]Guyon I, Elisseeff A. An introduction to variable and feature selection[J]. The Journal of Machine Learning Research,2003,3:1157-1182.
    [77]李小俚,姚英学.基于小波模糊神经网络刀具监控系统研究[J].机械工程学报,1998,34(1):59-63.
    [78]Bassiuny A M, Li X L. Flute breakage detection during end milling using Hilbert-Huang transform and smoothed nonlinear energy operator[J]. International Journal of Machine Tools and Manufacture,2007,47(6):1011-1020.
    [79]王海丽,马春翔,邵华,et al.车削过程中刀具磨损和破损状态的自动识别[J].上海交通大学学报,2007,40(12):2057-2062.
    [80]申志刚.高速切削刀具磨损状态的智能监测技术研究[D].Dissertation.南京航空航天大学,2009.
    [81]龚延恺,王细洋.基于声发射信号的高速铣削过程监测技术[J].航空制造技术,2009,7:019.
    [82]Maksoud T M A, Ahmed M R, Koura M. Improving wheel-workpiece contact detec-tion using a hybrid neural network[J]. Proceedings of the Institution of Mechanical Engineers, Part B:Journal of Engineering Manufacture,2001,215(11):1595-1602.
    [83]Inasaki I, Okamura K. Monitoring of dressing and grinding processes with acoustic emission signals[J]. CIRP Annals-Manufacturing Technology,1985,34(1):277-280.
    [84]Webster J, Dong W P, Lindsay R. Raw acoustic emission signal analysis of grinding process[J]. CIRP Annals-Manufacturing Technology,1996,45(1):335-340.
    [85]Min S, Sangermann H, Mertens C, et al. A study on initial contact detection for preci-sion micro-mold and surface generation of vertical side walls in micromachining[J]. CIRP Annals-Manufacturing Technology,2008,57(1):109-112.
    [86]Oliveira J, Valente C. Fast grinding process control with AE modulated power sig-nals[J]. CIRP Annals-Manufacturing Technology,2004,53(1):267-270.
    [87]穆玉海.砂轮与工件初始接触的声发射检测及高精度对刀仪的开发[J].机械工艺师,1996,8:22-23.
    [88]巩亚东,王宛山.声发射磨削接触检测系统的研制[J].东北大学学报:自然科学版,1997,6:667-670.
    [89]Tsai H H, Hocheng H. Monitoring of creep-in depth beyond the initial wheel/work-piece contact in surface grinding by acoustic emission[J]. Machining Science and Technology,1997,1(1):15-31.
    [90]李孟源.声发射检测及信号处理[M].1 st ed.北京:科学出版社,2010.
    [91]Spanner J. Acoustic emission:Who needs it-and why[R]. Hanford Engineering Development Lab., Richland, WA (USA),1979.
    [92]Shi Z. Studies on quantitative acoustic emission with applications to material fatigue testing[D]. Dissertation. North Avenue, Atlanta, Georgia 30332:Georgia Institute of Technology,2001.
    [93]Green A, Lockman C, Steele R. Acoustic verification of structural integrity of polaris chambers[J]. Modern Plastics,1964,41(11):137-139.
    [94]Elijah K A, Dornfeld D A. Quantitative relationships for acoustic emission from or-thogonal metal cutting[J]. ASME Journal of Engineering for Industry,1981,103(3): 330-340.
    [95]Park H W. Development of micro-grinding mechanics and machine tools[D]. Dis-sertation. North Avenue, Atlanta, Georgia 30332:Georgia Institute of Technology, 2008.
    [96]Merchant M E. Mechanics of the metal cutting process:Part I-Orthogonal cutting and a type 2 chip[J]. Journal of Applied Physics,1945,16(5):267-275.
    [97]Komanduri R. Some aspects of machining with negative rake tools simulating grind-ing[J]. International Journal of Machine Tool Design and Research,1971,11 (3):223-233.
    [98]Rowe W B. Principles of modern grinding technology[M]. William Andrew,2009.
    [99]Scruby C. Quantitative acoustic emission techniques[J]. Research Techniques in Non-destructive Testing,1985,8:141.
    [100]Snoeys R, Maris M, Peters J. Thermally induced damage in grinding[J]. Annals of the CIRP,1978,27(2):571-581.
    [101]Malkin S, Anderson R. Thermal aspects of grinding:Part 1-Energy partition[J]. Journal of Engineering for Industry,1974,96:1177.
    [102]Konig W, Altintas Y, Memis F. Direct adaptive control of plunge grinding process using acoustic emission(AE) sensor[J]. International Journal of Machine Tools and Manufacture,1995,35(10):1445-1457.
    [103]Drazin P G. Nonlinear systems[M]. Cambridge University Press,1992.
    [104]Kwak J S, Song J B. Trouble diagnosis of the grinding process by using acoustic emission signals[J]. International Journal of Machine Tools and Manufacture,2001, 41(6):899-913.
    [105]Peng Z, Tse P W, Chu F. A comparison study of improved Hilbert-Huang trans-form and wavelet transform:Application to fault diagnosis for rolling bearing[J]. Mechanical Systems and Signal Processing,2005,19(5):974-988.
    [106]Huang N E, Shen Z, Long S R. A new view of nonlinear water waves:The Hilbert Spectrum[J]. Annual Review of Fluid Mechanics,1999,31(1):417-457.
    [107]Huang N E, Wu Z. A review on Hilbert-Huang transform:Method and its applica-tions to geophysical studies[J]. Reviews of Geophysics,2008,46(2):RG2006.
    [108]Huang N E, Wu M L, Qu W, et al. Applications of Hilbert-Huang transform to non-stationary financial time series analysis[J]. Applied Stochastic Models in Business and Industry,2003,19(3):245-268.
    [109]Juan C, Xu Y. Application of HHT for modal parameter identification to civil struc-tures[J]. Journal of Vibration Engineering,2003,16(3):383-388.
    [110]Huang N E, Huang K, Chiang W L. HHT-based bridge structural health monitoring method[J]. Hilbert-Huang Transform and Its Applications,2005,5:263.
    [111]Wang W, Li X Y, Zhang R B. Speech detection based on Hilbert-Huang trans-form [C]//Computer and Computational Sciences,2006. IMSCCS'06. First Interna-tional Multi-Symposiums on. vol 1. IEEE.2006:290-293.
    [112]Lin C F, Zhu J D. HHT-based time-frequency analysis method for biomedical signal applications[J]. Recent Advances in Circuits, Systems, Signal and Telecommunica-tions (Proceeding of WSEAS CISST2011), WSEAS Publishers,2011,65-68.
    [113]Sharabaty H, Jammes B, Esteve D. EEG analysis using HHT:One step toward auto-matic drowsiness scoring[C]//Advanced Information Networking and Applications-Workshops,2008. AINAW 2008.22nd International Conference on. IEEE.2008: 826-831.
    [114]Battista B M, Knapp C, McGee T, et al. Application of the empirical mode decompo-sition and Hilbert-Huang transform to seismic reflection data[J]. Geophysics,2007, 72(2):H29-H37.
    [115]Xiong X, Yang S X, Gan C B. A new procedure for extracting fault feature of multi-frequency signal from rotating machinery[J]. Mechanical Systems and Signal Pro-cessing,2012.
    [116]Lin L. Chu F. HHT-based AE characteristics of natural fatigue cracks in rotating shafts[J]. Mechanical Systems and Signal Processing,2012,26:181-189.
    [117]Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceed-ings of the Royal Society of London. Series A:Mathematical, Physical and Engi-neering Sciences,1998,454(1971):903-995.
    [118]Huang N E. Hilbert-Huang transform, http://www.scholarpedia.org/ article/Hilbert-Huang_transform 2008.
    [119]Babel R, Koshy P, Weiss M. Acoustic emission spikes at workpiece edges in grind-ing:Origin and applications[J]. International Journal of Machine Tools and Manu-facture,2012.
    [120]Vallen. AE testing, fundamentals, equipment, data analysis[S].1st ed. Vallen system GmbH. Icking (Munich), Germany,2002.
    [121]Yang Z S, Yu Z H. Grinding wheel wear monitoring based on wavelet analysis and support vector machine[J]. The International Journal of Advanced Manufacturing Technology,2012,62(1-4):107-121.
    [122]Malkin S, Cook N H. The wear of grinding wheels:Part 1-Attritious wear[J]. Journal of Engineering for Industry,1971,93:1120.
    [123]Shi Z, Malkin S. Wear of electroplated CBN grinding wheels[J]. Journal of Manu-facturing Science and Engineering,2006,128(1):110-118.
    [124]Malkin S, Cook N H. The wear of grinding wheels:Part 2-Fracture wear[J]. Journal of Engineering for Industry,1971,93:1129.
    [125]Bruckner D. Remarks on the wearing process in grinding[J]. Industrie Anzieger, 1960,8:23-28.
    [126]Yoshikawa H. Criterion of grinding wheel tool life[J]. Bulletin Japan Society of Grinding Engineers,1963,3(1963):29-32.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700