用户名: 密码: 验证码:
复杂曲面正向/逆向快速设计关键技术与增材制造数据处理方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人们审美观念的变化和制造水平的不断提高,个性化且具有复杂曲面的零件日益广泛地应用于生产和生活中,另外全球的市场竞争要求缩短设计制造周期,因此探索复杂曲面的快速设计制造技术十分必要。增材制造AM(Additive Manufacturing)在加工复杂曲面方面具有明显优势,正向设计FD(Forward Design)和逆向设计RD(ReverseDesign)两种模式都可以提供复杂曲面增材制造所需的CAD模型,其建模快速性与精确性各有特点。本文主要研究复杂曲面的正向/逆向快速设计的关键技术,此外基于正向/逆向设计的CAD模型,提出复杂曲面增材制造的三种数据处理方法。据此,论文研究的主要内容与成果如下:
     (1)面向复杂曲面的增材制造,为了提高设计速度和精度,解决NURBS复杂曲面正向快速设计的关键问题,提出一种NURBS曲面局部特征重用方法。首先提出特征形状的识别和提取算法;然后制定局部特征安装的规则与方法,完成形状局部特征的复制粘贴;最后采用过渡曲面拼接算法,实现相邻NURBS曲面满足G2连续的光滑拼接。仿真结果显示,重用后特征具有良好的几何性。
     (2)面向复杂曲面的增材制造,从保证设计的快速性和精确性出发,为解决STL复杂曲面逆向快速设计的关键问题,建立基于延拓逼近的曲线曲面数学模型。首先建立基于延拓逼近的曲线重构数学模型;其次提出基于延拓逼近的STL曲面重构算法,较好地保证STL曲面重构的连续性和光顺性;最后对平面凸轮轮廓曲线和汽车保险杠曲面进行重构实验,验证延拓逼近曲线曲面重构算法的快速性和精确性。
     (3)针对正向快速设计得到的NURBS复杂曲面,为了提高成形精度与效率,提出一种面向增材制造的多策略自适应分层综合算法。首先提出切线角和毗邻分层面积变化综合判定算法去决定分层厚度;其次为保证后续数控加工的插补速度恒定和加工精度,提出基于Clothoid曲线模型的水平层面曲线轮廓重构算法。加工实例证明,自适应综合算法的分层效率高,成形后得到的复杂曲面制品具有良好加工精度。
     (4)针对逆向快速设计得到的STL复杂曲面,从提高成形精度与效率出发,提出一种面向增材制造的优化分层处理算法。首先为了优化水平分层厚度,在自适应切片中提出逐步细化的分层算法;然后采用延拓逼近算法去重构水平轮廓曲线;其次提出基于层片布尔运算支撑区域的识别算法。最后以加工实例验证算法的适用性和精确性。
     (5)基于逆向快速设计得到的空间点云模型曲面零件,为了提高成形精度与效率,提出面向增材制造的IDS(Inverse Distance Square)自适应直接分层算法。首先提出空间点云数据直接切片的新思路;然后提出IDS自适应直接分层算法,分层精度更高;其次在垂直切片投影构造面的曲线轮廓重构中,建立基于点云的延拓外推模型;最后采用角度误差法和弓高误差法,完成曲线重构与轮廓数据点的均化和精整处理。加工实例验证算法高精度和高效率。
With people’s aesthetic concepts changing and the manufacture process standardimproved, individuated products of complicated surfaces are used increasingly in productionand daily lives. On the other hand, competitions in the global product market require themanufacture industry shortens the design and manufacture cycle. Therefore, it is verynecessary to research the rapid design and manufacture technology of complicated surfacedproducts. Additive Manufacturing owns an obvious advantage in respect of processingproducts of complicated surfaces. Forward Design and Reverse Design are capable of helpingprovide Additive Manufacturing for complicated surfaces with suitable CAD models. Thispaper is aimed at the research on the crucial technology of rapid Forward/Reverse Design forcomplicated-surfaced products. Besides, based on CAD models of Forward/Reverse Design,three data processing methods of Additive Manufacturing for complicated surfaces areproposed. According to what is mentioned above, the main content and results of this paperare as follows.
     (1)Additive Manufacturing for complicated surfaces. For the sake of improving,thedesign speed and accuracy and solving the crucial problems on rapid Forward Design ofproducts of complicated NURBS surfaces, a reuse method of partial features of NURBSsurfaces is proposed. First of all, the recognition and extraction algorithm of feature shapes isproposed. Secondly, the principals and methods of partial feature installation are drawn up.Afterwards, copy and paste of partial shape features are finished. Finally, the joint andconstruction algorithm of transition surfaces is proposed in order that continuous and smoothjoint satisfying G2between two adjacent NURBS surfaces is realized. It is shown inaccordance with the simulation result that reused features have good geometric properties.
     (2)Additive Manufacturing for complicated surfaces. For the purpose to guaranteedesign rapidity and accuracy and solve the crucial problems on Rapid Forward Design ofproducts of complicated STL surfaces, mathematic models for The Extended Approximationof curves and surfaces are set up. Above all, mathematic models of curve reconstruction basedon The Extended Approximation are established. Then STL surface reconstruction algorithmbased on The Extended Approximation is presented, which is able to well ensure continuityand smoothness of STL surface reconstruction. Finally, the reconstruction experiment onoutline curves of plane cams and surfaces of bumpers is carried out to test and verifyspeediness and the precision of the Extended Approximation algorithm.
     (3)Aimed at rapid Forward Designed products of NURBS complicated surfaces and in the way of increasing shaping accuracy and efficiency, a comprehensive algorithm ofmulti-strategied adaptive slicing for Additive Manufacturing is presented. Firstly, it is raisedthat slice thickness depends comprehensively on contingence angles of the points in verticalprofile curves and the area changes of adjacent slices. Plus, horizontal slice outline curvereconstruction algorithm based on Clothoid curve models is proposed by way of making surethat interpolation speed of follow-up numerical control machining is constant. It is proved bypractical processing examples that slicing efficiency of the comprehensive adaptive algorithmis higher and after being shaped, complicated-surfaced products owns great fabricatingaccuracy.
     (4)Aimed at rapid Reversed Designed products of STL complicated surfaces, aslice-optimizing processing algorithm for Additive Manufacturing is proposed for the purposeto increase shaping accuracy and efficiency. For the first part, a stepwise refined slicingalgorithm in adaptive slices is proposed so that horizontal slice thickness can be optimized. Inaddition, the horizontal outline curves are reconstructed by means of the The ExtendedApproximation algorithm. Again, the recognition algorithm of supporting regions based onslice Boolean operation is proposed. In the end, feasibility and precision of this algorithm aretested and verified by practical fabricating examples.
     (5)Surfaced products of dimensional point cloud models based on rapid ReverseDesign. By way of increasing shaping accuracy and efficiency, the IDS (Inverse DistanceSquare) adaptive direct slicing algorithm for Additive Manufacturing is presented. For thefirst place, a new idea about direct slicing of dimensional point cloud data is raised. After that,the IDS adaptive direct slicing algorithm is proposed and slicing accuracy of this algorithm ishigher. Additionally, in curve contour reconstruction of the vertical projection-constructingplane,The Extended Approximation extrapolated models based on point clouds are set up.Finally, the angle error method and bow height error method are made use of to achievehomogenisation and refinement of curve reconstruction and profile data points. Then higherprecision and efficiency of this algorithm are tested and verified by practical fabricatingexamples.
引文
[1]孟书云.高精度开放式数控系统复杂曲线曲面插补关键技术研究[D].南京:南京航空航天大学,2006
    [2]肖尧先.基于RE/RP系统集成的复杂外形产品快速开发技术研究[D].杭州:浙江大学,2002
    [3] Balbontin A.,Yazdani B.,Cooper R.,et al. New product development practices in Americanand British firms[J]. Technovation,2000,20(5):257-274
    [4]施志辉,杜健,王学显.模块化虚拟装配系统的开发和研究[J].组合机床与自动化加工技术,2007,(5):64-66
    [5]熊有伦,尹周平.面向产品快速开发的几何推理和虚拟原型[J].中国机械工程,2002,4:20-25
    [6]朱玉红.快速成形技术及其应用[J].现代制造工程,2005,2:138-139
    [7]周惦武,徐翔,周述积.快速成型技术的研究进展与发展趋势[J].铸造设备研究,2003,2:51-54
    [8]尹西鹏.选择性激光熔化快速成型系统设计与实现[D].武汉:华中科技大学,2008
    [9]陈志杨.基于三角曲面的逆向工程CAD建模方法[J].中国机械工程,2003,14(8):698-701
    [10] Hamblen J. O.,Hall T. S., Furman M. D.. Rapid prototyping of digital systems[M]. NewYork:Springer,2006
    [11] Committee on Experimentation and Rapid Prototyping in Support ofCounterterrorism,Experimentation and Rapid Protoyping in Support of Counterterrorism
    [M]. Washington, D.C.: National Academies Press,2009
    [12] Liou F.W..Rapid prototyping and engineering applications: a toolbox for prototypedevelopment[M]. Boca Raton: CRC Press,2008
    [13] Hamblen J.O..Rapid prototyping of digital systems sopc edition[M].New York: Springer,2007
    [14] Bertsche B., Bullinger H. J.,Graf, H., et al. Entwicklung und Erprobung innovativerProdukte-Rapid Prototyping:Grundlagen, Rahmenbedingungen and Realisierung[M].New York: Springer,2007
    [15]刘伟军.快速成型技术及应用[M].北京:机械工业出版社,2005
    [16]张永忠,石力开.高性能金属零件激光快速成形技术研究进展[J].航空制造技术,2010,8:20-23
    [17]吴伟辉,杨永强.选区激光熔化快速成形系统的关键技术[J].机械工程学报,2007,43(8):175-180
    [18] Koc B.,Ma Y.,Lee Y. Smoothing STL files by Max-Fit biarc curves for rapidprototyping[J]. Rapid Prototyping Journal,2000,6(3):186-205
    [19] Green P., Sibson R. Computing Dirichlet tessellations in the plane[J].The ComputerJournal,1978,21(2):168-173
    [20] Bowyer A. Computing dirichlet tessellations[J]. The Computer Journal,1981,24(2):162
    [21] Vigo M., Pla N.,Ayala, D.Two triangulation methods based on edge refinement[J].Computing,2004,72(1):221-233
    [22] Joe B.,Simpson R.Triangular meshes for regions of complicated shape[J]. InternationalJournal for Numerical Methods in Engineering,1986,23(5):751-778
    [23] Sapidis N.,PerucchioR.. Delaunay triangulation of arbitrarily shaped planar domains[J].Computer Aided Geometric Design,1991,8(6):421-437
    [24]徐永安,杨钦.二维任意域约束Delaunay三角化的实现[J].工程图学学报,1999,1:27-32
    [25]闵卫东,唐泽圣.二维任意域内点集的Delaunay三角划分生成算法[J].计算机学报,1995,18(5):365-371
    [26] Dolenc A.,M.el.Slicing procedures for layered manufacturing techniques[J].Computer-Aided Design,1994,26(2):119-126
    [27] Fadel G.,Kirschman C..Accuracy issues in CAD to RP translations[J]. Rapid PrototypingJournal,1996,2(2):4-17
    [28]陈绪兵,莫健华. CAD模型的直接切片在快速成形系统中的应用[J].中国机械工程,2000,11(10):1098-1100
    [29]赵吉宾,刘伟军,王越超.快速成型切片数据的优化算法研究[J].小型微型计算机系统,2004,25(010):1818-1821
    [30]彭安华,张剑峰,王其兵.提高快速成型制件精度方法研究[J].热加工工艺,2008,37(5):122-126
    [31]陈鸿,程军.激光快速成型系统中自适应分层算法及实现[J].应用基础与工程科学学报,2003,11(3):329-334
    [32]杨军惠,党新安,杨立军.SLS快速成型技术误差综合分析与提高[J].热加工工艺,2009,38(13):160-163
    [33]周华民;成学文;刘芬等. STL文件错误的修复算法研究[J].计算机辅助设计与图形学学报,2005,17(4):761-767
    [34] Bibb R., Taha Z.,Brown, R., et al. Development of a rapid prototyping design advicesystem[J]. Journal of Intelligent Manufacturing,1999,10(Compendex):331-339
    [35]陈明生.航空焊接夹具设计重用关键技术研究与实现[D].南京:南京航空航天大学,2006
    [36]刘丽华.基于知识重用理论的减速器快速设计系统[D].武汉:武汉理工大学,2009
    [37]马铁强.支持产品快速设计的CAD模型重用技术研究[D].大连:大连理工大学,2009
    [38]张建勋,何玉林.零件二维视图轮廓信息和封闭图形信息的自动提取[J].计算机工程与应用,2000,36(010):38-40
    [39]王克明,熊光楞.基于产品特征信息重用的设计仿真协同技术研究[J].计算机工程与应用,2002,38(014):1-3
    [40]王玉,邢渊.机械产品设计重用策略研究[J].机械工程学报,2002,38(5):145-148
    [41]张玫.产品虚拟维修仿真过程层次化建模与重用技术研究及其应用[D].杭州:浙江大学,2008
    [42]胡文伟.特征建模与特征识别及其在CAD/CAPP集成中的应用[D].南京:南京航空航天大学,2006
    [43] Josh S.,Chang T. C. Graph-based heuristics for recognition of machined features from a3D solid model[J]. Computer-Aided Design,1988,20(2):58-66
    [44] Vandenbrande J.,Requicha A.Geometric computation for the recognition of spatiallyinteracting machining features[J].Manufacturing Research and Technology,1994,20:83-83
    [45] Woo T. C.In Feature extraction by volume decomposition[J].Computer-AidedDesign,1982,6:76-94
    [46] Kim C. Y.,Kim, N.,Kim Y., et al. In O Grady P, Internet-based Concurrent Engineering:An Interactive3D System with Markup[J]. Computer-Aided Design,1998,2:79-95
    [47] Sakurai H.,Dave P. Volume decomposition and feature recognition, Part II: curvedobjects[J]. Computer-Aided Design,1996,28(6):519-537
    [48] Gao S.,Shah J. Automatic recognition of interacting machining features based onminimal condition subgraph[J]. Computer-Aided Design,1998,30(9):727-739
    [49] van den Berg E.,van der Meiden H. A.,Bronsvoort, W. F..In Specification of freeformfeatures[J].Proceedings of the eighth ACM symposium on Solid modeling andapplications,2003,5:56-64
    [50] van den Berg E., Bronsvoort W. F.. Parameterised constraint-based wrapping of freeformshapes[J]. Computers&Graphics,2007,31(1):89-99
    [51] Pernot J., Falcidieno B., Giannini F., et al. In Modelling free-form surfaces using afeature-based approach[J].Proceedings of the eighth ACM symposium on Solid modelingand applications,2003,5:270-273
    [52] Nyirenda P. J., Bronsvoort W. F..In A multi-level freeform surface featuremodel[J].ASME,2007,2:260-271
    [53] Langerak T. R.,Vergeest J.S.A dual environment for3D modeling with user-definedfreeform features[J]. Journal of computing and information science in engineering,2009,9(2):280-290
    [54] Deursen A.v.,Stroulia E.,Storey M. A., et al. Proceeding: An Exploratory Study ofSoftware Reverse Engineering[C].10th Working Conference on Reverse Engineering,Canada,2003:372-388
    [55] Ferguson J.. Reverse engineering code with IDA Pro[M]. Burlington, MA: Syngress Pub,2008
    [56] Favre L.Model driven architecture for reverse engineering technologies: strategicdirections and system evolution[C]. Engineering Science Reference, Hershey,2010:443-454
    [57] Allman K. A. Reverse engineering deals on Wall Street with Microsoft Excel: astep-by-step guide[M]. Hoboken, N.J.: John Wiley&Sons,2009
    [58] Zhou X., Wong S. T. C.. Computational systems bioinformatics: methods andbiomedical applications[M].New Jersey:World Scientific,2008
    [59]阮雪榆,李志刚.武兵书等.中国模具工业和技术的发展[J].模具技术,2001,2:72-74
    [60]曾海飞,刘志刚,林志航.基于水平集的散乱数据点云曲面重构方法[J].西安交通大学学报,2006,40(5):614-617
    [61]王霄.逆向工程技术及其应用[M].北京:化学工业出版社,2004
    [62]袁浩,卢章平.基于产品反求工程的产品造型设计方法[J].工程图学学报,2003,24(001):44-49
    [63]叶嘉楠.基于反求工程的快速成型系统制造精度的研究[D].大连:大连理工大学,2007
    [64]黄曼慧,成思源.基Geomagi的CAD模型重建技术研究[J].机床与液压,2008,36(009):106-108
    [65]王建勇,贺炜,刘言松等.逆向工程技术及其实物反求应用[J].机床与液压,2005,5:34-36
    [66]胡鑫,习俊通,金烨.反求工程中散乱点云数据的自动分割与曲面重构[J].上海交通大学学报,2004,38(1):62-65
    [67]刘炉.基于工业CT切片数据的CAD模型重构[D].重庆:重庆大学,2006
    [68]李自力.虚拟现实中基于图形与图象的混合建模技术[J].中国图象图形学报: A辑,2001,6(1):96-101
    [69] Eilam E.,Chikofsky E. J.Reversing: secrets of reverse engineering[M]. Indianapolis:Wiley,2005
    [70] Bharath A.,Petrou M.Next generation artificial vision systems: reverse engineering thehuman visual system [M]. Boston: Artech House,2008
    [71]钟山,黄美发,钟艳如.基于广义延拓逼近法的典型机械零件曲面轮廓设计[J].机械科学与技术,2008,(5):657-661
    [72]边秋梅,王红波,张吉堂.基于快速成型系统的集成制造系统研究[J].电脑开发与应用,2003,16(10):20-22
    [73] Dumont C.,Wallace D.R. Freeform surface copy-and-paste: A mechanism for transferringbrand-identity elements from one object to another[C].CD-ROM Proceedings ofDETC2003,Chicago, Illinois,2003:233-245
    [74] Yu Y.,Zhou K.,Xu D.,et al.In Mesh editing with poisson-based gradient fieldmanipulation[C].ACM,2004:644-651
    [75] Barghiel C.,Bartels R.,Forsey D.. Pasting spline surfaces[J]. Mathematical Methods forCurves and Surface,1995,2:31-40
    [76] Zhao W.,Gao S.,LiuY..In Poisson Based Reuse of Freeform Features[J]. ASME,2006,2:210-223
    [77]杨群.基于UG的自由曲面设计及数控加工模拟[D].西安:西安理工大学,2002
    [78] Foley J. D.Computer graphics: principles and practice[M].Boston: Addison-WesleyProfessional,1996
    [79] Poliakoff J. F..An improved algorithm for automatic fairing of non-uniform parametriccubic splines[J]. Computer-Aided Design,1996,28(1):59-66
    [80] Taubin G. In A signal processing approach to fair surface design[C].,Proceedings of the22nd annual conference on Computer graphics and interactive techniques,ACM,1995:351-358
    [81]赵伟.自由形状特征的重用与抑制[D].杭州:浙江大学,2008
    [82] Kazhdan M., Bolitho M., Hoppe H.. In Poisson surface reconstruction [C].Proceedings ofthe fourth Eurographics symposium on Geometry processing:2006:201-211
    [83] Coons S. A..Surfaces for computer-aided design of space forms[R].DTIC Document:1967
    [84] Barnhill R. E., Birkhoff G.,Gordon W.. Smooth interpolation in triangles[J].Journal ofApproximation Theory,1973,8(2):114-128
    [85] Farouki R..A.,Sverrisson R..Approximation of rolling-ball blends for free-formparametric surfaces[J]. Computer-Aided Design,1996,28(11):871-878
    [86]马岭,张鲜.用偏微分方程构造过渡面[J].工程图学学报,1995,(1):1-8
    [87]周来水,张乐年. NURBS曲面的过渡曲面生成[J].工程图学学报,1996,(2):52-57
    [88]罗宏志,李志刚.用有理Bezier曲面生成G1过渡曲面[J].华中理工大学学报,1995,23(6):29-33
    [89]崔秀芬.过渡特征识别与抑制方法研究[D].杭州:浙江大学,2004
    [90]周林军.双三次NURBS曲面光滑拼接及过渡曲面构造算法研究[D].湘潭:湘潭大学,2008
    [91] Varady T.,Martin R.R.,Cox J..Reverse engineering of geometric models--anintroduction[J]. Computer-Aided Design,1997,29(4):255-268
    [92] Otto K.N.,Wood K. L..Product design: techniques in reverse engineering and newproduct developmen t [M]. Upper Saddle River:Prentice Hall,2001
    [93]金涛,童水光.逆向工程技术[M].北京:机械工业出版社,2003
    [94]李江雄,柯映林,,程耀东.基于实物的复杂曲面产品反求工程中的CAD建模技术[J]. CHINA MECHANICAL ENGINEERING,1999,10(4):390-393
    [95]闫华,林巨广,蔡树煌等.汽车覆盖件逆向工程中的若干关键技术探讨[J].模具技术,2001,2(2):4-7
    [96]程军涛.逆向工程中曲面重构技术的应用研究[M].洛阳:河南科技大学出版社,2010
    [97] Bolle R. M.,Vemuri B. C..On three-dimensional surface reconstruction methods[J]. IEEETransactions on Pattern Analysis and Machine Intelligence,1991,13(1):1-13
    [98]施浒立,颜毅华.广义插值法及其应用[J].杭州电子工业学院学报,2001,3:3-7
    [99]吴宅莲,郑永光,施浒立.广义延拓插值法在气压数据处理中的应用[J].杭州电子科技大学学报,2005,25(1):75-78
    [100]施浒立,颜毅华,徐国华.工程科学中的广义延拓逼近法[M].北京:科学出版社,2005
    [101] Park H.An error-bounded approximate method for representing planar curves inB-splines[J]. Computer Aided Geometric Design,2004,21(5):479-497
    [102] Chen X.,Wang C.,Ye X., et al. Direct slicing from PowerSHAPE models for rapidprototyping[J].The International Journal of Advanced Manufacturing Technology,2001,17(7):543-547
    [103] Satterfield, S. G.,Rogers D. F.. A procedure for generating contour lines from a B-splinesurface[J]. IEEE Computer Graphics and Applications,1985,5:71-75
    [104] Jamieson R.,Hacker H.. Direct slicing of CAD models for rapid prototyping[J]. RapidPrototyping Journal,1995,1(2):4-12
    [105] Ma W.,But W. C.,He P. NURBS-based adaptive slicing for efficient rapid prototyping[J].Computer-Aided Design,2004,36(13):1309-1325
    [106] Zhao Z.,Laperriere L. Adaptive direct slicing of the solid model for rapid prototyping[J].International Journal of Production Research,2000,38(1):69-84
    [107] Zhou M.,Xi J.,Yan J..Adaptive direct slicing with non-uniform cusp heights for rapidprototyping[J].The International Journal of Advanced Manufacturing Technology,2004,23(1):20-27
    [108] Sun S.,Chiang H.,Lee M.. Adaptive direct slicing of a commercial CAD model for usein rapid prototyping[J]. The International Journal of Advanced ManufacturingTechnology,2007,34(7):689-701
    [109] Banerjee A.G.,Kumar A.,TejavathS.,et al. Adaptive slicing with curvatureconsiderations[J]. International Journal of CAD/CAM,2003,3(1):41-58
    [110] Kulkarni P.,Dutta D.An accurate slicing procedure for layered manufacturing[J].Computer-Aided Design,1996,28(9):683-697
    [111] Suh Y.S.,Wozny M. J. In Adaptive slicing of solid freeform fabricationprocesses[C].Solid Freeform Fabrication Symposium:Cambridge University Press:1994:404-411
    [112] Mani K.,Kulkarni P.,Dutta D.. Region-based adaptive slicing[J].Computer-AidedDesign,1999,31(5):317-333
    [113] Vuyyuru P.,Kirschman C., Fadel G., et al. In A NURBS-based approach for rapidproduct realization[C].In Proceedings of the5th International Conference on RapidPrototyping, The University of Dayton:1994:229-239
    [114] Cao W.,Miyamoto Y..Direct slicing from AutoCAD solid models for rapidprototyping[J].The International Journal of Advanced Manufacturing Technology,2003,21(10):739-742
    [115] Rajagopalan M.,Aziz N. M.,Huey, C. O.. A model for interfacing geometric modelingdata with rapid prototyping systems[J]. Advances in Engineering Software,1995,23(2):89-96
    [116] Zhou M..STEP-based approach for direct slicing of CAD models for layeredmanufacturing[J]. International Journal of Production Research,2005,43(15):3273-3285
    [117] Guduri S.,Crawford R. H.,Beaman J. J.. In Direct generation of contour files fromconstructive solid geometry representations[J]. Best Available,1993,2:291-306
    [118] ISO C.10303-1. Product data representation and exchange-part1: Overview andfundamental principles[S].International Organization for Standardization, subcommittee:1991
    [119] Chae S. W.,Kwon K. Y.. Quadrilateral mesh generation on trimmed NURBS surfaces[J].Journal of Mechanical Science and Technology,2001,15(5):592-601
    [120] Ong C.,Wong, Y.,Loh H., et al. An optimization approach for biarc curve-fitting ofB-spline curves[J]. Computer-Aided Design,1996,28(12):951-959
    [121] Wu Y.,Wong Y.,Loh H. T., et al. Modelling cloud data using an adaptive slicingapproach[J]. Computer-Aided Design,2004,36(3):231-240
    [122]石玉仁,许新建,吴枝喜等.同伦分析法在求解非线性演化方程中的应用[J].物理学报,2006,55(004):1555-1560
    [123] Roulier J.. An algorithm for computing a shape-preserving oscillatory quadraticspline[J]. ACM Trans. Math. Software,1981,7:331-347
    [124] Fritsch F.,Butland J..A method for constructing local monotone piecewise cubicinterpolants[J]. SIAM journal on scientific and statistical computing,1984,5(2):300-304
    [125] Yang X.,Wang G. Planar point set fairing and fitting by arc splines[J]. Computer-AidedDesign,2001,33(1):35-43
    [126] Althaus E.. Curve reconstruction and the traveling salesmanproblem[D]. Saarbrücken:Saarl ndische Universit ts,2001
    [127] Meek D.,Walton D..Clothoid spline transition spirals[J]. Mathematics of computation,1992,59(199):117-133
    [128]刘永超. Clothoid曲线拟合及插补方法[J].机械设计,2004,21(2):54-55
    [129] Abbasbandy S..Improving Newton-Raphson method for nonlinear equations bymodified Adomian decomposition method[J]. Applied Mathematics and Computation,2003,145(2-3):887-893
    [130] Lee K. H.,Woo H.. Direct integration of reverse engineering and rapid prototyping[J].Computers&industrial engineering,2000,38(1):21-38
    [131] Liao Y. S.,Chiu Y. Y..A new slicing procedure for rapid prototyping systems[J]. TheInternational Journal of Advanced Manufacturing Technology,2001,18(8):579-585
    [132] Wu T.,Cheung, E. H. M.. Enhanced STL[J].The International Journal of AdvancedManufacturing Technology,2006,29(11):1143-1150
    [133] Cun X.,Zhong Y. L.,Xiao Y.C.. Construction of the Adjoining Relationship of STL Filesand the Study on Slicing Algorithm [J]. Journal of south china university oftechnology(natural science),2000,3:007
    [134] Zhao, J. B.,Liu W.J. Recent progress in slicing algorithm of rapid prototypingtechnology [J]. Computer Integrated Manufacturing Systems,2009,2:209-221
    [135] Koc B.,Ma Y.,Lee Y. S..Smoothing STL files by Max-Fit biarc curves for rapidprototyping[J]. Rapid Prototyping Journal,2000,6(3):186-205
    [136] Ming H.,Yazhou K.,Hong Y., et al. Arithmetic for NURBS curve fitting of STL slicedata[J].Journal of huazhong university of science and technology(natural science),2002,30(1):59-61
    [137]董未名,严冬明,周登文等.基于CAD模型的直接快速成型软件[J].计算机辅助设计与图形学学报,2004,16(3):360-367
    [138] Jibin Z.. In Determination of optimal part build orientation based on satisfactory degreetheory for RPT[C], Proc. of Ninth International Conference on Computer Aided Designand Computer Graphics (CAD/CG), IEEE,2005:1-6
    [139]李江峰;钟约先;李电生. STL文件缺陷分析及修补算法研究[J].机械设计与制造,2002,4(2):40-42
    [140]张永. FDM快速成型中工艺支撑的智能化设计[D].南昌:南昌大学,2008
    [141]赵吉宾,刘伟军.快速成型技术中分层算法的研究与进展[J].计算机集成制造系统,2009,15(2):209-221
    [142] Zhang Y,Wong Y., Loh H., et al. An adaptive slicing approach to modelling cloud datafor rapid prototyping[J]. Journal of Materials Processing Technology,2003,140(1):105-109
    [143] Wu Y..Modelling cloud data using an adaptive slicing approach[J]. Computer-AidedDesign,2004,36(3):231-240
    [144] Lee K.,Woo H.Direct integration of reverse engineering and rapid prototyping[J].Computers&industrial engineering,2000,38(1):21-38
    [145]任乃飞,胡汝霞,万俊.点云自适应切片方法研究[J].农业机械学报,2006,37(2):118-121
    [146]孙玉文,王越超.基于自由曲面点云的快速原型制作技术研究[J].机械工程学报,2003,39(1):56-59
    [147] Levin D..The approximation power of moving least-squares[J].Mathematics ofcomputation,1998,67(224):1517-1531
    [148] McLain D. H.. Drawing contours from arbitrary data points[J]. The Computer Journal,1974,17(4):318-324
    [149] Bourell D. L.,Wood K. L..Solid Freeform Fabrication Proceedings[C]. The FourteenthSolid Freeform Fabrication Symposium,2003:699-712
    [150] De Boor C..A practical guide to splines[M]. New York: Springer Verlag,2001
    [151]刘云峰,柯映林.反求工程中的混合切片技术[J].计算机辅助设计与图形学学报,2003,15(6):741-745
    [152] Goovaerts P..Geostatistical approaches for incorporating elevation into the spatialinterpolation of rainfall[J]. Journal of hydrology,2000,228(1):113-129
    [153]邓建中.外推法及其应用[M].上海:上海科学技术出版社,1984
    [154]施浒立,赵彦.误差设计新理念与方法[M].北京:科学出版社:2007
    [155] Zimmerman D.,Pavlik C., Ruggles A., et al. An experimental comparison of ordinaryand universal kriging and inverse distance weighting[J]. Mathematical Geology,1999,31(4):375-390
    [156] Rogers D.. An introduction to NURBS: with historical perspective[M]. Los Altos:Morgan Kaufmann,2001
    [157]施法中.计算机辅助几何设计与非均匀有理B样条(CAGD&NURBS)[M].北京:北京航空航天大学出版社,1994
    [158] Sun Y. W., Dong M. G., Zhen Y.J.. B-spline surface reconstruction and direct slicingfrom point clouds[J]. The International Journal of Advanced Manufacturing Technology,2006,27:918-924

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700