用户名: 密码: 验证码:
高超声速飞行器QFT/μ鲁棒动态逆控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高超声速飞行器具有重要的战略意义和极高的应用价值。本文根据我国高超声速技术发展的需要,对高超声速飞行器的巡航飞行控制问题进行了研究。论文主要针对高超声速飞行器非线性、不稳定性、非最小相位特性以及多输入多输出系统耦合特性等具体问题,逐层展开研究,给出了一种有较高工程应用价值的鲁棒动态逆控制系统设计方法,实现了高超声速飞行器宽动压和宽马赫数跨度条件下三通道的稳定与机动飞行控制。具体研究内容如下:
     建立了通用高超声速飞行器的运动学和动力学模型以及与其飞行有关的气动参数模型,并结合所建立的数学模型对飞行器的特性进行了分析。相对于普通飞行器,高超声速飞行器具有自己典型的特点,这些特点主要体现在不确定性、非线性、耦合性以及不稳定/非最小相位特性等方面。论文在数学模型基础上对高超声速飞行器的这些特性进行了比较深入的研究,并结合研究的结论规划了总体的控制思路和控制方法。
     针对高超声速飞行器俯仰通道的非线性、不确定性问题,提出了一种μ综合鲁棒动态逆控制方法,即内环采用动态逆控制器外环采用μ综合鲁棒控制器的控制方法。该控制方法分两部分完成,首先将飞行器模型进行适当的简化和处理,得到仿射的非线性模型,根据时标分离的原则,将飞行器划分为快慢回路,分别设计快慢回路的控制器;然后,对系统的不定性建模,根据模型选择合适的权函数,在系统线性分式变换的基础上,完成系统的动态逆控制,以及通过D-K迭代对鲁棒控制器的求解。仿真结果表明,设计的控制器对系统的不确定性具有良好的鲁棒性。
     针对高超声速飞行器具有不稳定/非最小相位特性,引入QFT鲁棒非线性控制方法。在传统设计方法的基础上,将QFT设计理论向非线性和不稳定/非最小相位系统进行扩展,通过Schauder不动点定理证明了线性时不变等效传递函数在反馈系统中的可行性,通过Golubev算法利用Matlab仿真获得非线性系统的线性时不变等效传递模型,实现了非线性系统的线性化;在系统不稳定/非最小相位模型的基础上,进行重构设计,根据重构函数将边界条件进行相应的移动,在IED整形环境上利用新的稳定/最小相位标称对象进行设计,这样设计的控制器充分考虑了系统的不稳定/非最小相位特性,设计的控制器更加准确。
     在第3章和第4章研究的基础上,针对μ综合与QFT在高超声速飞行器控制中的局限性,提出了一种QFT/μ鲁棒动态逆控制方法。将QFT与μ综合和动态逆相结合,利用动态逆对飞行器快回路进行设计,降低系统的非线性程度,改善动态特性;将μ综合设计的控制器作为QFT设计的初始控制器,利用QFT对控制器进行再设计,以减小控制器的阶次。仿真证明,设计的控制器满足控制精度和鲁棒性要求,同时便于掌握和进行工程应用。
     针对高超声速飞行器侧向通道是一个具有较强耦合的多输入多输出系统,研究了一种改进型的QFT MIMO设计方法。首先对经典MIMO设计方法进行了介绍和说明,然后重点分析了该方法在多变量不稳定/非最小相位系统设计中的局限性,引出进行广义矩阵构造的必要性,然后利用一种逐层递进的设计方法,设计了侧向通道控制器,仿真表明,该控制方法能有效的抑制通道间耦合,是一种切实可行的控制方法。
Hypersonic vehicle has important strategic significance and a high application value. Thecontrol problem of a cruising flight hypersonic vehicle is reasearched, based on the needs ofthe development of hypersonic technology. The research issues include nonlinear, instability,non-minimum phase characteristics, coupled of multi-input multi-output control problems. Arobust dynamic inversion control design method with high value of engineering applicationsis presented, which achieves coordinated control of stability and maneuverability over widerange of dynamic pressure and Mach number.
     The kinematics and dynamic models of a generic hypersonic and its flight aerodynamicparameters are established, the characteristics are analyzed based on the models. Relative tothe normal aircraft, hypersonic vehicle has its own typical characteristics, which are mainlyreflected in the uncertainty, nonlinear, coupled, and unstable/non-minimun phasecharacterstics. With the conclusions of the analyzing, the control ideas and control methodsare made.
     Concerning the nonlinear problem, uncertainty problem of hypersonic vehicle pitchchannel, a μ synthesis robust dynamic inversion control method is presented: the dynamicinversion controller is used in the inner-loop and a robust controller is used in the outer-loop.The control method is completed in two parts, first, the vehicle model is simplified, the affinenonlinear model is divided into the speed loop and slow loop, accordance with the principle ofseparation of time scales. The controllers both of fast loop and slow loop are designed. Secend,the uncertainty modes are made, a robust controller is desing via D-K interation. Simulationresults show that the designed controller has a good robustness to the uncertainty of the thesystem.
     Concerning the unstable/non-minimum phase characteristics of the hypersonic vehicle, aQFT robust nonlinear control method is introduction. Based on the traditional design method,the QFT design theory is extended to the nonlinear and unstable/non-minimum phase system.Schauder fixed point therem proves the feasibility of the feedback system equivalent lineartime invariant, Golubev algorithm using MATLAB simulation gets the nonlinear systemslinear time invariant equivalent transfer model. A new stable/minimum phase model is gotform reconstructing of the unstable/non-minmum phase model. A robust controller is designedin the IED shaping environment, the control is more accurate bacuse of accounting of theunstable/non-minimum phase characteristics.
     On the basis of the study in Chapter3and Chapter4, for the limitations of μ synthesis and QFT in the hypersonic vehicle control, a QFT/μ robust dynamic inversion control methodis presented. Dynamic inversin fast loop controller reduces the degree of nonlinearity of thesystem to improve the dynamic characteristics; the μ controller is as the QFT initial controller,the order of th controller is reduced by using of QFT controller redesign. Simulation resultsshow that the controller meets the control requirements of accuracy and robustness, at thesame time easy to grasp and engineering applications.
     The hypersonic vehicle lateral channel is a multi-input multi-output system with strongcoupling, an improve QFT MIMO design method is presented. First the classis MIMO designmethod are introduced and described, and then the limitations of the method in themultivariate unstable/non-minimum phase system deign is analyzed. A lateral channelcontroller is designed using a drill progressive design method. Simulation results show thatthis control method can effectively inhibit the coupling between lateral channel, and it is apractical control method.
引文
[1]陈予恕,郭虎伦,钟顺.高超声速飞行器若干问题研究进展.飞航导弹.2011(8):26-31页
    [2]刘燕斌.高超声速飞行器建模与其先进飞行控制机理的研究.南京:南京航空航天大学博士学位论文.2007
    [3] Fidan B, Mirmirani M and Ioannou P. A. Flight dynamics and control of airbreathinghypersonic vehicle: review and new directions. AIAA International Space Planes andHypersonic Systems and Hypersonic Systems and Technologies Conf and Exhibit.2003,1-24P
    [4] Armando A. Rodriguez, Jeffrey J. Dickeson, et. Modeling and control ofscramjet-powered hypersonic vehicles: challenges, trends,&trade-offs. AIAAGuidance, Navigation, and Control Conference and Exihibit.2008,1-40P
    [5] Shaughnessy J.D, Pinckney S Z, McMinn J D. Hypersonic vehicle simulation model:winged-cond configuration. NASA Technical Memorandum102610. NASA Langley.1991
    [6] Keshmiri S, Mirmirani M D. Six-DOF modeling and simulation of a generichypersonic vehicle for conceptual design studies. AIAA Modeling and SimulationTechnologies Conference and Exhibit.2004:1-12P
    [7] Keshmiri S, Colgren R, Mirmirami M. Development of an aerodynamic database for ageneric hypersonic air vehicle. AIAA Guidance, Navigation, and Control conferenceand Exhibit.2005:1-21P
    [8] Shahriar Keshmiri, Richard Colgren, Maj Mirmirani. Six-DOF modeling andsimulation of a generic hypersonic vehicle for control and navigation purposes. AIAAGuidance, Nacigation, and Control Conference and Exhibit.2006:1-10P
    [9] Keshmiri S. Modeling and simulation of a generic hypersonic vehicle.Ph.D.dissertation, University of Kansas.2007.
    [10] Richard Colgren, Shahriar Keshmiri, Maj Mirmirani, Nonlinear Ten-Degree-of-Freedom dynamics model of a generic hypersonic vehicle, Journal of Aircraft.2009,6(3):800-813P
    [11] Bushcek H and Calise A. J. Uncertainty modeling and fixed-order controller designfor a hypersonic vehicle model. AIAA Journal of Guidance, Control, and Dynamics.1997,20(1):42-48P
    [12] Gregory I M, Chowdhry R S, McMinn J D, et al. Hypersonic vehicle model andcontrol law development using H∞techniques and μ-synthesis. NASA TM-4562,1994
    [13] Ray L R and Stengel R F. Stochastic robustness of linear-time-invariant controlsystems. IEEE Transactions on Automatic Control.1991,36(1):82-87P
    [14] Ray L R and Stengel R F. Monte Carlo approach to the analysis of control systemrobustness. Automatica.1993,29(1):229-236P
    [15] Mirmirani M D, Chivey W. Modeling for control of a generic airbreathing hypersonicvehicle. AIAA Guidance, Navigation, and Control conference and exhibit.2005:1-19P
    [16] Andrew D C, Mirmirani M D, Chivey W and Sangbum C. An aeropropulsionintegrated elastic model of a generic airbreathing hypersonic vehicle. AIAA Guidance,Navigation, and Control conference and Exhibit.2006:1-18P
    [17] Michael A. B, David B. D. Nonlinear longitudinal dynamical model of an airbreathinghypersonic vehicle. Journal of Spacecraft and Rockets.2007,44(2):374-387P
    [18] Jason T P, Andrea S and Stephen Y. Control-Oriented modeling of an air breathinghypersonic vehicle. Journal of Guidance, Control, and Dynamics.2007,30(3):856-869P
    [19] Clark A, Wu C, Mirmirani M, et al. Development of an airframe integrated generichypersonic vehicle model. AIAA Aerospace Conference and Exhibit.2006
    [20] Scott G. V. Frendreis, Torstens Skujins, Carlos E. S. Cesnik. Six degree of freedomsimulation of hypersonic vehicles. AIAA Atmospheric Flight Mechanics Conference.2009:1-19P
    [21] Nathan Falkiewicz, Carlos Cesnik, Andrew Crowellz and Jack McNamara.Reduced-Order aerothermoelastic framework for hypersonic vehicle controlsimulation. AIAA Atmospheric Flight Mechanics Conference.2010:1-45P
    [22] Baumann E, Bahm C, Strovers B, et al. The X-43A six degree of freedom monte carloanalysis in46thAIAA Aerospace Sciences Meeting and Exhibit.2008
    [23] Mohammad Shakiba, Andrea Serrani. Control oriented modeling of6-DOFhypersonic vehicle dynamics. AIAA Guidance, Navigation, and Control Conference.2011:1-27P
    [24] Derek Dalle, Sean Torrez, Michael Bolender, James Driscoll. Flight envelopecalculation of a hypersonic vehicle using a first principles-derived model.17thAIAAInternational Space Planes and Hypersonic Systems and Technologies Conference.2011:1-22P
    [25]朱亮,姜长生,方炜.空天飞行器六自由度数学建模研究.航天控制.2006,24(4):39-44页
    [26]刘燕斌,陆宇平,吴在桂.高超音速飞机模型的仿真研究.系统仿真学报.2007,19(12):2633-2614页
    [27]罗世斌.高超声速飞行器机体/发动机一体化以及总体多科学设计优化方法研究.长沙:国防科技学技术大学博士学位论文.2004.
    [28]徐勇勤.高超声速飞行器总体概念研究.西安:西北工业大学博士学位论文.2005
    [29]朱亮.空天飞行器不确定非线性鲁棒自适应控制.南京:南京航空航天大学博士学位论文.2006
    [30]王玉惠.空天飞行器基于模糊理论的鲁棒自适应控制研究.南京:南京航空航天大学博士学位论文.2008
    [31]钱承山.空天飞行器多模型鲁棒控制研究.南京:南京航空航天大学硕士学位论.2008
    [32] G. D. Larson, D. H. Klyde, T. T. Myers, et al. Military Missions and Linearized Modelfor a Hypersonic Vehicle.33th Aerospace Science Meeting and Exhibit.1995:1-14P
    [33] D. K. Schmidt. Dynaics and Control of Hypersonic Aeropropulsive/AeroelasticVehicles. NASA Technical Memorandum.1992:161-171P
    [34] I. M. Gregory, R. S. Chowdhry, J. D. McMinn, et al. Hypersonic Vehicle Model andControl Law Development Using H∞and μ Synthesis. NASA TechnicalMemorandum.1994:1-24P
    [35] M. Heller, F. Holzapfe and G. Sachs. Robust Lateral Control of Hypersonic Vehicles.AIAA.2000.
    [36]唐大永.高超声速飞行器的模型不确定性分析以及鲁棒控制研究.南京:南京航空航天大学硕士学位论文.2006.
    [37]朱云骥.高超声速飞行器的鲁棒控制可视化研究.西安:西北工业大学博士学位论文.2005.
    [38] D. O. Sigthorsson, P. Jankovsy, A. Serrani, et al. Robust Linear Output FeedbackControl of an Airbreathing Hypersonic Vehicle. Journal of Guidance, Control, andDynamics.2008,31(4):1052-1066P
    [39] D. O. Sigthorsson. Control Oriented Modeling and Output Feedback Control ofHypersonic Air-Breathing Vehicles.2008:20-44P
    [40] E. Mooij. Numerical Investigation of Model Reference Adaptive Control forHypersonic Aircraft. Journal of Guidance, Control, and dynamic.2001,24(2):315-323P.
    [41] M. Kuipers, M. Mirmirani, P. L Ioannou, et al. Adaptive Control of an AeroelasticAirbreathing Hypersonic Cruise Vehicle. AIAA Guidance, Navigation, and ControlConference and Exhibit.2007:1-2P
    [42] S. Y. Chan, P. Y. Cheng, D. M. Pill, et al. Aeroservoelastic Stabilization Techniques forHypersonic Flight Vehicles. NASA Report.1991:1-72P
    [43] B. Newman. Multivariable Techniques for Highspeed Research Flight ControlSystems. NASA Report.1999:1-243P
    [44] S. Bhat, R. Lind. Linear Parameter-Varying Conrol for Variations in ThermalGradients Across Hypersonic Vehicles. AIAA Guidance, Navigation, and ControlConference.2009:1-11P
    [45]张浩华.基于高超声速飞行器纵向模型的H∞及抗饱和鲁棒控制研究.南京:南京理工大学博士学位论文.2008:37-51页
    [46] A. Zinnecker, A. Serrani, M. A. Bolender, et al. Combined Reference Governor andAnti-Windup Design for Constrained Hypersonic Vehicles Models. AIAA Guidance,Navigation, and Control Conference.2009:1-20P
    [47] S. S. Vaddi, P. Sengupta. Controller Design for Hypersonic Vehicles AccommodatingNonlinear State and Control Constraints. AIAA Guidance, Navigation and ControlConference.2009:1-9P
    [48] Q. Wang, R. F. Stengel. Robust Nonlinear Control of a Hypersonic Aircraft. Journal ofGuidance, Control, and Dynamic.2000,23(4):577-585P.
    [49] J. T. Parker, A. Serrani, S. Yurkovich, et al. Approximate Feedback Linearization of anAir-Breathing Hypersonic Vehicle. AIAA Guidance, Navigation, and ControlConference and Exhibt.2006:1-16P.
    [50] J. T. Parker, A. Serrani, S. Yurkovich, et al. Approximate Feedback Linearization ofAn Air-Breathing Hypersonic Vehicle. Journal of Guidance, Control and Dynamics.2007:856-869P.
    [51] Stephen E. Reiman, Charles H. Dillon, Howard P. Lee, and Hussein M. Youssef.Robust Adaptive Reconfigurable Control for a Hypersonic Cruise Vehicle. AIAA,2009.
    [52] H. J. Xu, M. D.Mirmirani, P. A. Ioannou. Adaptive Sliding Mode Control Design for aHypersonic Flight Vehicle. Journal of Guidance, Control, and Dynamic.2004:829-838P.
    [53] L. Fiorentini, A. Serrani, M. A. Bolender, et al. Robust Nonlinear Sequential LoopClosure Control Design for an Air-Breathing Hypersonic Vehicle Model. AmericanCongrol Conference.2008:3458-3463P.
    [54] L. Fiorentini, A. Serrani, M. A. Bolender, et al. Nonlinear Robust Adaptive Control ofFlexible Air-Breathing Hypersonic Vehicles. Journal of Guidance, Control, andDynamic.2009:401-416P.
    [55] Z. D. Wilcox, W. MacKunis, S. Bhat, et al. Lyapunov-Based Exponential TrackingControl of a Hypersonic Aircraft with Aerothermoelastic Effects. Jouranl of Guidance,Control, and Dynamics.2010:1213-1224P.
    [56] G. E. Chamitoff. Robust Intelligent Flight Control for Hypersonic Vehicles.Massachusetts Institute of Technology.1992:121-239P.
    [57] K. J. Austin. Evolutionary Design of Robust Flight Control for a Hypersonic Aircraft.Brisbane, Australia: The University of Queensland.2002:128-167P.
    [58] C. Cox, J. Neidhorage, R. Saeks, et al. Neural Adaptive Control of Loflyte.Proceedings of the American Control Conference.2001:2913-2917P.
    [59] B. H. Hansen, H. P. Lee, H. M. Youssef. Neuro-Fuzzy Dynamic Inversion Control fora Hypersonic Cruise Vehicle. AIAA Guidance, Navigation, and Control Conference.2010:1-13P.
    [60]李建林,唐乾刚,丰志伟等.气动弹性影响下高超声速飞行器动力学建模与分析.长沙:国防科技大学学报.2013.
    [61]葛东明.临近空间高超声速飞行器棒棒变增益控制.哈尔滨:哈尔滨工业大学博士学位论文.2011
    [62]卢志刚,吴士昌,于灵慧.非线性自适应逆控制及其应用.北京:国防工业出版社.2004
    [63] Yavin Y. Extended inversn dynamics control. Applied Mathematics Letters,1997,12(7):59-62P.
    [64] Rolf Ryskyk and Anthony J. Calise. Robust nonlinear adaptive flight control forconsistent handling qualities. IEEE Transactions on Control Systems Technology,2005,13(6):896-910P.
    [65]李春元,冯思琨.多变量非线性控制的逆系统方法.北京:清华大学出版社,1991.
    [66] P. Menon, G. Chatterji, V. Cheng. Two-time-cale Autopilot for Hign PerformanceAircraft. AIAA Guidance, Navigation and Control Conference. New Orleans, LA,AIAA-1991-2674:1-9P.
    [67] R. Adams, S, Banda. Robust Flight Control Design Using Dynamic Inversion andStructured Singular Value Synthesis. IEEE Transactions on Control SystemsTechnology.1993,(1):80-92P.
    [68] Y. Shin, M. Johnson, A. Calise. Neural Network-based Adaptive Control for NonlinearFlight Regimes. AIAA Guidance, Navigation and Conrol Conference.AIAA-2003-5717:1-12P.
    [69] C. Schumacher, P. Khargonekar. Stability Analysis of Missile Control System with aDynamic Inversion Controler. Journal of Guidance, Control and Dynamics.2005,21(3):12-19P.
    [70] Y. Shin, A. Calise, M. Motter. Adaptive Autopilot Designs for Unmanned AerialVehicle. AIAA Guidance, Navigation and Control Conference. AIAA-2005-6166:1-20P.
    [71] Juliana S, Chu Q, Mulder J, et al. The analytical derivation of non-linear dynamicinversion control for parametric uncertain systems. AIAA, Guidance, Navigation andControl Conf and Exhibit.2005:1-14P.
    [72] M. Heller, G. Sachs, et al. Flight dynamics and robust control of a hypersonic testvehicle with ramjet propulsion. AIAA International Space Planes and HypersonicSystems and Technologies Conference.1998:126-136P.
    [73]梁宵,王宏伦,盖文东.飞行器不确定性建模与μ H∞鲁棒动态逆控制.控制与决策.2012,7.
    [74]李建林,唐乾刚,丰志伟,杨涛,刘志超.气动弹性影响下高超声速飞行器动力学建模和分析.长沙:国防科技大学学报,2013.2
    [75]吴旭东,解学书. H∞鲁棒控制中的加权矩阵选择.清华大学学报(自然科学版),1997
    [76]张永康,李中健.基于LFT的鲁棒飞行控制系统设计与仿真研究.计算机仿真,2008.10
    [77]刘真,张涛.基于H∞混合灵敏度的导弹稳定控制回路设计.四川兵工学报,2011,7
    [78]徐欣中,雷虎民,严运彪.基于μ综合的防空导弹自动驾驶仪设计.导弹与航天运载技术,2010.5
    [79] I Horowitz. Survey of Quantitative Feedback Theory. International Journal of Control.1991,53(2):255-291P.
    [80] S. N. Phillips, M. Pachter, A QFT Subsonic Enelope Flight Control System Design.International jounal of Robust and Nonlinear Control.1997(7):581-589P.
    [81] Reynolds, O. R. et al. Full Envelope Flight Control System Design Using QFT.American Control Conference.1994(1):350-354P.
    [82] M. Pachter, et al, Design of an Air-to-air Automatic Refueling Flight Control SystemUsing Quantitative Feedback Theory, International Journal of Robust and NonlinearControl.1997(7):561-580P.
    [83] S. G. Breslin, M. J. Grimble, Longitudinal Control of an Advanced Combat Aircraftusing Quantitative Feedback Theory, Proceeding of the American Conference.1997:113-117P.
    [84] Horowitz I. Application of Quantitative Feedback Theory to Flight Control Problems.Proceedings of the29thConference on Decision and Control.1990:2593-2589P.
    [85] I. Mclaren, et al. QFT Flight Control System Design Using Mathematica. UKACCInternational Conference on Control’89.1998:913-918P.
    [86] S. F. Wu, et al, Introduction to Quantitative Feedback Theory for Lateral Robust FlightControl Systems Design.1998:805-828P.
    [87] Sheldon S. N, Rasmussen S. J. Development and first successful flight test of a QFTflight control system. Proceedings of the IEEE on aerospace and ElectronicsConference.1994(1):629-634P.
    [88] K. E. Boyum, et al, High angle of attack velocity vector rolls. Control EngineeringPractice.1995(3):1087-1093P.
    [89] Peter J. Gorder, Ronald A. Hess, Sequential Loop Closure in Design of a RobustRotorcraft Flight Control Systerm, Journal of Guidance, Control and Dynamics.1997,20(6):1235-1240P.
    [90] S. J. Rasmussen, C.H. Houpis. Development, Implementation and Flight Test of aMIMO Digital Flight Control System for an Unmanned Research Vehicle DesignedUsing Quantitative Feedback Theory, International Journal of Robust and NonlinearControl.1997,7(6):629-642P.
    [91] R. A. Hess, P. J. Gorder. Quantitative Feedback Theory Applied to the Design of aRotorcraft Flight Control System, Journal fo Guidance, Control, and Dynamics.1996,16(4):748-753P.
    [92] Rossret E. David, Design of Robust Quantitative Feedback Theory Controlle for PitchAttitude Hold System. Journal of Guidance, Control and Dynamics.1994,17(1):217-218P.
    [93] Antomy Anell, Perry W. Stout. Robust Longitudinal Control Design Using DynamicsInversion and Quantitative Feedback Theory. Journal fo Guidance, Control,andDynamics.1997,20(5):933-940P.
    [94] Snell, S Antony, Stou, Perry W, Quantitative feedback theory with a scheduled gainfor full envelope longtitudinal control. Journal of Guidance, Control and Dynamics.1996,19(5):1095-1101P.
    [95] Keating M. S. Pachter M, Houpis C.H. QFT applied to fault tolerant flight controlsystem design. American Control Conference.1998:184-188P.
    [96] Keating, M, S, et al, Damaged aircraft control suing a QFT designed flight controller.Proceedings of the IEEE on Aerospace and Electronics.1994(1):621-628P.
    [97] S. F. Wu. QFT based robust/fault tolerant flight control design for a remote pilotlessvehicle. Proceedings of the1999IEEE International Conference on ControlApplications. August1999(1):57-62P.
    [98] Hwei-Lan Chou. Application of QFT to the problem of failed in-flight controllersduring approach and landing of a B-720aircraft. Aerospace and ElectronicsConference.1993(1):455-461P.
    [99] Keating, Pachter M. C.H Houpis. Fault tolerant flight control system: QFT design,International Journal of Robust and Nonlinear Control.1997,7(6):551-559P.
    [100]韦巍,吴树范,沈勇章.定量反馈理论在鲁棒与容错飞行控制系统中的应用.南京航空航天大学,2001,33(2):130-134页.
    [101] Horowitz, I. Houpis, C. Wang, S. Quantitative design for systems with uncertainty andcontrol failures, International Conference on Control.1988:547-552P.
    [102] Wei Wu, S. Jayasuriya. A QFT Design Methodology for Feedback Systems underInput Saturation, Proceedings of the American Control Conference.2000:1250-1254P.
    [103] Wei Wu, S. Jayasuriya. A QFT Design Methodology for Feedback Systems underInput Rate or Amplitude and Rate Saturation. Proceedings of the American ControlConference.2001:376-383P.
    [104] Wei Wu, A QFT design methodology for neutrally stable plants under input amplitudesaturation. Proceedings of the2002American Control Conference.2002(2):1204-1209P.
    [105] I. Horowitz. A Synthesis Theory for a Class of Saturating Systems. InternationalJournal of Control.1983,38(1):169-197P.
    [106] I. Horowitz. Feedback Systems with Rate and Amplitude Limiting. InternationalJournal of Control.1984(40):1215-1229P.
    [107] I. Horowitz, Y. K. Liao. Quantitative Non-linear Compensation Design for SaturatingUnstable Uncertain Plants. International Journal of Control.1986,44(4):1134-1146P.
    [108] I. M. Horowitz and M. Sidi. Optimum synthesis of non-minimum phase feedbacksystem with plant uncertainty. Int. J. Control.1972,16:287-309P.
    [109] I. M. Horowitz. Quantitative Feedback Design Theory(QFT). USA: QFT Publications.1992.
    [110] R. E. Nordgren, O.D.I. Nwokah, and M.A Franchek. New formulaions for quantitativefeedback theory. International Journal of Robust and Nonlinear Control.1994,4:47-64P.
    [111] Kausky, J and N. K Nichols, Robust Pole Assignment in Linear State Feedback.Int.J.Control.1985,1129-1155P.
    [112] Boris Golubev and Isaac Horowitz. Plant rational transfer approximation frominput-output data. INT.J. Control.1982,4:711-723P.
    [113] Yoshida, K. Functional Ayalysis, Berlin: Springer-Verlag.1965.
    [114] Bahm C, Baumann E, Martins J and et al. The X-43A Hyper-X Mach7Flight2Guidance, Navigation, and Control Overview and Flight Test Results. In AIAA/CIRA13thInternational Space Planes and Hypersonic Systems and Technologies.2005.
    [115] Davidson J, Lallman F. McMinn J D and et al. Flight control laws for NASA’sHyper-X research vehicle. AIAA Guidance, Navigation, and Control Conference andExhibit.1999.
    [116]董庚寿,蒋佩英.飞机飞行品质的新规范-对美国MIL-F-8785C的评述.飞行力学.1984
    [117] Marcel Sidi. A Combined QFT/H∞Design Technique for TDOF Uncertain FeedbackSystems.7thMediterranean Conference on Control and Automation.1999.
    [118]鲁可,袁锁中,钱秋朦等.基于动态逆与QFT的鲁棒飞行控制系统.兵工自动化.2012.
    [119]李杰,黎莉,翟小花,钱正在.基于定量反馈理论的非线性动态逆飞行控制系统设计.第29届中国控制会议.2010,(6):29-31页.
    [120]单海燕. DI/QFT控制器在四旋翼无人直升机飞行控制中的应用.电光与控制.2005.
    [121] Horowitz I. Quantitative Feedback Design Theory (QFT). Boulder, Colorado.1993
    [122] Houpis C. H. Rasmussen S. J. and Garcia-Sanz M. Quantitative Feedback Theory:Fundamentals and Applications.2006.
    [123] Horowitz I. Survey of quantitative feedback theory (QFT). International Jounal ofControl.1991,255-291P.
    [124] Jayasuriya S. Frequency domain design for robust performance under parametric,unstructured, or mixed uncertainties. ASME Journal of Dynamic Systems,Measurement and Control.1993,439-451P.
    [125] Jayasuriya S, Zhao Y. Robust stability of plants with mixed uncertainties and theexistence of robust QFT controllers. International Journal of Nonlinear and Robustand Nonlinear Control.1994,21-46P.
    [126] Horowitz I. Loecher C. Design of a3*3multivariable feedback system with largeplant uncertainty. International Journal of Control,677-699P.
    [127] Doyle J.C. Quantitative feedback theory(QFT) and robust control. Proceedings of theAmerican Control Conference,1981,1691-1698P
    [128] Yaniv O. Quantitative Feedback Design of Linear and Nonlinear Control Systems.Kluwer Academic Publishers, Norwell, MA,1999.
    [129] Yaniv O, Horowitz IA quantitative design method for MIMO linear feedback systemshaving uncertain plants. International Journal of Control.1986,401-421P.
    [130] Yaniv O. Synthesis of uncertain MIMO feedback systems for gain and phase marginsat different channel breaking points. Automatica;2003,28(5):1017-1020P.
    [131] Yaniv O MIMO QFT using non-diagonal controllers. International Journal ofControl.1995,61(1)245-253P.
    [132] Yaniv O, Horowitz I. Quantitative feedback theory-reply to criticisms. InternationalJournal of Control.1987,46:945-962P.
    [133] Horowitz I. Oldak S, Yaniv O. An important property of non-minimum-phasemultiple-input multiple-output feedback systems. International Journal ofControl.1986,44(3):677-688P.
    [134] Yaniv O, Gutmann P. F. Crossover frequency limitations in MIMO NMP feedbacksystems. IEEE Transactions on Automatic Control.2002,47(9):1560-1564P.
    [135] Yaniv O. Arbitrary small sensitivity in multiple-input-ouput uncertain feedbacksystems. Automatica.1991,27(3):565-568P.
    [136] Yaniv O, Schwartz B. Criterion for loop stabilityu in MIMO feedback systems havingan uncertain plant. International Journal of Control.2001,53:527-539P.
    [137] Kerr M. L, Jayasuriya S. Robust stability of sequential MIMO QFT designs. ASMEJournal of Dynamic Systems, Measurement and Control.2003,127(2):250-256P.
    [138] Kerr M. L, Jayasuriya S. Asokanthan SF. On stability in non-sequyential MIMO QFTdesigns. ASME Journal fo Dynamic Systems, Measurenment and Control.2003,127(1):98-104P.
    [139] Kerr M. L, Robust control of an articulating flexible structure using MIMO QFT.Ph.D.D. Thesis, The University of Queensland.2004.
    [140] Kerr M. L, Lan C-Y, and Jayasuriya S. Non-sequential MIMO QFT control of theX-29aircraft using a generalized formulation. International Journal of Robust andNonlinear Control.2007,17:107-134P.
    [141] Kerr M.L, Lan C-Y, and Jayasuriya S, Non-sequential MIMO QFT control of the X-29aircraft. Proceddings of the7thInternational Symposium on QFT&Robust FrequencyDomain Methods. The University of Kansas.2007.
    [142] Kerr, M. L. and Jayasuriya, S. Sufficient conditions for robust stability innon-sequential MIMO QFT, Proceeding of the42th IEEE Conference on Decision andControl.2003,1813-1817P.
    [143] Sidi M. Gain-bandwidth limitations of feedback systems with non-minimum-phaseplants. International Journal of Control.1997,67(5):731-743P.
    [144] Holt B. R, Morari M. Design of resilient processing plants. The effect ofright-half-plane zeros on dynamic resilience. Chemical Engineering Science.1985,40:59-74P.
    [145] Lan C. Y, Kerr M. L, Jayasuriya S. Synthesis of controllers for nonminimum phaseand unstable systems using non-sequential MIMO QFT. Proceedings of the AmericanControl Conference.2004,4139-4144P.
    [146] Walke J. G. Design of longitudinal flight control system using singular G method.Masters Thesis.1983.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700