用户名: 密码: 验证码:
高速原子力显微镜的成像方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米科技已经成为二十一世纪最重要的技术之一,而纳米科技的发展,很大程度上依赖于纳米观测和纳米操作的工具与手段——扫描探针显微镜(SPM,Scanning Probe Microscope)。而其中的原子力显微镜(AFM,Atomic ForceMicroscope),由于1)AFM不受样品导电性限制;2)可同时支持在大气与液相环境中观测样品,从而使其广泛应用于化学、材料、物理、生物等纳米相关科学领域。因此,原子力显微镜技术的发展,也极大的促进了纳米领域研究成果的发展。然而,随着纳米相关技术的不断发展,科研工作者对AFM的纳米测量与纳米操作性能提出了更高的要求,而现有的AFM由于自身固有的缺陷,各方面性能还未达到这些要求。主要表现为:1)扫描速度较慢,成像效率较低,对于一些实时性要求较高的活性样品,无法满足成像要求;2)高速扫描时,原子力显微镜系统复杂的非线性会导致样品形貌的成像误差大。3)扫描模式多,操作难度较大,对于扫描参数的调节需要较长时间的培训与操作经验。这些限制严重地阻碍了纳米技术领域的深入研究。
     本论文针对上述问题,通过对AFM的成像方法展开深入研究,来进一步改善AFM在高速扫描时的成像性能。具体而言,本文主要工作包括以下四个方面:
     第一,针对成像系统中的控制信号,提出了两种分别基于压电扫描器特性与样品特性的成像信号预处理技术。首先,为了减小压电扫描器动态特性对于扫描精度的影响,本论文通过模型辨识的方法获得压电扫描器的动态模型,将成像系统中的控制信号转化为压电扫描器的真实伸缩量,从而减小了高速AFM扫描时的成像误差。同时,由于样品在放置到载物台时很难保证样品完全水平放置,这会导致控制信号产生一个扫描斜面,为了方便后续章节的进一步处理,在此提出了一种方便、快捷地在线实时去除斜面的预处理方法。仿真与实验结果表明本文所设计的预处理方法对压电扫描器动态特性引起的成像误差有着明显的抑制作用,同时消除了由于样品放置不当而产生的形貌倾斜问题。
     第二,设计了一种基于临近点集数据融合的改进动态成像方法。具体而言,在高速扫描时,为了抑制样品-探针之间强非线性特性对成像质量的影响,本文巧妙地利用扫描点邻域形貌相近似的先验知识,设计了一种基于临近点集数据融合的高速AFM成像方法。该成像方法结合AFM成像系统的非线性和先验统计信息,构造了一个滤波系数随控制误差而实时变化的非线性滤波器,来抑制因探针-样品间的非线性特性而带来成像误差。仿真与实验结果表明,该成像算法能明显提高AFM高速扫描时的成像精度。
     第三,为了改善轻敲扫描模式下AFM系统的成像精度,提出了一种适用于轻敲AFM的基于参数自适应UKF的形貌高度估计方法。首先,分析了轻敲式AFM的成像系统模型,并对该模型进行了简化和离散化。在此基础上,将样品形貌信息作为过程噪声引入成像滤波系统。同时利用轻敲扫描模式中大量的中间动态数据,对该非线性成像系统进行参数变化的无味卡尔曼滤波。本文用协方差随时间变化的统计量,来估计当前过程的实际噪声水平,进而实现了过程噪声协方差参数的自适应环节。仿真结果表明,本文算法能够较大地提供AFM系统的成像精度。
     第四,从AFM易用性的角度出发,设计提出了基于数据驱动的AFM参数自整定控制与成像方法。由于更换样品、扫描器、探针或扫描参数时,均会改变AFM成像系统的模型参数,因而需要重新调节控制器增益。为了增加系统的易用性,本文基于数据驱动方法,提出了一种能够自动调整参数的AFM控制与成像方法,从而降低了AFM的使用门槛。具体而言,首先引入CARIMA(Controlled Auto-Regressive and Moving-Average)参数模型来描述AFM系统局部的动态线性化模型,并通过基于数据驱动的辨识方法得到该模型的参数,然后采用基于GPC的优化方法在线计算PI控制器参数,从而得到了一种具有控制参数自动调整功能的AFM成像方法。论文最后分别用仿真数据和实验数据对该方法进行了验证,结果表明,当AFM改变扫描速度或者控制器PI参数选择不恰当时,该方法能够及时调整PI参数,减小控制误差,提高成像精度。
Nanotechnology has become one of the most significant technologies in thetwenty-first century. The development of nanotechnology relies heavily on the meansof nano-observation and nanomanipulation-Scanning Probe Microscope (SPM),among which anAtomic Force Microscope (AFM) is widely used in chemistry,materials, physics, biology and other nano-related scientific fields due to thefollowing two reasons:1) the usage of an AFM is not limited by the sampleconductivity;2) it supports the sample observation either in the atmosphere or liquidenvironments. Therefore, the development of the atomic force microscope technologyhas greatly promoted the progress in the field of nanotechnology research. However,with the fast development of nano-technology, researchers put forward higherrequirements on the AFM nano-measurement and nano operational performance, forwhich there presents significant difficulty for exisiting AFMs due to its inherentdefection. These difficulties are as follows:1) the scanning speed/efficiency is slow,and it is unable to meet the imaging requirements for real-time requirements of highlyactive samples;2) in high-speed scanning, complex non-linear characteristics ofatomic force microscopy will lead to large imaging errors of the sample topography;3) the operation of AFMs is very difficult, since there are vaious Scan Modes, and itusually takes long time to train operators for the adjustment of scanning parameters.These restrictions severely hamper the in-depth study in the field of nanotechnology.
     To address these problems, this dissertation implements in-depth study for theAFM imaging methods to further improve the performance of AFMs in thehigh-speed scanning tasks. Specifically, its main work includes the following fouraspects:
     First, for the control signal in the imaging system, two kinds of preprocessingtechniques are proposed based on the dynamics of the piezoelectric scanning tube andsample characteristics of the imaging signal. First, in order to alleviate the dynamiceffects, this dissertation proposes a model identification method to reduce the imaging errors in high-speed AFM scanning, based on which the control signal is transformedinto the actual stretching amount of the piezoelectric scanner. Meanwhile, it isdifficult to ensure that the sample is completely horizontal when the sample is placedon the loading platform, which causes the control signal to generate a scan slant. Inorder to facilitate further analysis of the subsequent chapters, the dissertationproposes a convenient online real-time removal preprocessing method to reduce theslant plane. Simulation and experimental results show that the proposedpreprocessing methodssignificantly inhibites the imaging errors due to the dynamiccharacteristics of the piezoelectric scanner and at the same time eliminates the slantoccuring in sample placing.
     Second, the dissertation designs an improved dynamic imaging method based onthe integration of the near point set. In high speed scanning, to suppress the negativeeffect of the strong nonlinear dynamics on the AFM image quality, this dissertationproposes a high-speed AFM imaging method based on the fact that the scanning pointhas similarity with the neighborhood. This imaging method takes into accunt bothsystem nonlinearity and the priori knowledge, and thus a nonlinear filter isconstructed with its coefficient being a function of the control error signal, based onwhich the imaging error is suppressed. Simulation and experimental results show thatthe imaging algorithm can dramatically improve the accuracy of high-speed scanningof the AFM imaging.
     Third, in order to improve the imaging accuracy of the tapping AFM, atopography estimation method is designed based on an adaptive unscented kalmanfilter (AUKF). The tapping-mode AFM imaging model is first analyzed, simplified,and the discrete-time model is derived. On this basis, the sample topography isintroduced into the imaging filter system as the process noise. While taking advantageof the large amount of dynamic data in tapping scanning mode, the nonlinearimagingsystem isfiltered with the parameter adaptive UKF. Thisdissertation uses the variationof the convariance over time to estimate the actual noise level of the current process,thus achievingself-adapting for the process noise covariance parameters.
     Fourth, for the convenient operation of AFM, a data-driven based control andimaging method is designedto accomplish the self tunning of control parameters. When sample, scanner, probe or scanning parameters are changed, the modelparameter of the AFM imaging system can be changed accordingly. Thus, adjustmentof the controller parameters should also be made repetitively. This dissertationproposes a data-driven based control and imaging method, which is capable ofadjusting the control parameters automatically so as to reduce the difficulty in AFMoperation. Specifically, CARIMA(Controlled Auto-Regressive and Moving-Average)model is introduced to describe the local dynamiclinearized system model, which isthen identified using data-dirven based methods. Subseqently, theproportional-integral(PI) parameters is calculated online based on global predictivecontrol (GPC) optimization method, and thus the automatoic tunning of PI prametersis accomplished. Simulation and experimental results are provided to show thatwhenthe scanning speed is changed or the PI parameters are chosen unappropriately,the proposed method still works well toimprove the imaging accuracy.
引文
[1] Bai C. Ascent of nanoscience in China[J]. Science,2005,309:61–63.
    [2] Feynman R P. There’s Plenty of Room at the Bottom[J]. Engineering and Science,1960,23(5):22–36.
    [3] Taniguchi N. On the basic concept of nanotechnology[C]//Proc. Intl. Conf. Prod. Eng.Tokyo, Part II, Japan Society of Precision Engineering.1974.
    [4]姚楠,王中林.纳米技术中的显微学手册[M].北京:清华大学出版社,2006.
    [5] Binnig G, Rohrer H, Gerber C, et al. Surface studies by scanning tunneling microscopy[J].Physical review letters,1982,49(1):57–61.
    [6] Binnig G, Quate C, Gerber C. Atomic force microscope[J]. Physical review letters,1986,56(9):930–933.
    [7] Cho S J, Bae I S, Lee S, et al. Study on the characteristics of toluene-tetraethoxysilanehybrid plasma-polymer thin films[J]. Journal of Vacuum Science&Technology B:Microelectronics and Nanometer Structures,2009,27(1):527–530.
    [8] Fuqiang T, Wenbin B, Chun Y, et al. Study on physical and chemical structure changes ofpolyimide caused by corona ageing[C]//Properties and Applications of Dielectric Materials,2009. ICPADM2009. IEEE9th International Conference on the.2009:1076–1079.
    [9] Ali H A, Iliadis A A, Lee U. Study of ZnO nanocluster formation within styrene-acrylicacid and styrene-methacrylic acid diblock copolymers on Si and SiO2surfaces[C]//Semiconductor Device Research Symposium,2003International.2003:216–217.
    [10] Sassaki R M, Douglas R A, Kleinke M U, et al. Structure imaging by atomic forcemicroscopy and transmission electron microscopy of different light emitting species ofporous silicon[J]. Journal of Vacuum Science&Technology B: Microelectronics andNanometer Structures,1996,14(4):2432–2437.
    [11] Nie H Y, Walzak M J, McIntyre N S. Use of biaxially oriented polypropylene film forevaluating and cleaning contaminated atomic force microscopy probe tips: An applicationto blind tip reconstruction[J]. Review of Scientific Instruments,2002,73(11):3831–3836.
    [12] Ong M C, Zhao X L, Lim S H, et al. The effect of polyimide surface treatment on flip-chipassembly[C]//Physical and Failure Analysis of Integrated Circuits,2009. IPFA2009.16thIEEE International Symposium on the.2009:87–90.
    [13] Nishino T, Nozawa A, Kotera M, et al. In situ observation of surface deformation ofpolymer films by atomic force microscopy[J]. Review of Scientific Instruments,2000,71(5):2094–2096.
    [14] Hutagalung S D, Yaacob K A, Tan R Y. Morphology of Silicon Nanowires Grown onSi(100) Substrate[C]//Nano/Micro Engineered and Molecular Systems,2007. NEMS’07.2nd IEEE International Conference on.2007:215–218.
    [15] Wang Z H, Li Y R, Huang P, et al. Phase Transformation in PZT Films Studied byScanning Probe Microscopy[C]//Photonics and Optoelectronics,2009. SOPO2009.Symposium on.2009:1–3.
    [16] David T, Chicanne C, Richard N, et al. Application to dielectric, metallic, and magneticsamples of a transmission mode scanning near field optical microscope with normal forcedistance regulation on bent optical fibers[J]. Review of Scientific Instruments,1999,70(12):4587–4594.
    [17] Halim S A, Lim K P, Huda A, et al. Magnetoresistance effect of Cu/Cu-Co hybridmultilayer films[C]//Semiconductor Electronics,2004. ICSE2004. IEEE InternationalConference on.2004:494–496.
    [18] Seeger A. Surface reconstruction from afm and sem images[D]. Chapel Hill: University ofNorth Carolina at Chapel Hill,2004.
    [19] Sakane Y, Nakao M. Molecular weight effect on surface morphology of bonded lubricantlayer for hard disk-replica-AFM observation[J]. Magnetics, IEEE Transactions on,2000,36(5):2714–2717.
    [20] Pillarisetti A, Ladjal H, Ferreira A, et al. Mechanical characterization of mouse embryonicstem cells[C]//Engineering in Medicine and Biology Society,2009. EMBC2009. AnnualInternational Conference of the IEEE.2009:1176–1179.
    [21] Milner A A, Prior Y. Tip assisted laser induced surface nanolithograpjhy[C]//Lasers andElectro-Optics,2009and2009Conference on Quantum electronics and Laser ScienceConference. CLEO/QELS2009. Conference on.2009:1–2.
    [22]白春礼.扫描隧道显微术及其应用[M].上海:上海科学技术出版社,1992.
    [23] Abramovitch D, Andersson S, Pao L, et al. A tutorial on the mechanisms, dynamics, andcontrol of atomic force microscopes[C]//American Control Conference,2007. ACC’07.2007:3488–3502.
    [24]裘晓辉,白春礼.中国纳米科技研究的进展[J].前沿科学,2007,1(1):6–10.
    [25] Roco M. The long view of nanotechnology development: the National NanotechnologyInitiative at10years[J]. Nanotechnology Research Directions for Societal Needs in2020,2011:1–28.
    [26] Campbell J, Tessmer I, Thorp H, et al. Atomic force microscopy studies of DNA-wrappedcarbon nanotube structure and binding to quantum dots[J]. Journal of the AmericanChemical Society,2008,130(32):10648–10655.
    [27]郑伟民,蔡继业.原子力显微镜在DNA领域中研究应用[J].现代仪器,2006,12(001):9–12.
    [28] Li M, x, Qian, et al. Atomic force microscopy of plasmid DNA and DNA polymerase[J].Journal of Vacuum Science&Technology B: Microelectronics and Nanometer Structures,1994,12(3):1465–1469.
    [29]李密,刘连庆,席宁,等.基于AFM的淋巴瘤细胞成像及其机械特性测定[J].科学通报,2010,55(22):2188–2196.
    [30] Silva G. Nanotechnology approaches to crossing the blood-brain barrier and drug deliveryto the CNS[J]. BMC Neuroscience,2008,9(3):S4.
    [31] Hashim D, Narayanan N, Romo-Herrera J, et al. Covalently bonded three-dimensionalcarbon nanotube solids via boron induced nanojunctions[J]. Scientific Reports,2012,2:363.
    [32] Wen Y, Wang J, Hu J, et al. Reversible Nanometer-Scale Data Storage on aSelf-Assembled, Organic, Crystalline Thin Film[J]. Advanced Materials,2006,18(15):1983–1987.
    [33] Eleftheriou E, Antonakopoulos T, Binnig G, et al. Millipede-a MEMS-basedscanning-probe data-storage system[J]. Magnetics, IEEE Transactions on,2003,39(2):938–945.
    [34] Wu C, Lin H, Wu W, et al. The rapid introduction of immersion lithography for NANDflash: challenges and experience[C]//Proceedings of SPIE, the International Society forOptical Engineering.2008:69241A–1.
    [35] Dongdong Z, Xiaoping Q. Scanning in atomic force microscopy[C]//Robotics andAutomation,2009. ICRA’09. IEEE International Conference on.2009:532–537.
    [36] Devasia S, Eleftheriou E, Moheimani S. A survey of control issues in nanopositioning[J].Control Systems Technology, IEEE Transactions on,2007,15(5):802–823.
    [37] Howard-Knight J P, Hobbs J K. Video rate atomic force microscopy using low stiffness,low resonant frequency cantilevers[J]. Applied Physics Letters,2008,93(10):104101–104101–3.
    [38] Picco L, Dunton P, Ulcinas A, et al. High-speed AFM of human chromosomes in liquid[J].Nanotechnology,2008,19:384018.
    [39] Bhikkaji B, Moheimani S. Integral resonant control of a piezoelectric tube actuator for fastnanoscale positioning[J]. Mechatronics, IEEE/ASME Transactions on,2008,13(5):530–537.
    [40] Seo Y, Choi C, Han S, et al. Real-time atomic force microscopy using mechanicalresonator type scanner[J]. Review of Scientific Instruments,2008,79:103703.
    [41] Egawa A, Chiba N, Homma K, et al. High-speed scanning by dual feedback control inSNOM/AFM[J]. Journal of microscopy,1999,194(2-3):325–328.
    [42] Schitter G, Astrom K, DeMartini B, et al. Design and modeling of a high-speedAFM-scanner[J]. Control Systems Technology, IEEE Transactions on,2007,15(5):906–915.
    [43] Ando T, Uchihashi T, Fukuma T. High-speed atomic force microscopy fornano-visualization of dynamic biomolecular processes[J]. Progress in Surface Science,2008,83(7-9):337–437.
    [44]张少太,董再励,缪磊. ARM处理器在AFM纳米操作系统中的应用[J].微计算机信息,2006,22(11).
    [45]王春雨,韩立,方光荣,等.基于DSP的新型数字式SPM系统硬件方案研究[J].微计算机应用,2005,26(3):323–325.
    [46]张雪辉,安连祥,王时毅,等.基于数字信号处理器DSP的SPM研究[J].电子显微学报,2003,22(003):252–255.
    [47] Sun Y, Fang Y, Zhang Y, et al. Field programmable gate array (FPGA) based embeddedsystem design for AFM real-time control[C]//Control Applications (CCA),2010IEEEInternational Conference on.2010:245–250.
    [48] Jacky J, Garbini J, Ettus M, et al. Digital control of force microscope cantilevers using afield programmable gate array[J]. Review of Scientific Instruments,2008,79:123705.
    [49] Volden T, Barrettino D, Hafizovic S, et al. Single-chip AFM array with integrated digitalcontrollers[C]//Sensors,2004. Proceedings of IEEE.2004:1228–1231vol.3.
    [50] Minne S, Yaralioglu G, Manalis S, et al. Automated parallel high-speed atomic forcemicroscopy[J]. Applied physics letters,1998,72:2340.
    [51]林旭东,董维杰.基于1×2阵列压电悬臂梁的AFM并行扫描[J].微纳电子技术,2011,48(4):264–268.
    [52]周娴玮,方勇纯.原子力显微镜中压电扫描器的非线性特性研究[C]//2005年中国智能自动化会议论文集.青岛:东南大学学报,2005:1052–1057.
    [53] Croft D, Shed G, Devasia S. Creep, hysteresis, and vibration compensation forpiezoactuators: Atomic force microscopy application[J]. Journal of Dynamic Systems,Measurement, and Control,2001,123:35.
    [54] Cidade G A G, Weissmuller G, Bisch P M. A microcontroller-based system forpiezoscanner nonlinearity correction: Atomic force microscope[J]. Review of ScientificInstruments,1998,69(10):3593–3597.
    [55] Zhang Y, Fang Y, Zhou X, et al. Image-based hysteresis modeling and compensation for anAFM piezo-scanner[J]. Asian Journal of Control,2009,11(2):166–174.
    [56] Banks H, Kurdila A, Webb G. Identification of hysteretic control influence operatorsrepresenting smart actuators, Part II: Convergent approximations[J]. Journal of IntelligentMaterial Systems and Structures,1997,8(6):536–550.
    [57] Galinaitis W, Rogers R. Control of a hysteretic actuator using inverse hysteresiscompensation[C]//Proceedings of SPIE.1998,3323:267.
    [58] Wang Q, Su C, Tan Y. On the control of plants with hysteresis: Overview and aPrandtl-Ishlinskii hysteresis based control approach[J]. Acta Automatica Sinica,2005,31(1):92–104.
    [59] Annakkage U, McLaren P, Dirks E, et al. A current transformer model based on theJiles-Atherton theory of ferromagnetic hysteresis[J]. Power Delivery, IEEE Transactionson,2000,15(1):57–61.
    [60] Jiles D, Atherton D. Theory of ferromagnetic hysteresis[J]. Journal of applied physics,1984,55(6):2115–2120.
    [61] Jiles D, Thoelke J, Devine M. Numerical determination of hysteresis parameters for themodeling of magnetic properties using the theory of ferromagnetic hysteresis[J].Magnetics, IEEE Transactions on,1992,28(1):27–35.
    [62]贾宏光.基于变比模型的压电驱动微位移工作台控制方法研究[D].长春:中国科学院长春光学精密机械与物理研究所,2000.
    [63]张玉东,方勇纯,余冠云,等.基于变比模型的AFM扫描器迟滞建模与控制[J].控制工程,2010,4.
    [64] Horowitz R, Chen T, Oldham K, et al. Microactuators for dual-stage servo systems inmagnetic disk files[J]. Springer Handbook of Nanotechnology, ISBN978-3-540-01218-4.Springer-Verlag Berlin Heidelberg,2004, p.951,2004,1:951.
    [65] Chien C, Wu Y, Chiou Y, et al. Nanoscale deformation measurement by using the hybridmethod of gray-level and holographic interferometry[J]. Optics and lasers in engineering,2006,44(1):80–91.
    [66] Pedrak R, Ivanov T, Ivanova K, et al. Micromachined atomic force microscopy sensorwith integrated piezoresistive sensor and thermal bimorph actuator for high-speedtapping-mode atomic force microscopy phase-imaging in higher eigenmodes[J]. Journal ofVacuum Science&Technology B: Microelectronics and Nanometer Structures,2003,21:3102.
    [67] Brinkerhoff R, Devasia S. Output tracking for actuator deficient/redundant systems:Multiple piezoactuator example[J]. Journal of Guidance, Control, and Dynamics,2000,23(2):370–373.
    [68] Wu Y, Zou Q. Robust inversion-based2-DOF control design for output tracking:piezoelectric-actuator example[J]. Control Systems Technology, IEEE Transactions on,2009,17(5):1069–1082.
    [69] Zou Q, Leang K, Sadoun E, et al. Control Issues in High-speed AFM for BiologicalApplications: Collagen Imaging Example[J]. Asian Journal of Control,2004,6(2):164–178.
    [70] Wu Y, Zou Q, Su C. A current cycle feedback iterative learning control approach for AFMimaging[J]. Nanotechnology, IEEE Transactions on,2009,8(4):515–527.
    [71] Schitter G, Allg wer F, Stemmer A. A new control strategy for high-speed atomic forcemicroscopy[J]. Nanotechnology,2004,15:108–114.
    [72] Schitter G, Stemmer A, Allg wer F. Robust Two-Degree-of-Freedom Control of anAtomic Force Microscope[J]. Asian Journal of Control,2004,6(2):156–163.
    [73] Uchihashi T, Kodera N, Itoh H, et al. Feed-forward compensation for high-speed atomicforce microscopy imaging of biomolecules[J]. Japanese Journal of Applied Physics,2006,45(3B):1904.
    [74] Pao L Y, Butterworth J A, Abramovitch D Y. Combined Feedforward/Feedback Control ofAtomic Force Microscopes[C]//American Control Conference,2007. ACC’07.2007:3509–3515.
    [75] Schitter G. Advanced Mechanical Design and Control Methods for Atomic ForceMicroscopy in Real-Time[C]//American Control Conference,2007. ACC’07.2007:3503–3508.
    [76] Rodrguez T, Garcá R. Theory of Q control in atomic force microscopy[J]. Applied physicsletters,2003,82:4821.
    [77] Sulchek T, Hsieh R, Adams J, et al. High-speed tapping mode imaging with active Qcontrol for atomic force microscopy[J]. Applied Physics Letters,2000,76:1473.
    [78] Xu M, Fujita D, Onishi K. Reconstruction of atomic force microscopy image by usingnanofabricated tip characterizer toward the actual sample surface topography[J]. Reviewof Scientific Instruments,2009,80(4):043703–043703–6.
    [79] Sebastian A, Sahoo D R, Salapaka M V. An observer based sample detection scheme foratomic force microscopy[C]//Decision and Control,2003. Proceedings.42nd IEEEConference on.2003,3:2132–2137.
    [80] M Salapaka S, De T, Sebastian A. A robust control based solution to the sample-profileestimation problem in fast atomic force microscopy[J]. International Journal of Robust andNonlinear Control,2005,15(16):821–837.
    [81] Shiraishi T, Fujimoto H. Proposal of surface topography observer considering Z-scannerfor high-speed AFM[C]//American Control Conference (ACC),2010.2010:2754–2759.
    [82] Hansen L, Kühle A, S rensen A, et al. A technique for positioning nanoparticles using anatomic force microscope[J]. Nanotechnology,1998,9:337.
    [83]田孝军,王越超,刘连庆,等.具有三维力反馈的原子力显微镜纳米操作系统[J].仪器仪表学报,2006,27(7):661–665.
    [84]白春礼,田芳,罗克.扫描力显微术[M].北京:科学出版社,2000.
    [85]彭昌盛,宋少先,谷庆宝.扫描探针显微技术理论与应用[M].北京:化学工业出版社,2007.
    [86] Salapaka S, Salapaka M. Scanning probe microscopy[J]. Control Systems Magazine, IEEE,2008,28(2):65–83.
    [87] Takenaka H, Hatayama M, Ito H, et al. AFM Tip Characterizer fabricated by Si/SiO2multilayers[J]. e-Journal of Surface Science and Nanotechnology,2011.
    [88] Lucas M, Gall K, Riedo E. Tip size effects on atomic force microscopy nanoindentation ofa gold single crystal[J]. Journal of Applied Physics,2008,104(11):113515–5.
    [89] Fukuma T, Kimura M, Kobayashi K, et al. Development of low noise cantilever deflectionsensor for multienvironment frequency-modulation atomic force microscopy[J]. Review ofscientific instruments,2005,76:053704.
    [90] Martin Y, Williams C, Wickramasinghe H. Atomic force microscope–force mapping andprofiling on a sub100-scale[J]. Journal of Applied Physics,1987,61(10):4723–4729.
    [91] Ando T, Kodera N, Takai E, et al. A high-speed atomic force microscope for studyingbiological macromolecules[J]. Proceedings of the National Academy of Sciences,2001,98(22):12468.
    [92]荣伟彬,曲东升.压电陶瓷微位移器件迟滞模型的研究[J].压电与声光,2003,25(001):22–25.
    [93] Bhikkaji B, Ratnam M, Fleming A, et al. High-performance control of piezoelectric tubescanners[J]. Control Systems Technology, IEEE Transactions on,2007,15(5):853–866.
    [94]张涛,孙立宁,蔡鹤皋.压电陶瓷基本特性研究[J].光学精密工程,1998,6(5).
    [95]张冬仙.原子力显微术的新方法研究及新型原子力显微镜系统研制[D].杭州:浙江大学,2004.
    [96] Agarwal P, De T, Salapaka M. Real time reduction of probe-loss using switching gaincontroller for high speed atomic force microscopy[J]. Review of Scientific Instruments,2009,80:103701.
    [97] Stark R, Schitter G, Stemmer A. Tuning the interaction forces in tapping mode atomicforce microscopy[J]. Physical Review B,2003,68(8):085401.
    [98] Derjaguin B, Muller V, Toporov Y. Effect of contact deformations on the adhesion ofparticles[J]. Journal of Colloid and interface science,1975,53(2):314–326.
    [99] Garcia R, San Paulo A. Attractive and repulsive tip-sample interaction regimes intapping-mode atomic force microscopy[J]. Physical Review B,1999,60(7):4961.
    [100] Sarid D. Scanning force microscopy: with applications to electric, magnetic, and atomicforces[M]. Vol.5. London: Oxford University Press,1994.
    [101] Israelachvili J. Intermolecular and surface forces[M]. Salt Lake City: Academic press,2011.
    [102] San Paulo A, Garcá R. Tip-surface forces, amplitude, and energy dissipation inamplitude-modulation (tapping mode) force microscopy[J]. Physical Review B,2001,64(19):193411.
    [103] Sebastian A, Gannepalli A, Salapaka M. A review of the systems approach to the analysisof dynamic-mode atomic force microscopy[J]. Control Systems Technology, IEEETransactions on,2007,15(5):952–959.
    [104]张玉东.原子力显微镜自动控制算法研究[D].天津:南开大学,2011.
    [105]康凤举,杨惠珍,高立娥.现代仿真技术与应用[M].北京:国防工业出版社,2006.
    [106] Zhou X, Fang Y, Dong X, et al. System modeling of an AFM System inZ-axis[C]//Nanotechnology,2007. IEEE-NANO2007.7th IEEE Conference on.2007:96–99.
    [107] Aksu S B, Turner J A. Calibration of atomic force microscope cantilevers usingpiezolevers[J]. Review of Scientific Instruments,2007,78(4):043704.
    [108] Schitter G, Stemmer A. Model-based signal conditioning for high-speed atomic force andfriction force microscopy[J]. Microelectronic engineering,2003,67:938–944.
    [109]董晓坤,方勇纯,周娴玮,等.基于压电扫描管动态特性分析的AFM成像方法研究[J].高技术通讯,2008,18(1):54–58.
    [110]周娴玮,方勇纯,董晓坤,等.基于RTLinux的AFM实时反馈控制系统[J].计算机工程,2008,34(15):226–230.
    [111] Kalman R. A new approach to linear filtering and prediction problems[J]. Journal of basicEngineering,1960,82(1):35–45.
    [112] Liu Y, Zhu J b, Hu Z t, et al. Dynamic Modeling and Simplified UKF for ReentryVehicle[C]//Image and Signal Processing,2008. CISP’08. Congress on.2008,5:436–440.
    [113] Julier S, Uhlmann J, Durrant-Whyte H. A new approach for filtering nonlinearsystems[C]//American Control Conference,1995. Proceedings of the.1995,3:1628–1632.
    [114]周其鉴,李祖枢.数学模型的简化及其在工程系统中的应用[J].重庆大学学报(自然科学版),1980,4:1–35.
    [115] Salahshoor K, Mosallaei M, Bayat M. Centralized and decentralized process and sensorfault monitoring using data fusion based on adaptive extended Kalman filter algorithm[J].Measurement,2008,41(10):1059–1076.
    [116]张玉东,高金晟,周娴玮,等.原子力显微镜仿真平台的设计与实现[J].系统仿真学报,2009,21(6):1548–1552.
    [117] Lin H, Clegg D, Lal R. Imaging real-time proteolysis of single collagen I molecules withan atomic force microscope[J]. Biochemistry,1999,38(31):9956–9963.
    [118] Wang Y. Constant force feedback controller design using fuzzy technique for a tappingmode atomic force microscope[C]//Control and Decision Conference,2009. CCDC’09.Chinese.2009:1691–1696.
    [119] Zhou X, Dong X, Zhang Y, et al. Automatic tuning of PI controller for atomic forcemicroscope based on relay with hysteresis[C]//Control Applications,(CCA)&IntelligentControl,(ISIC),2009IEEE.2009:1271–1275.
    [120] XU J, HOU Z. Notes on data-driven system approaches[J]. Acta Automatica Sinica,2009,35(6):668–675.
    [121]侯忠生,许建新.数据驱动控制理论及方法的回顾和展望[J].自动化学报,2009,35(6):650–667.
    [122] Yamamoto T, Takao K, Yamada T. Design of a data-driven PID controller[J]. ControlSystems Technology, IEEE Transactions on,2009,17(1):29–39.
    [123] Mori S, Sakaguchi A, Yamamoto T. Design of a Human Skill-Based Controller UsingData-Driven Control Approach[C]//SICE-ICASE,2006. International Joint Conference.2006:1786–1789.
    [124] Guo L, Yi Y, Wang H. Statistic information tracking of Non-Gaussian systems: Adata-driven control framework based on adaptive NN modeling[C]//Networking, Sensingand Control,2009. ICNSC’09. International Conference on.2009:170–175.
    [125] Yang H, Li S. A Data-driven Bilinear Predictive Controller Design based on SubspaceMethod[C]//Control Applications,2007. CCA2007. IEEE International Conference on.2007:176–181.
    [126] Katayama M, Yamamoto T, Mada Y. A Design Of Multiloop Predictive Self-Tuning PidControllers[J]. Asian Journal of Control,2002,4(4):472–481.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700