用户名: 密码: 验证码:
昆山土壤重金属空间分布特征及风险评估研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人类历史就是人类对自然作用强度不断加强的过程,上壤作为人类生产和生活的载体,人类活动必然在土壤中留下印迹,特别是近代工业和高强度的集约化农业生产活动对土壤的物理和化学属性都产生了一些负面的影响。本论文研究在国家重点基础研究发展规划(973)项目《长江珠江三角洲地区土壤和大气环境质量变化规律与调控原理》之第10课题《典型区土壤和作物中重要化学物质的时空分布规律和风险预测》的支持下,选择快速工业化、城市化和高度农业集约化的昆山市为研究区,通过野外采样分析上壤样品中的重金属含量及土壤理化参数,统计分析了影响各种土壤重金属含量的理化参数,同时运用差异显著性检验理论分析了不同产业区和地形区各种土壤重金属的差异性,探讨不同产业活动对土壤的影响;并应用地统计学和克里格方法对昆山的重金属含量和生态风险的空间分布特征进行分析与评价;最后运用统计学方法和因子克里格分析了昆山市土壤重金属主要来源,以确定人类活动对昆山土壤重金属含量的影响程度。主要得到以下结论:
     1.上壤的理化参数是影响上壤重金属含量的重要因素,但土壤理化参数并不能完全解释土壤重金属的差异来源,不同产业区的上壤重金属含量差异显著性分析表明人类活动是影响土壤重金属污染的重要原因,不同地形区的土壤重金属含量差异显著性分析认为地形因了影响多数土壤重金属的空间分布,并导致综合污染指数在不同地形区也表现出比较显著的差异。
     2.在上壤重金属的单因索污染分析的基础上,利用内梅罗综合污染指数分析表明:昆山市所有土壤样本都不同程度地受到了重金属污染,其中少量样本重度污染,绝大多数样本中度污染,部分土壤处于轻度污染。
     3.对昆山重金属元素含量的结构性特征进行了分析表明:昆山市上壤中的Hg、Cu、Ni、Pb等含量具有明显的空间自相关;Zn和Cd具有中等空间自相关;采用普通克里格和协同克里格方法对昆山市土壤重金属的空间分布格局进行分析,协同克里格的预测精度要略高于普通克里格,但两种方法的预测结果空间结构相似:Hg页则以中部含量较高,As含量超标区域主要集中在该区西南角方向,Cr、Cu、Ni、Pb和Zn的高值分布在东北角和西南角。
     4.结合主成分分析和因子克里格法对上壤重金属源解析表明:昆山土壤的重金属含量受人类活动的扰动较大,有外源进入土壤,并且.污染程度已经比较严重,其中以Hg、Cd的污染程度量最大,As、Pb、Zn也有了较为严重的污染,Cr和土壤背景值较接近,超标率和污染指数也较小,可认为除局部地区有点源污染外基本没有外源进入土壤。化工行业的污水灌溉为昆山土壤Hg、Cd、Pb污染的主要来源,印染行业为昆山土壤的Cr、Ni污染的主要来源,电子行业为昆山土壤Zn、Cu污染的主要来源,冶金、电镀行业对昆山的Hg、Cd、Pb、Cr、 Ni、Zn、Cu污染都有影响。昆山土壤中的As污染原因不明,但是它的分布受河流、湖泊的分布的影响,一般湖泊、河流密集区As的含量较高。
     5.通过污染重金属元素的对数正态分布图存在的拐点,揭示了元素分别来自不同的总体,运用来源组分分离法量化了重金属不同的来源及其比重,As、Cu、Hg元素人为强干扰组分比重较大,超过30%。
     6.昆山市土壤重金属污染的生态风险分析表明:As、Zn、Cu、Cr、Ni等5利,重金属元素126个样点的生态风险评价全部处于轻微危害以下等级;Cd元素84.9%的样点处于中等危害等级,强危害和极强危害的样点分别为2.4%和1.6%; Hg污染所造成的生态风险主要表现为中等危害和强危害,分别占45.2%和42.1%,很强危害和极强危害的样点分别占5.6%和0.8%。因此,昆山土壤重金属污染生态风险压力主要来自Cd和Hg。从生态风险的空间分布来看,Pb、Cu、Hg、Cr、Cd和RI的空间分布格局相似,高值区均出现在东部的蓬朗镇,这种分布格局与昆山市的生产力布局具有很强的地域相关性。RI指数等级主要处于中等危害等级,该等级样点占全部样点数的82.5%,另有6.3%的样点的RI指数处于强危害等级,没有样点处于很强危害等级。
In recent years, there are greatly impacts in the soil environment with high strength human actives, and the problem of heavy metal pollution in soil environment becomes more and more serious, especially in the Yangtze River Delta, the area of intense absence resources and rapidly economic development, therefore, heavy metal pollution arouses widely attention by human beings. Kunshan city, located in Yangtze River Delta has experienced a rapidly industrialization, urbanlization and intensive cultivation in agriculture in the recent30years. Study on the heavy metal pollution status in Kunshan City with multi-variances and factor kriging analysis will help us understanding the potential risk on ecosystem from heavy metal pollution and the pollution sources. The study can also provide some reference to the continuable application and management with soil resources. The following results were obtained.
     (1)Analysis on the heavy metal pollution degree showed that all soil samples collected in Kunshan City were polluted by heavy metal in different degree. Few of them are in serious pollution status, most of them are in medium pollution and part of them are in low-grade pollution by heavy metal. Though the soil physical and chemical characters have showed some relation to the heavy metal content, they can't account for all the difference of heavy metal content. The exterior factors, especially human activities can be the most important factor that caused the increasing of heavy metal content.
     (2) Otherness verification analysis on the heavy metal content and pollution index in the sampled soil showed apparent difference in the soil samples collected in the region with different topographty for most of the heavy metals in the study; the otherness verification analysis also showed that the heavy metal content has difference for different product region. It is remarkable for the Hg difference between the region of chemical plant and printing plant, and Cr difference between the region of printing plant, smelting plant and chemical plant.
     (3)Analysis on the spatial structure of these heavy metal with geo-statistical method showed that the content of Hg, Cu, Ni and Pb were moderately auto-correlated in a given spatial range. With the selected model, ordinary Kridging interpolation method were used as interpolation strategy to study the heavy metal content spatial pattern with the Geostatistics module provided by ArcGIS9.2software. It showed that Hg content is high in the central Kunshan city and showed a belt with high content in the north of Kunshan city. And the region with high As content are mainly located in the southwest of Kunshan.
     (4)The analysis on the sources of heavy metal in the soils showed some feature of exterior source for heavy metals. The pollution is serious from Hg and Cd. And the pollution from As, Pb and Zn are also upper. Only content of Cr in the soil samples are similar to soil background. The irrigation with sullage is the main source of Hg, Cd and Pb; printing plant can account for most of the pollution of Cr and Ni; electron plant has bring most of the Zn and Cu pollution. And the smelting and electroplating have some effects on the content of Hg, Cd, Pb, Cr, Ni, Zn and Cu in the soil of Kunshan City. The As pollution has some relation with the waterbody distribution. The content of As is higher in the regions with a higher density of rivers and lakes.
     (5)Ecosystem risk from As, Zn, Cu, Cr and Ni are in trivial-grade currently for all the126samples, but Ecosystem risk from Cd for84.9percent samples are in moderate-grade status,2.4percent of them are high-grade and1.6percent of them are in very-high-grade. The ecosystem risk from Hg are mainly in moderate and high grade. The ecosystem is mainly loading the pressure from Cd and Hg contamination. The spatial pattern of risk index for Pb, Cu, Hg, Cr and Cd showed similar because the high risk region are mainly located in the Penglang township. It can be accounted by the industry distribution. Several sources of heavy metals can be explained by log accumulated probability figure.
引文
[1]Alloway, B. J. The origins of heavy metal in soils. London:Blackie Academic and Professional,1995,38-57.
    [2]A. Castrignano, L. Giugliarini, R. Risaliti, N. Martinelli. Study of spatial relationships among some soil physico-chemical properties of a field in central Italy using multivariate geostatistics, Geoderma,97.2000,39-60
    [3]A. Facchinelli, E.Sacchi, L. Mallen. Multivariate statistical and GIS-based approach to identify heavy metal sources in soils. Environmental Pollution,2001 (114):313-324.
    [4]A. Korre, S. Durucan. A. Koutroumani Quantitative-spatial assessment of the risks associated with high Pb loads in soils around Lavrio, Greece. Applied Geochemistry,2002 (17):1029-1045.
    [5]A. Korre. Statistical and spatial assessment of soil heavy metal contamination in area of poorly recorded, complex sources of pollution. Stochastic Environmental Research and Risk Assessment,1999 (13):260-287.
    [6]Alexander Ploner, Rudolf Dutte. New directions in geostatistics. Journal of Statistical Planning and Inference,2000 (91):499-509.
    [7]Andrew M Liebhold, et al. Geostatistics and geographic information systems in applied insect ecology. Annual Review of Entomology,1993(38):303-327.
    [8]Bhatti A U, Mulla D, Frazier B. Estimation of soil properties and wheat yields on complex eroded hills using geostatistics and Thematic Mapper images. Remote Sensing of Environment,1991(37):181-191
    [9]Bolland, et.al. Spatial variation of soil test Phosphorus and potassium, oxalate-extractable iron and aluminum, Phosphorus-retention index and organic carbon content in soils of western Australia. Communications Soil Science and plant Analysis,1998,29 (3/4):381-392.
    [10]Bond W.J. Effluent irrigation-an environmental challenge for soil science. Aust. J. soil Res, 1998(36):543-555.
    [11]Brain A Needelman. Environmental management of soil phosphorus. Soil Sci. Soc. Am., 2001(65):1516-1522.
    [12]Brusd J, De Gruijter J J. Random sampling or geostatistical modelling? Choosing between design-based and model-based sampling strategies for soil (with Discussion). Geoderma, 1997(80):1-44.
    [13]C. Carlon, A. Critto, A. Marcomini, P. Nathanail. Risk based characterisation of contaminated industrial site using multivariate and geostatistical tools, Environmental Pollution,2001(111):417-427.
    [14]Caers J, Zhang T. Multiplepoint Geostatistics:A Quantitative Vehicle for Integrating Geologic Analogs into Multiple Reservoir Models. Integration of Outcrop and Modem Analogs in Reservoir Modeling, AAPG Memoir,2002:1-24.
    [15]Caers J. Geostatistics:From pattern recognition to pattern reproduction. In:Nikravesh M, Aminzadeh F, Zadeh L,eds. Soft Computing and Intelligent Data Analysis in Oil Exploration. Elsevier Publisher,2001:1-22.
    [16]Caers J. History matching under training image based geological model constraints. SPE, 2002(77):1-16.
    [17]CambardeUa C.A, Moofman T.B, Novak J.M, et al. Field scale variability of soil properties in central Iowa soils. Sci. Soc.Am. J,1994(58).1501-1511.
    [18]Chang Y H, Scrimshaw M D, Emmerson R. H. C, et al. Geostatistical analysis of sampling uncertainty at the Tollesbury Managed Retreat site in Blackwater Estrary, Essex, UK:Kringing and cokriging approach to minimise sampling density. Sci Total Environ, 1998(221):43-57.
    [19]Chao S Z, Using multivariate analyses and GIS to identify pollutants and their spatial patterns in urban soils in Galway, Ireland. Environmental Pollution,2006(142):501-511.
    [20]Chaosheng Zhang, Olle Selinus. Spatial analyses for copper, lead and zinc contents in sediments of the Yangtze River basin. The Science of the Total Environment,1997 (204):251-262.
    [21]Cressie N. A. C. Statistics for spatial data. John Wiley and sons, N. Y. New York, USA.
    [22]DAVIS J. Statistics and Data Analysis in Geology. New York:John Wiley & Sons INC, 1973,381-390.
    [23]Dagnino, A.; Sforzini, S.; Dondero, F.; et al., A "Weight-of-Evidence" approach for the integration of environmental "Triad" data to assess ecological risk and biological vulnerability. Integrated Environmental Assessment and Management 2008,4 (3)314-326.
    [24]Deutsch, Journel. GSL IB2Geostatistical Software Library and User's Guide (2 nd). New York:Oxford University Press,1998:27-34.
    [25]Dirk Mallants'Binayakp. Spatial Variability of Hydraulic properties inamulti-layered soil profile. Soil Science,1996,161 (3):167-181.
    [26]Dungan J. Spatial prediction of vegetation quantities using ground and image data. International Journal of Remote Sensing,1998(19):267-285.
    [27]E. Pardo-Iguzquiza, P.A. Dowd. FACTOR2D:a computer program for factorial cokriging. Computers & Geosciences,2002(28):857-875.
    [28]Einax J W, Soldt U. Multivariate Geostatical Analysis of Soil Contaminations. Fresenius J. Anal.Chem.,1998(361):10-14.
    [29]Englund E. J, Webber D D, Leviant N. The effect of sampling design parameters on block selection. Math Geology,1992,24(3):329-343.
    [30]Fitzgerald W F. Is mercury increasing in the atmosphere? The need for an atmospheric mercury network. Water, Air and Soil Pollution,1995(80):245-254.
    [31]Frykman P, Deutsch C V. Geostatistical scaling laws applied to core and log data. S PE Paper Number 56822, Houston,TX,1999:887-898.
    [32]Goovaerts P. Accounting for scale dependent correlation in the spatial prediction of soil properties. In:Gomez, Herenandez J, Soares A, Froidevaux R, eds. geoENV 11, Geostistics for Environmental Applications. Dordrecht:Kluwer Academic Publishers,1999.405-416.
    [33]Goovaerts P. Factorial Kriging analysis:A useful tool for exploring the structure of multivariate spatial soil information. Journal of Soil Science,1992(43):597-619.
    [34]Goovaerts P. Geostatistical approaches for incorporating elevation into the spatial interpolation of rainfall. Journal of Hydrology,2000(228):113-129.
    [35]Goovaerts P. Geostatistical mapping of satellite data using p2field simulation with conditional probability fields. In:Heuvelink GB M, Lemmens M J P M, eds. Proceeding of the 4th International Symposium on Spatial Accuracy Assessment in Natural Resources and Environmental Sciences. Amsterdam:2000:253-260.
    [36]Goovaerts P. Geostatistics for Natural Resources Evaluation. New York:Oxford University Press,1997:101-119.
    [37]Goovaerts P. Study of spatial relationships between two sets of variables using multivariate geostatistics. Geoderma,1994(62):93-107.
    [38]Goovaerts. Spatial orthogonality of the principal components computed from coregionalized variables. Mathematical Geology,1993,25(3):281-302.
    [39]Gray C. W., et al. Sorption and description of cadmium from some New Zealand soils: effect of pH and contact time. Aust. J. Soil Res.1998(36):199-216.
    [40]Hakanson L. An ecological risk index for aquatic pollution control:a sedimentological approach. Water Res,1980(14):975-1001.
    [41]Harrison R M, Laxen, D P H, Wilson, S J. Chemical associations of lead, cadmium, copper, and zinc in street dust and roadside soil. Environmental Science and Technology,1981 (15): 1378-1383.
    [42]Hindy.K. T. Study of alluvial soil contamination with heavy metals due to air pollution in Cairo Egypt. International Journal of environmental studies.1991,38(4):273-279.
    [43]Horn, Andreas L,During, Rolf-Alexander,Gath, Stefan. Comparison of decision support systems for an optimised application of compost and sewage sludge on agriculturall and based on heavy metal accumulation in soil. The Science of the Total Environment,2003. (13):35-48
    [44]http://news.sina.com.cn/c/2004-09-27/16023783111s.shtml.
    [45]Hu X F, Wu H X, Hu X, Fang S Q, Wang C J. Impact of urbanization on Shanghai's soil environmental quality. Pedosphere,2004,14(2):151-158.
    [46]Imperation M, Adamo P, Naimao D, et al. Spatial distribution of heavy metals in urban soils of Naples city (Italy). Environmental pollution,2003(124):247-256.
    [47]Isaaks E H, Srivastava R M. Applied Geostatistics. New York:Oxford University Press,1989:76-79.
    [48]Jones K C, Jackson A, Jonston A E. Atmospheric deposition as source of heavy metals to agro ecosystems:Cadmium as a case study. In:J G Farmer (ed.). Heavy Metals in the Environment. Vol Ⅰ CEP Consultants, Edinburgh:1991.82-85.
    [49]Journel A G. Combining knowledge from diverse information sources:An alternative to traditional data independence hypotheses. Mathematical Geology,2002,34 (5):573-596.
    [50]Journel A G. Conditioning geostatistical realization to nonlinear volume averages. Mathematical Geology,1999(31):955-964.
    [51]Journel A G. Fundamentals of geostatistics in five lessons. Volume 8 Short Course in Geology. American Geophysical Union,1989:98-113.
    [52]Jesen and Mesman, Ecological risk assessment of contaminated land. RIVM report number 711701047.
    [53]Kareiva P. Space:The final frontier for ecological theory. Ecology,1994(75):1-10.
    [54]Katrin I, Wolfgang W, Grigorij S, etal. Heavy metal distribution in soil aggregates:a comparison of recent and archived aggregates from Russia. Geoderma,2004(123): 153-162.
    [55]Keeney D. R Cruse. Soil Quality:the bridge to a sustainable agriculture. In:Cao Z. ed. Soil, Human and Environment Interaction. Beijing:China Science & Technology Press. 1998,19-28.
    [56]Knotters, M., Brus, D., Voshaar, J. A comparison of krigiing, co-kriging and kriging combined with regression for spatial interpolation of horizon depth with censored obervtions, Geoderma 67:227-246.
    [57]Li H. and Reynolds, J. F.. On definition and quantification of heterogeneity. Oikos,1995 73 (2):280-284.
    [58]Li X D, Lee S L, Wong S C, Shi W Z, Thornton I. The study of metal contamination in urban soil of Hong Kong using a GIS-based approach. Environmental pollution,2004(129): 113-124.
    [59]Long, E. R.; Chapman, P. M., A sediment quality triad-measures of sediment contamination, toxicity and infaunal community composition in puget-sound. Marine Pollution Bulletin 1985,16 (10):405-415.
    [60]Matheron B. The Theory of Regionalized Variables. Fontainebleau:Centre de Morphologie Mathematique,1971:78-92.
    [61]Matheron G. Pur une Analyse Krigeante des Donnees Region alisees. Centre de Geostatistique,Fontainebleau,1982:88-99.
    [62]Mcarthur R D. An evaluation of sample designs for estimating alocally concentrated pollutant. Comunications in Statistics Computation and simulation,1987,16(3):735-759.
    [63]McBratney, A. B., Webster, R., Optimal interpolation and isarithmic mapping of soil properties:Ⅴ. Co-regionalization and multiple sampling strategy. Journal of soil science 34:137-162.
    [64]Lin Y P, Teng T P, Chang T K. Multivariateanalysis of soil heavy metal pollution and landscape pattern in Changhua county in Taiwan. Landscape and urban planning.2002, 62(1):19-35.
    [65]Muntau H, Rehnert A, Desaules A, et al. Analytical aspects of the CEEM soil project. The Science of Total Environment,2001(264):27-49.
    [66]NEMEROW N L. Scientific Stream Pollution Analysis. WashingtonD C:Scripta Book Company,1974:220.
    [67]NFY, T., S, T. Assessing toxicity of spent pig litter using a seed germination technique. Resources,Conservation and Recycling,1994,11:261-274.
    [68]Nicholson F A, Smith S R, Alloway B J, et al. An inventory of heavy metals inputs to agricultural soils in England and Wales. The Science of the Total Environment, 2003(311):205-219.
    [69]Nriagu J O, Pzcyna J M. Quantitative assessment of worldwide contamination of air, water, and soil by trace metals. Nature (London),1988(333):134-139.
    [70]Omar A. Al-Khashman, Reyad A. Shawabkeh Metals distribution in soils around the cement factory in southern Jordan. Environmental Pollution,2006(140):387-394.
    [71]Prohaska T, Wenzel W W, Stingeder G. ICP-MS-based tracing of metal sources and mobility in a soil depthprofile via the isotopic variation of Sr and Pb. International Journal of Mass Spectrometry,2005(242):243-250.
    [72]Qadir M, Ghafoor A, Murtaza G. Cadmium concentration in vegetables grown on urban soil irrigation with untreated municipal sewage. Environment, Devolopment and Sustainability, 2000 (2):11-19.
    [73]Qadir M, Ghafoor A, Murtaza G. Irrigation with city effluent for growing vegetables:A silent epidemic of metal poisoning. Proc. Pakistan Acad. Sci,1999(36):217-222.
    [74]RAMSEY. M H. Measurement uncertainty arising from sampling:implication for objectives of geoanalysis. Analyst,1997(122):1255-1260.
    [75]Rao S, Journel A. Deriving conditional distributions from ordinary Kriging. In:Baafi E Y, Schofield N A, eds. Geostatistics Wollongong 96 (Vol.1). Dordrecht, The Netherlands, Kluwer:1997.92-102.
    [76]Rossi R. E. et al. Geostatistical tools for modeling and interpreting ecological spatial dependence. Ecological Monographs,1992(62):277-314.
    [77]S. Bocchi, A. Castrignano, F. Fornaro, T. Maggiore. Application of factorial kriging for mapping soil variation at field scale. European Journal of Agronomy,2000 (13):295-308.
    [78]Santa M, Stmad M, Vondra J, et al. Sources of soil and plant contamination in an urban environment and possible assessment methods. International Journal of Environmental Analytical Chemiistry,1995(59):327-343.
    [79]Shu Tao. Factor score mapping of soil trace element contents for the Shenzhen area. Water, Air, and Soil Pollution,1998(102):415-425.
    [80]Siegal F R. Environmental Geochemistry of Potentially Toxic Metals. Heidelberg:Springer, 2002(7):190.
    [81]Simonson R W. Airborne dust and its significance to soils. Geoderma,1995 (65):1-43.
    [82]Strebelle S. Conditional simulation of complex geological structures using multiple-point statistics. Mathematical Geology,2002(34):1-22.
    [83]Strebelle S. Sequential Simulation Drawing Structure from Training Images. Stanford University,2000.
    [84]Sun D H, Bloemendal J, Rea D K, et al. Grain-size distribution function of polymodal sediments in hydraulic and aeolian environments, and numerical partitioning of the sedimentary components. Sedimentary Geology,2002(152):263-277.
    [85]Surthland R A, Tolosa C A, Tack F M G, Verloo M G Characterization of selected element concentrations and enrichment ratios in background and anthropogenically impacted roadside areas. Archive of Environmental Contamination and Toxicology,2000 (38):428-438.
    [86]Salomons, W. and Stigliani, W.M., Editors, Biogeodynamics of Pollutants in Soils and Sediments:Risk Assessment of Delayed and Non-linear Responses Springer, Berlin.1995.
    [87]Thornton I. Metal contamination of soils in urban areas. In:Bullock P, Gregory, P J, Eds. Soils in the Urban Environment. Blackwell:1991.47-75.
    [88]Tingting Yao. Nonparametric cross-covariance modeling as exemplified by soil heavy metal concentrations from the Swiss Jura, Geoderma 88.1999:13-38.
    [89]Trangmar, B. B., Yost, R. S. and Uehara, G.. Application of geostatistics to spatial studies of soil properties. Advanced Agronomy,1985(38):44-94.
    [90]TRANGMAR B B.YOST R S, UEHARA G. Application of geostatistics to spatial studies of soil properties. Advaced Agronomy,1985,3(38):44-94.
    [91]Tsadilas. C. D, Karaivazoglou. N. A, Tsotsolis N. C. et al. Cadmium uptake by tobacco as affectecd by liming, N form and year of cultivation. Environmental Pollution, 2005(134):239-246.
    [92]Tsegaye T, Hill R L. Intensive tillage effects on spatial variability of soil physical properties. Soil Science,1998,163 (2):143-154.
    [93]USNAS, Risk Assessment in the Federal Government:Managing the Process. National Academy Press, Washington, DC 983.
    [94]Van Groenigen J W, Pieters G, Stein A. Optimizing spatial sampling for multivariate contamination in urban areas. Environmetrics,2000(11):227-224.
    [95]Van Groenigen J W, Siderius W, Stein. A. Constrained optimisation of soil sampling for minimisation of the kriging variance. Geoderma,1999(87):239-259.
    [96]Van Groenigen J W, Stein A, Zuurbier R. Optimization of environmental sampling using interactive GIS. Soil Technology,1997(10):83-97.
    [97]Verhoeff R L, PowersW L, Shea P J,Marx D B, et al. Horizontal soil sampling to assess the vertical movement of agrochemicals. Journal Soil and Water Conservation,1997,52(2): 126-131.
    [98]VON STEIGER B, WEBSTER R, SCHULIN R, et al. Mapping heavy metals in polluted soil by disjunctive kriging. Environmental pollution,1996,94(2):205-215.
    [99]Wakernagel H. Geostatistical techniques for interpreting multi-variate spatial information [. In:Chung C F, Fabbri A G,Sinding2Larsen R, eds. Quantitative Analysis of Mineral and Energy Resources. Redel, Dordrecht,1998.393-409.
    [100]WANG X J, QI F. The effects of sampling design on spatial structure analysis of contaminated soil. The Science of Total Environment,1998(224):29-41.
    [101]Weeks, J. M.; Comber, S. D. W., Ecological risk assessment of contaminated soil. Mineralogical Magazine 2005,69 (5),601-613.
    [102]Webster R, Oliver M. Geostatistics for environmental scientists. New York:John Wiley & Sons, Ltd,2001:99-106.
    [103]Webster R., Burgess T. M. Optimal interpolation and isarithmic mapping of soil properties, Ⅲ Changing drift and universal kriging. Journal of Soil Science 31:505-524.
    [104]White J G, Welch R M, and Novell W A.. Soil Zn map of USA using geostatistics and geographic information systems. Soil Sci. Soc. Am. J,1997(61):185-194.
    [105]Xie X J, Cheng H X. The suitability of floodplain sediments as a global sampling medium: evidence from China. GeochemExplor,1997(58):51-62.
    [106]Zhang CS, Zhang S, Zhang LC, etal. Background contents of heavy metal in sediments of the Changjiang River system and their calculation methods. Journal of Environmental Science,1995,7(4):422-429.
    [107]自美健,许迪,李益农等.地面灌溉土壤入渗参数时空变异性试验研究.水上保持学报,2005,19(5):120-123,151.
    [108]蔡进军,张源润,火勇,等.宁南山区梯田土壤水分及养分特征时空变异性研究.干旱地区农业研究,2005,23(5):83-87.
    [109]柴世伟,温琰茂,韦献革,等.珠江三角洲主要城市郊区农业土壤的重金属含量特征.中大学学报(自然科学版),2004,43(4):90-94.
    [110]常宗强,冯起,吴雨霞,苏永红.祁连山亚高山灌丛林土壤呼吸速率的时空变化及其影响分析.冰川冻土,2005,27(5):666-672.
    [111]常宗强,史作民,冯起,苏永红.黑河流域山区牧坡草地土壤呼吸的时间变化及水热因子影响应用生态学报.2005,16(9):1603-606.
    [112]陈江.长三角:危险的金土地.中国新闻周刊,2005-07-04.
    [113]陈伏生,曾德慧,陈广生.上地利用变化对沙地上壤全氮空间分布格局的影响.应用生态学报,2004,15(6):953-957.
    [114]陈浮,濮励杰,曹慧,等.近20年太湖流域典型区上壤养分时空变化及驱动机理.土壤学报,2002,39(2):236-245.
    [115]陈怀满,等.土壤中化学物质的行为与环境质量.北京:科学出版社,2002,87-92.
    [116]陈俭霖,史公军.城郊菜地上壤和蔬菜重金属污染研究进展.北方园艺,2005(3):8-9.
    [117]陈晶中,陈杰,谢学俭,等.北京城市边缘区土壤重金属污染物分布特征土壤学报,2005,42(1):149-152.
    [118]陈静生,董林,邓宝山,等.铜在沉积物各相中分配的实验模拟与数值模拟研究-以鄱阳湖为例.环境科学学报,1987,7(2):140-149.
    [119]陈龙乾,邓喀中,唐宏.矿区泥浆泵复垦上壤化学特性的时空演化规律.中国矿业大学学报,2000,29(3):262-265.
    [120]陈龙乾,邓喀中,唐宏.矿区泥浆泵复垦上壤物理特性的时空演化规律.土壤学报,2001,38(2):277283.
    [121]陈龙乾,邓喀中,许善宽,等.开采沉陷对耕地上壤化学特性影响的空间变化规律.土壤侵蚀与水上保持学报,1999,5(3):81-86.
    [122]陈龙乾,邓喀中,赵志海,等.开采沉陷对耕地上壤物理特性影响的空间变化规律.煤炭 学报,1999,24(6):586-590.
    [123]陈庆强,沈承德,孙彦敏,等.鼎湖山土壤有机质时空分异机制.应用生态学报,2005,16(3):470-474.
    [124]陈松林,朱鹤建.闽南地区土壤重金属的地球化学特征研究.土壤通报,1995,26(3):97-101.
    [125]陈同斌,郑袁明,陈煌,等.北京不同土地利用类型的土壤砷含量特征,地理研究,2005,24(2):229-235.
    [126]陈凤,濮励杰.快速城市化地区土壤重金属污染物的分布—以昆山市为例.生态与农村环境学报,2006(1).44-51.
    [127]陈同斌,郑袁明,陈煌,等.北京市土壤重金属含量背景值的系统研究,环境科学,2004,25(1):117-122.
    [128]陈晓燕,何丙辉,陈道平.重庆合川市土壤侵蚀时空变化研究.西南农业大学学报(自然科学版),2003,25(5):463-466.
    [129]陈效民,吴华山,孙静红.太湖地区农田土壤中铵态氮和硝态氮的时空变异.环境科学,2006,27(6):1218-1222.
    [130]陈星彤,胡振琪,张学礼.开采沉陷区不同复垦技术下复垦土壤压实的空间变化.灌溉排水学报,2005,24(6):74-77.
    [131]程炯,吴志峰,刘平,王继增.福建沿海地区不同用地土壤重金属污染及其评价.土壤通报,2004,35(5):639-642.
    [132]程淑兰,欧阳化,牛海山,等.荒漠化逆转地区耕层土壤有机碳时空动态研究.兰州大学学报,2004,40(6):96-100.
    [133]程淑兰,欧阳化,牛海山,等.荒漠化重建地区土壤有机碳时空动态特征.地理学报,2004,59(4):505-513.
    [134]邓峰.Kriging方法及其在环境科学中的应用.重庆环境科学,1990,12(3):33-41.
    [135]丁能飞,厉仁安,董炳荣,等.新国砂涂土壤盐分和养分的定位观测及研究.土壤通报,2001,32(2):57-59.
    [136]丁青坡,王秋兵,魏忠义,等.抚顺矿区不同复垦年限土壤的养分及有机碳特性研究.土壤通报,2007,38(2):262-267.
    [137]丁桑岚.环境评价概论.北京:化学工业出版社,2001.
    [138]杜俊民.朱赖民,张远辉.海洋沉积物重金属研究中的品粒度与粒度效应.台湾海峡,2002,21(3):317-321
    [139]方琳娜,赵庚星.李秀娟.等.基于GIS的土壤养分时空动态变化分析.山东农业大学学报,2006,37(1):57-64
    [140]房世波,潘剑君,成杰民,等.南京市郊蔬菜地土壤中重金属含量的时空变化规律.土壤与环境2002,11(4):339-342
    [141]房世波,潘剑君,杨武年,等.南京市郊蔬菜地土壤肥力的时空变化规律.土壤,2003,35(6):518-521
    [142]高怀友,师荣光,赵玉杰.非连续时空统计条件下土壤中Cu有效态含量与全量的相关性分析.农业环境科学学报,2006,25(增刊):1-4.
    [143]高怀友,赵玉杰,师荣光,等.非连续时空统计条件下土壤中Cd有效态含量与全量的相关性分析[J].农业环境科学学报,2005,24(增刊):165-168.
    [144]高中贵,彭补拙,喻建华,濮励杰,张露.经济发达区土地利用变化对土壤性质的影响—以江苏省昆山市为例.自然资源学报,2005(1):44-50.
    [145]郭旭东,傅伯杰,马克明,等.基于GIS和地统计学的上壤养分空间变异特征研究.应用生态学报,2000,11(4):557-563.
    [146]郭旭东,傅伯杰,陈利顶,等.河北省遵化平原土壤养分的时空变异特征—变异函数与Kriging插值分析.地理学报,2000,55(5):555-566.
    [147]国家环保局.中国乡镇工业环境污染及其防治对策[M].北京:中国环境科学出版社,1995,1-162.
    [148]国家统计局农调总队.2004年全国县域社会经济综合发展指数前100位测评结果http://www.stats.gov.cn/tjfx/jdfx/t20040928_402196895.htm.
    [149]何绘宇,夏斌,陈琴俐,聂云峰.珠江三角洲土壤重金司预警与决策支持信息系统设计.农业环境科学学报,2006,25(增刊):13-16.
    [150]侯景儒,黄竞先.地质统计学的理论与方法.北京:地质出版社,1990.
    [151]胡克林,张风荣,吕贻忠.北京市大兴区上壤重金属含量的空间分布特征.环境科学学报,2004,24(3):463-468.
    [152]霍文毅,黄风茹,陈静生,等.河流颗粒物重金属污染评价方法比较研究.地理科学,1997,17(1):81-86.
    [153]江苏省昆山县土壤志.昆山县,苏州市,江苏省土壤普查办公室.1984,12.
    [154]姜城,杨利苹,金继远,等.土壤养分变异与合理取样数量.植物营养与肥料学报,2001,7(3):262-270.
    [155]匡耀求,黄宁生,胡振宇.环境污染对东莞市地域经济发展的影响.地理科学,2004,24(4):419-425.
    [156]昆山市统计局.昆山统计年鉴,2003.
    [157]昆山县上壤普查办公室.江苏省昆山县土壤志,1984,216-217.
    [158]赖木收,杨忠芳,工洪翠.太原盆地农田区大气降尘对上壤重金属元素累积的影响及其来源探讨.地质通报,2006,27(2):240-245.
    [159]李哈滨,伍业刚.景观生态学的数量研究方法.北京:中国科学技术出版社,209-233
    [160]李军湘.化工污染及其防治的发展趋势.内蒙古石油化工,2006(1):33-34.
    [161]李莉,赵晓松.吉林省东部山区人参栽培基地土壤污染现状与评价.农业环境科学学报,2005,24(2):403-406
    [162]李立勋.珠江三角洲乡镇企业发展的地域特征.热带地理,1997,17(1):47-52.
    [163]李恋卿,潘根兴,张平究.太湖地区水稻土表层土壤10年尺度重金属元素积累速率的估计.环境科学,2002,23(3):119-123.
    [164]李亮亮,依艳丽,凌国鑫.地统计学在土壤空间变异研究中的应用,上壤通报,2005,36(2):265-268.
    [165]李艳,史舟,徐建明,等.地统计学在土壤科学中的应用及展望.水土保持学报,2003,17(1):178-182.
    [166]李志博.长江三角洲土壤重金属分布特征、分配模型及风险评估研究.中国科学院南京上壤研究所,2006.
    [167]刘付程,史学正,潘贤章,等.太湖流域典型地区上壤磷素含量的空间变异特征.地理科学,2003,23(1):77-81.
    [168]刘光崧编.上壤理化分析与剖而描述.北京:中国标准出版社,1996,85-86.
    [169]刘红侠,韩宝平,郝达平.徐州市北郊农业土壤重金属污染评价.中国生态农业学报,2006,14(1):159-161.
    [170]刘瑞民,王学军,陶澍,等.天津地区表地PAHS含量的多尺度空间相关性.地理研究,2005,24(4):565-571.
    [171]卢瑛,龚子同,张甘霖,等.南京城市土壤重金属含量及其影响因素.应用生态学报,2004,15(1):123-126.
    [172]鲁如坤.土壤农业化学分析方法.北京:中国农业科技出版社,2000.12-14,179-181,226-227.
    [173]蒙华.论采用清洁工艺消除化工污染.内蒙古工业大学学报,1995,14(2):74-79.
    [174]潘贤章,赵其国.50年来太湖水网地区城市化空间过程的监测与模拟.土壤学报,2005,42(2):195-198.
    [175]彭补拙,高中贵.长江三角洲地区土地利用变化及对策研究.第四纪研究,2004,24(5)506-511.
    [176]彭昌盛,卢寿慈,徐玉琴,宋存义.电镀废水处理过程中的二次污染.电镀与涂饰,2002,21(2):40-43.
    [177]齐峰,王学军.环境空间分析中常用采样方法及其对空间结构表达的影响.环境科学学报,2000,20(2):207-212.
    [178]齐峰,王学军,黄泽春.环境空间结构分析中模拟数据集的引入.环境科学,1999(6):34-37.
    [179]钱易.环境保护与持续发展.科学中国人,1995(6):7-11.
    [180]乔胜英,李望成,何方.漳州市城市上壤重金属含量特征及控制因素.地球化学,2005,34(6):635-641.
    [181]秦丽杰,张郁,许红梅,等.土地利用变化的生态环境效应研究—以前郭县为例.地理科学,2002,22(4):508-512.
    [182]尚英男,杨波,尹观,等.成都市近地表大气尘铅分布特征及源解析.物探与化探,2006,30(2):104-107.
    [183]http://www.people.com.cn/GB/jingji/8215/28519/index.html
    [184]佘之祥.长江三角洲水上资源与区域发展.合肥:中国科学技术大学出版社,1997.
    [185]沈思源.土壤空间变异研究中地统计学的应用及其展望.上壤学进展,1989,17(3):11-25.
    [186]孙永泉,王梅农,张导,高文伟.汀苏昆山基本农田保护区土壤重金属含量分析与评价[J].淮阴工学院学报,2004(1):76-79.
    [187]孙波,宋歌,曹尧东.丘陵区水稻土Cu污染空间变异的协同克里格分析.农业环境科学学报.2009.29(5):865-870.
    [188]孙东怀,安芷生,苏瑞侠,等.古环境中沉积物粒度组分分离的数学方法及其应用.自然科学进展,2001,119(3):269-267.
    [189]http://www.tgglass.com/webs/index.htm.
    [190]檀满枝,陈杰,张学雷.北京市边缘区土壤重金属污染的初步研究,土壤通报,2005,36(1):96100.
    [191]滕彦国,虞先国,倪师军,等.应用地质累积指数评价攀枝花地区土壤重金属污染.重庆环境科学,2002,24(4):25-28.
    [192]王长江,郝华荣.统计学原理.国防工业出版社,2006.
    [193]工建国,杨林章,单艳红.模糊数学在土壤质量评价中的应用研究.土壤学报,2001,38(2):176-183.
    [194]王仁铎,胡光道.线性地质统计学.北京:地质出版社,1988.
    [195]工学军,席爽.北京东郊污灌上壤重金属含量的克立格捅值及重金属污染评价.中国环境科学,1997,17(3):225-228.
    [196]工学松,秦勇.徐州城市表层土壤中重金属环境风险测度与源解析.地球化学,2006,35(1):1-5.
    [197]工学松,秦勇.利用对数正态分布图解析徐州城市上壤中重金属元素来源和确定地球化学背景位.地球化学,2007,36(1):98-102.
    [198]王振东,李琼,段晓宏.印染行业的环境污染与清洁生产.环境保护,2001(9):33-34.
    [199]王政权.地质统计学及在生态学中的应用.北京:科学出版社,1999.
    [200]王志宪,虞孝感,刘兆德.江苏省沿江城市带的构建与发展研究.地理科学,2005,25(3):74-280.
    [201]吴新民,李恋卿,潘根兴.南京市不同功能城区上壤中重金属Cu、Zn、Pb和Cd的污染特征.环境科学,2003,24(3):105-111.
    [202]吴新民,潘根兴,姜海洋,等.南京城市上壤的特性与重金属污染的研究,生态环境,2003,12(1):19-23.
    [203]吴绍华,周生路,杨得志,廖富强,张红富,任奎.宜兴市近郊上壤重金属来源与空间分布研究.科学通报,2008,53(增刊Ⅰ):162-170.
    [204]夏增禄,李森照,李廷芳.上壤元素背景值及其研究方法.北京:气象出版社,1987.
    [205]谢学锦.化学定时炸弹与可持续发展.共同走向科学一百名院上科技系列报告集(中卷).北京:新华出版社,1997.
    [206]徐尚平,陶澍,徐福留,等.内蒙古微量元素含量的空间结构特征.地理学报,2000,55(3):337-345.
    [207]杨丽原,沈吉,张祖陆,等.南四湖表层底泥重金属污染及其风险性评价.湖泊科学,2003,15(3):252-256.
    [208]杨永岗,胡霭堂.无公害蔬菜基地土壤中有害金属污染评价.环境与健康杂志,1998,15(9):213-214.
    [209]杨玉玲,文启凯.土壤空间变异研究现状及展望[J].干旱区研究,2001,18(2):50-55.
    [210]殷云龙,宋静,骆永明,等.南京市城乡公路绿地土壤重金属变化及其评价.土壤学报,2005,42(2):206-210.
    [211]袁志发,周静芋.多元统计分析.北京:科学出版社,2002.
    [212]郁志华,朱秀芳,朱培淼,.昆山市农产品产地土壤重金属含址调查与评价.农业环境与发展.2008(3):114-117.
    [213]中华人民共和国环境保护行业标准HJ/T166-2004—上壤环境监测技术规范.北京:中国环境科学出版社,2004.
    [214]张朝生,章申,何建邦.长江水系沉积物重金属含量空间分布特征研究.地理学报,1997,52(2):184-192.
    [215]张朝生,章申,张立成,等.长江水系河流沉积物重金属元素含量的计算方法研究.环境科学学报,1995,15(3):257-264.
    [216]张辉,马东升.南京某合金厂土壤铬污染研究.中国环境科学,1997,17(1):80-82.
    [217]张金屯,Pouvat. R城-郊-乡生态样带森林上壤重金属变化格局.中国环境科学,1997,17(5):410-413.
    [218]张乃明.沉降对土壤重金属积累的影响.土壤与环境,2001,10(2):91-93.
    [219]张乃明,李保国,胡克林.污水灌区耕层上壤中铅、镉的空问变异特征.上壤学报,2003,40(1):151-154.
    [220]张学洪,罗亚平,黄海涛,刘杰,陈俊.某电镀厂土壤重金属污染及植物富集特征.桂林工学院学报,2005,25(3):289-292.
    [221]章力建,蔡辉益,陈志敏.饲料工业中立体污染防治对策与技术研究.中国饲料,2005,11:5-8.
    [222]赵其国,董元华.长江三角洲地区农业环境问题及其持续发展对策.上壤,1996,6(6):285-310.
    [223]赵其国.城市生态环境保护与可持续发展.土壤,2003,35(6):441-449.
    [224]赵其国.解决我国东南沿海经济快速发展地区资源与环境质量问题刻不容缓—关于该区资源与环境质最问题研究的建议.土壤,2001(3):113-118.
    [225]赵彦锋,孙志英,吴克宁.郑州市郊土壤重金属的分布变异及来源.土壤通报,2008,39(2):416-420.
    [226]赵彦锋,郭恒亮,孙志英,等.基于土壤学知识的主成分分析判断上壤重金属来源.地理科学,2008,28(1)45-50.
    [227]郑海龙,陈杰,邓文靖,檀满枝.南京城市边缘带化工园区上壤重金属污染评价.环境科学学报,2005,25(9):1182-1188.
    [228]郑袁明,罗金发,陈同斌.北京市不同土地利用类型的土壤镉含量特征.地理研究,2005,24(4):542-548.
    [229]郑袁明,陈煌,陈同斌,等.北京市上壤中Cr, Ni含量的空间结构与分布特征.第四纪研究,2003,23(4):436-445.
    [230]郑袁明,陈同斌,陈煌,等.北京市近郊区上壤镍的空问结构及分布特征.地理学报,2003,58(3):470-476.
    [231]郑袁明,余轲,吴泓涛,等.北京城市公园土壤铅含量及其污染评价.地理研究,2002,21(4):418-424.
    [232]中国科学院地学部.东南沿海经济快速发展地区环境污染及其治理对策.地球科学进 展,2003,18(4):493-496.
    [233]中国科学院南京土壤研究所.土壤理化分析.上海:上海科学技术出版社,1978.81-87,132-136,169-177.
    [234]朱宏兰,高伟生.我国乡村城市化中的环境问题及其对策.环境科学进展,1998,6(2):80-84.
    [235]祝建国,柴自渊,毛振才.还原气化—原子荧光光谱法测定绿色食品基地土壤中的砷与汞.分析测试技术与仪器,2002,8(2):103-106.
    [236]祝晓彬,吴吉春,叶淑君,等.长江三角洲(长江以南)地区深层地下水三维数值模拟.地理科学,2005,25(1):68-73.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700