用户名: 密码: 验证码:
城市区域水情仿真和数据同化的理论研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,城市雨洪模型多数用于规划阶段的分析,若要更好地服务于城市防洪及排水系统日常管理,须建立能够实时反映排水系统真实运行状态和能对未来一段时间内水情预报的水情仿真与预报系统。本文从城市区域产汇流特性分析等方面入手,构建了一个适用于城市区域的水文水动力耦合模型,研究了模型参数反演和数据同化技术,初步搭建了一个城市水情仿真、校正与预报的实时系统。论文的主要研究成果如下:
     (1)提出了以矩阵化形式对水文与水动力模型进行耦合的方法,并结合多种措施对提高计算的稳定性、精度和效率进行了研究,包括:1)采用基流法和窄缝设计法进行干湿交替的处理;2)采用迭代计算处理堰闸等非线性内边界;3)赋予节点蓄水面积以加强系数矩阵的主对角占优性;4)采用迭代法结合矩阵标识法进行方程组的求解;5)研究了固定系数矩阵、只改变方程组右端项以提高计算效率的方法;6)提出了考虑连续方程和动量方程线性化处理后二阶及以上小量的计算方法。
     (2)针对定床河道糙率的率定,提出了两个结合先验知识的反演模型:糙率空间分布最平滑模型和糙率估值修正最小模型。数值仿真表明:1)当糙率初值选在合理范围内时,模型受初值选取的影响较小;2)当监测信息较少时,模型亦能获得较为合理的结果,并随着监测信息的增加,反演结果趋于真解;3)模型具有较好的抗噪性,通过控制糙率空间分布平滑项或糙率估值修正项的权重,能有效抑制监测信息误差引起的数值扰动。
     (3)以扩展卡尔曼滤波为基础,构造了多个河道糙率动态修正算法。数值仿真表明:结合糙率修正平滑性且以糙率和水情变量为系统状态变量的扩展卡尔曼滤波,能有效防止糙率的突变和失真。
     (4)在水位、流量等水情变量的数据同化方面,提出并探索了扩展卡尔曼滤波、集合卡尔曼滤波和广义反演法三种方法。数值仿真表明:1)扩展卡尔曼滤波的数据同化效果好,可同时对糙率、水位、流量等变量进行校正;2)集合卡尔曼滤波的适用范围广,计算简便;3)广义反演法的计算原理简单,可避免状态修正过大而严重破坏原先的水量平衡关系。
     (5)在上述研究成果的基础上,针对目前应用较广的城市雨洪管理模型SWMM存在的不足进行了改进,搭建了城市水情实时仿真与预报系统的结构框架,完成了核心计算程序的开发。
The current urban storm water models are mostly applied in the early planning stages of projects. In order to apply urban storm water models into urban flood prevention and drainage system management, it is necessary to establish an urban storm water simulation and prediction system which is capable of reflecting actually the operation of the drainage system and predicting the hydrographic condition during a period of time in the future. Therefore, the thesis will start with an analysis of the characteristics of runoff in urban areas to build an appropriate hydrology-hydrodynamics coupling model, and develop a real-time system that is applicable to storm water simulation, correction and prediction by means of parameter calibration and data assimilation. The research works are as follows:
     (1) Drawing up a hydrology-hydrodynamics coupling model that couples the hydrology calculation module and the hydrodynamic calculation module together in a matrix, and using multiple measures to improve the calculation stability, accuracy and efficiency, which include:1) processing the alternation of drying and wetting with base flow method and narrow slit method;2) dealing with nonlinear internal boundaries such as weirs, sluices, etc. using iterative computation method;3) furnishing the nodes with storage area to obtain a diagonally dominant matrix;4) combining iterative computation method with matrix indicator method to solve equations;5) proposing a method where the coefficient matrix is fixed and only the right side of equations is variable in order to improve the computing efficiency;6) putting forward a method of calculating small quantities of second order and above of the linearized continuity equations and momentum equations.
     (2) For the research on bed-fixed river roughness inversion combined with prior knowledge, two inversion models are developed based on prior knowledge of roughness:the first is a model of roughness parameters within the smoothest space distribution, and the second is a model of the estimated values of roughness parameters with the least modification. It is demonstrated by numerical simulations that:1) the inversion models are less affected by the selection of initial values;2) reasonable results can be obtained from such models even if there is not much available observation information, and the results tend to be close to the true values along with the increase of observation information;3) the models are of high noise immunity, i.e. numerical disturbance caused by the errors of observation information can be effectively avoided by controlling the weight of the roughness space distribution item or the roughness modification item.
     (3) For the research on dynamic identification of roughness parameters, some data assimilation methods are developed based on extended kalman filtering algorithm. It is shown by numerical simulations that:combining with smoothly modification of roughness, the extended kalman filtering algorithm where the roughness parameters and flow variables are seen as system state variables can avoid distortion of roughness parameters, and it can improve the efficiency of data assimilation and the stability of calculation as well.
     (4) For the research on data assimilation of flow variables such as water level, discharge, etc., three data assimilation methods are developed including extended kalman filtering algorithm, ensemble kalman filtering algorithm and generalized inversion method. It is demonstrated by numerical simulations that:1) the extended kalman filtering algorithm has a good performance, and can be used to data assimilation of roughness parameters and flow variables at the same time;2) the ensemble kalman filtering algorithm features wide applicability and simple computing process;3) the theory and programming of the generalized inversion method are simple, and the serious damage on the previous water balance caused by too much modification of flow variables can be avoided.
     (5) On the basis of the current research as stated above, suggestions are proposed on how to remedy the deficiencies of the current widely-used urban storm water management model SWMM, and a framework of an urban storm water simulation and prediction system is established.
引文
[1]张磊.平原感潮河网区城市防洪规划中的水文计算方法研究[D].河海大学,2005.
    [2]刘翔.城市雨洪关系分析与模拟[D].河海大学,2005.
    [3]张学真.城市化对水文生态系统的影响及对策研究[D].长安大学,2005.
    [4]Kibler D F. Urban stormwater hydrology[M]. Water Resources Monograph,1982.
    [5]霍尔,詹道江,工程水文学.城市水文学[M].河海大学出版社,1989.
    [6]Akan A O. Urban stormwater hydrology:a guide to engineering calculations[M]. CRC PressI Llc, 1993.
    [7]Van Egmond J. Storm water infiltration[Z]. Google Patents,1996.
    [8]O'Loughlin G, Huber W, Chocat B. Rain fa Ⅱ-run off processes and modelling[J]. Journal of Hydraulic Research.1996,34(6):733-751.
    [9]Weng Q. Modeling urban growth effects on surface runoff with the integration of remote sensing and GIS[J]. Environmental Management.2001,28(6):737-748.
    [10]Choe J S, Bang K W, Lee J H. Characterization of surface runoff in urban areas[J]. Water science and technology:a journal of the International Association on Water Pollution Research.2002,45(9): 49-54.
    [11]Rodriguez F, Andrieu H, Creutin J. Surface runoff in urban catchments:morphological identification of unit hydrographs from urban databanks[J]. Journal of hydrology.2003,283(1): 146-168.
    [12]王磊.基于模型的城市排水管网积水灾害评价与防治研究[D].北京工业大学,2010.
    [13]李丽娟,姜德娟,李九一,等.土地利用/覆被变化的水文效应研究进展[J].自然资源学报.2007,22(2):211-224.
    [14]任伯帜.城市设计暴雨及雨水径流计算模型研究[D].重庆大学,2004.
    [15]张配亮.天津市区暴雨径流模拟模型的研究[D].天津大学,2007.
    [16]刘珍环,李猷,彭建.城市不透水表面的水环境效应研究进展[J].地理科学进展.2011,30(3):275-281.
    [17]薛丽芳.面向流域的城市化水文效应研究[D].中国矿业大学,2009.
    [18]Sbanley A, Changnon J. Research agenda for floods to solve policy failure[J]. Water Resources Planning and Management.1985,111(1):4-8.
    [19]刘树坤.我国城市防洪问题[J].水利规划与设计.1994(3):16-18.
    [20]富曾慈.城市防洪与减灾对策研究[J].水利规划与设计.2001(2):30-34.
    [21]于纪玉,刘方贵.城市化与现代城市防洪减灾问题研究[J].海河水利.2003(2):33-34.
    [22]Niemczynowicz J. Urban hydrology and water management- present and future challenges[J]. Urban water.1999,1(1):1-14.
    [23]张犁.城市洪水分析与模拟的GIS方法研究[J].地理学报.1995(50):76-84.
    [24]Tsihrintzis V A, Hamid R. Modeling and management of urban stormwater runoff quality:A review[J]. Water Resources Management.1997,11(2):136-164.
    [25]徐向阳.平原城市雨洪过程模拟[J].水利学报.1998,8(8):34-37.
    [26]Akan A O, Houghtalen R J. Urban hydrology, hydraulics and stormwater quality[M]. Wiley Hoboken, NJ,2003.
    [27]岑国平,沈晋.城市地面产流的试验研究[J].水利学报.1997(10):47-52.
    [28]Shuster W D, Pappas E, Zhang Y. Laboratory-scale simulation of runoff response from pervious-impervious systems[J]. Journal of hydrologic engineering.2008,13(9):886-893.
    [29]胡伟贤,何文华,黄国如,等.城市雨洪模拟技术研究进展[J].水科学进展.2010,21(1):137-144.
    [30]Kidd C. Rainfall-runoff processes over urban surfaces[M]. Institute of Hydrology,1978.
    [31]Mark O, Weesakul S, Apirumanekul C, et al. Potential and limitations of 1D modelling of urban flooding[J]. Journal of Hydrology.2004,299(3):284-299.
    [32]Schmitt T G, Thomas M, Ettrich N. Analysis and modeling of flooding in urban drainage systems[J]. Journal of Hydrology.2004,299(3):300-311.
    [33]Mignot E, Paquier A, Haider S. Modeling floods in a dense urban area using 2D shallow water equations[J]. Journal of Hydrology.2006,327(1):186-199.
    [34]仇劲卫,李娜,程晓陶,等.天津市城区暴雨沥涝仿真模拟系统[J].水利学报.2000(11):34-42.
    [35]张新华,隆文非,谢和平,等.二维浅水波模型在洪水淹没过程中的模拟研究[J].四川大学学报(工程科学版).2006,38(1):20-25.
    [36]张新华,隆文非,谢和平,等.任意多边形网格2DFVM模型及其在城市洪水淹没中的应用[J].四川大学学报(工程科学版).2007,39(4):6-11.
    [37]王船海,李光炽.流域洪水模拟[J].水利学报.1996(3):44-50.
    [38]李光炽.流域洪水演进模型及其参数反问题研究[D].河海大学,2001.
    [39]李光炽,王船海.流域洪水演进模型通用算法研究[J].河海大学学报(自然科学版).2005,33(6):624-628.
    [40]Akan A O, Yen B C. Diffusion-wave flood routing in channel networks[J]. Journal of the Hydraulics Division.1981,107(6):719-732.
    [41]Joliffe I B. Computation of dynamic waves in channel networks[J]. Journal of hydraulic engineering.1984,110(10):1358-1370.
    [42]Lai C. Numerical modeling of unsteady open-channel flow[J]. Advances in hydroscience. 1986(14):161-333.
    [43]Swain E D, Chin D A. Model of flow in regulated open-channel networks[J]. Journal of Irrigation and Drainage Engineering.1990,116(4):537-556.
    [44]Choi G W, Molinas A. Simultaneous solution algorithm for channel network modeling[J]. Water resources research.1993,29(2):321-328.
    [45]Nguyen Q K, Kawano H. Simultaneous solution for flood routing in channel networks[J]. Journal of Hydraulic Engineering.1995,121(10):744-750.
    [46]Ping F, Xiaofang R. Method of flood routing for multibranch rivers[J]. Journal of Hydraulic Engineering.1999,125(3):271-276.
    [47]Sen D J, Garg N K. Efficient algorithm for gradually varied flows in channel networks[J]. Journal of irrigation and drainage engineering.2002,128(6):351-357.
    [48]Amein M. Implicit numerical modeling of unsteady flows[J]. Journal of the Hydraulics Division. 1975,101(6):717-731.
    [49]王船海,李光炽.实用河网水流计算[M].河海大学水资源水文系,2003.
    [50]汪德爟,水力学.计算水力学理论与应用[M].河海大学出版社,1989.
    [51]Islam A, Raghuwanshi N S, Singh R, et al. Comparison of gradually varied flow computation algorithms for open-channel network[J]. Journal of irrigation and drainage engineering.2005,131(5): 457-465.
    [52]李岳生.河网不恒定流隐式方程组稀疏矩阵解法[J].中山大学学报(自然科学版).1977(3):27-37.
    [53]张二驶.河网非恒定流的三级联合解法[J].华东水利学院学报.1982(1):1-13.
    [54]吴寿红.河网非恒定流四级解法[J].水利学报.1985(8):42-50.
    [55]李义天.河网非恒定流隐式方程组的汊点分组解法[J].水利学报.1997(3):49-57.
    [56]侯玉,卓建民,郑国权.河网非恒定流汉点分组解法[J].水科学进展.1999,10(1):48-52.
    [57]韩龙喜,张书农.复杂河网非恒定流计算模型:单元划分法[J].水利学报.1994(2):52-56.
    [58]金忠青,韩龙喜.一种新的平原河网水质模型——组合单元水质模型[J].水科学进展.1998,9(1):35-40.
    [59]徐小明,张静怡,丁健,等.河网水力数值模拟的松弛迭代法及水位的可视化显示[J].水文.2000(6):1-4.
    [60]徐小明,何建京,汪德.求解大型河网非恒定流的非线性方法[J].水动力学研究与进展.2001,16(1):18-23.
    [61]Zoppou C. Review of storm water models[M]. CSIRO Land and Water,1999.
    [62]Zoppou C. Review of urban storm water models[J]. Environmental Modelling & Software.2001, 16(3):195-231.
    [63]谢莹莹,刘遂庆,信昆仑.城市暴雨模型发展现状与趋势[J].重庆建筑大学学报.2006,28(5):136-139.
    [64]Leonard Becker W W. Identification of parameters in unsteady open channel flows[J]. Water Resources Research.1972,8(4):956-965.
    [65]Becker L, Yeh W W G. Identification of multiple reach channel parameters[J]. Water Resources Research.1973,9(2):326-335.
    [66]Lansey K E, Basnet C. Parameter estimation for water distribution networks[J]. Journal of Water Resources Planning and Management.1991,117(1):126-144.
    [67]Ahmed S E, Saad M B. Prediction of Natural Channel Hydraulic Roughness[J]. Journal of Irrigation and Drainage Engineering.1992,118(4):632-639.
    [68]金忠青.流体力学反问题:从预测到控制[J].河海大学科技情报.1989,9(1):1-12.
    [69]金忠青,韩龙喜.复杂河网的水力计算及参数反问题[J].水动力学研究与进展:A辑.1998,13(3):280-285.
    [70]Wasantha Lal A M. Calibration of riverbed roughness[J]. Journal of Hydraulic Engineering.1995, 121(9):664-671.
    [71]Khatibi R H, Williams J J, Wormleaton P R. Identification problem of open-channel friction parameters[J]. Journal of Hydraulic Engineering.1997,123(12):1078-1088.
    [72]Khatibi R H, Williams J J, Wormleaton P R. Friction parameters for flows in nearly flat tidal channels[J]. Journal of Hydraulic Engineering.2000,126(10):741-749.
    [73]Khatibi R H, Wormleaton P R, Williams J J. Parameter quality conditions in open-channel inverse problems[J]. Journal of Hydraulic Research.2000,38(6):447-458.
    [74]Khatibi R H. Sample size determination in open-channel inverse problems[J]. Journal of Hydraulic Engineering.2001,127(8):678-688.
    [75]韩龙喜,金忠青.三角联解法水力水质模型的糙率反演及而污染源计算[J].水利学报.1998,7(6):30-34.
    [76]Ramesh R, Datta B, Bhallamudi S M, et al. Optimal estimation of roughness in open-channel flows[J]. Journal of Hydraulic Engineering.2000,126(4):299-303.
    [77]董文军,姜享余,喻文唤.一维水流方程中曼宁糙率的参数辨识[J].天津大学学报(自然科 学与工程技术版).2001,34(2):201-204.
    [78]董文军,杨则燊.一维圣维南方程的反问题研究与计算方法[J].水利学报.2002(9):61-65.
    [79]李光炽,周晶晏,张贵寿.用卡尔曼滤波求解河道糙率参数反问题[J].河海大学学报(自然科学版).2003,31(5):490-493.
    [80]Ding Y, Jia Y, Wang S S. Identification of Manning's roughness coefficients in shallow water flows[J]. Journal of Hydraulic Engineering.2004,130(6):501-510.
    [81]Ding Y, Wang S S. Identification of Manning's roughness coefficients in channel network using adjoint analysis[J]. International Journal of Computational Fluid Dynamics.2005,19(1):3-13.
    [82]霍光,王义刚.基于多因素模糊综合评判的河网糙率求解[J].河海大学学报(自然科学版).2006,34(5):518-521.
    [83]Nguyen T H, Fenton D J. Identification of roughness in open channels[C]. Advanced in Hydro-science and Engineering,2004.
    [84]Sanchez D, Westphal J A. Optimized Calibration for Unsteady Flow Modeling using a Genetic Algorithm[C]. ASCE,2004.
    [85]Tang H, Xin X, Dai W, et al. Parameter identification for modeling river network using a genetic algorithm[J]. Journal of Hydrodynamics, Ser. B.2010,22(2):246-253.
    [86]Cho J H, Ha S R. Parameter optimization of the QUAL2K model for a multiple-reach river using an influence coefficient algorithm[J]. Science of the Total Environment.2010,408(8):1985-1991.
    [87]程伟平.流域洪水演进建模方法与河网糙率反分析研究[D].浙江大学博士学位论文,2004.
    [88]Roux H, Dartus D. Parameter identification using optimization techniques in open-channel inverse problems[J]. Journal of Hydraulic Research.2005,43(3):311-320.
    [89]Roux H, Dartus D. Sensitivity analysis and predictive uncertainty using inundation observations for parameter estimation in open-channel inverse problem[J]. Journal of Hydraulic Engineering.2008, 134(5):541-549.
    [90]Bilgil A, Altun H. Investigation of flow resistance in smooth open channels using artificial neural networks[J]. Flow Measurement and Instrumentation.2008,19(6):404-408.
    [91]张潮,毛根海,张土乔,等.丛于BP—Bayesian方法的河网糙率反演[J].江苏大学学报(自然科学版).2008,29(1):47-51.
    [92]包红军,赵琳娜.基于Kalman滤波糙率反演模型的河道洪水实时预报研究[J].水力发电学报.2012,31(3):59-64.
    [93]赵红亮.基于集合卡尔丝滤波数据同化方法的岩土力学参数时空变异性研究[D].中国科学院研究生院(武汉岩土力学研究所),2006.
    [94]程海云,芮孝芳.水力学模型实时校正研究进展[J].水利水电技术.2008,39(5):70-73.
    [95]Babovic V, Canizares R, Jensen H R, et al. Neural networks as routine for error updating of numerical models[J]. Journal of Hydraulic Engineering.2001,127(3):181-193.
    [96]Georgakakos K P. Real-time flash flood prediction[J], Journal of Geophysical Research: Atmospheres (1984-2012).1987,92(D8):9615-9629.
    [97]Fread D L, Jin M. Real-Time Dynamic Flood Routing with NWS FLDWAV Model Using Kaiman Filter Updating[C]. ASCE International Symposium on Engineering Hydrology,1993.
    [98]Jin M, Fread D L. A Kalman Filter Enhanced Real-Time Dynamic Flood Routing Model[C]. Local Organizing Committee of The XXV Congress,1993.
    [99]Srikanthan R, Elliott J F, Adams G A. A review of real-time flood forecasting methods[J]. Cooperative Research Center for Catchment Hydrology Tech. Rep.1994,94(2):120.
    [100]芮孝芳.流域水文模型研究中的若干问题[J].水科学进展.1997,8(1):94-98.
    [101]Houtekamer P L, Mitchell H L. Data assimilation using an ensemble Kalman filter technique[J]. Monthly Weather Review.1998,126(3):796-811.
    [102]Shiiba M, Laurenson X, Tachikawa Y. Real-time stage and discharge estimation by a stochastic-dynamic flood routing model[J]. Hydrological processes.2000,14(3):481-495.
    [103]王井泉,李致家.卡尔曼半自适应滤波水位实时预报模型研究[J].人民长江.2000,31(1):15-18.
    [104]李致家,韩从尚,翁明华.卡尔曼半自适应模型在复杂河道实时洪水预报和行蓄洪调度中的应用[J].河海大学学报(自然科学版).2001,29(2):107-109.
    [105]李致家,尹开霞,杨涛,等.大江大河多断面水位实时预报的半自适应模型研究[J].河海大学学报(自然科学版).2002,30(1):19-23.
    [106]Hsu M, Fu J, Liu W. Flood routing with real-time stage correction method for flash flood forecasting in the Tanshui River, Taiwan[J]. Journal of Hydrology.2003,283(1):267-280.
    [107]Hsu M, Fu J, Liu W. Dynamic routing model with real-time roughness updating for flood forecasting[J]. Journal of hydraulic engineering.2006,132(6):605-619.
    [108]Werner M, Reggiani P, De Roo A D, et al. Flood forecasting and warning at the river basin and at the European scale[J]. Natural Hazards.2005,36(1-2):25-42.
    [109]葛守西,程海云,李玉荣.水动力学模型卡尔曼滤波实时校正技术[J].水利学报.2005,36(6):687-693.
    [110]周全,王船海.洪水预报实时校正方法研究[D].河海大学,2005.
    [111]王船海,白耀玲.基于卡尔曼滤波的水动力学模型的实时校正力法研究[D].河海大学,2006.
    [112]王船海,吴晓玲,周全.卡尔曼滤波校正技术在水动力学模型实时洪水预报中的应用[J].河海大学学报(自然科学版).2008,36(3):300-305.
    [113]周轶,李致家.改进最小二乘递推算法的洪水预报应用研究[J].水力发电.2006,32(8):14-16.
    [114]周轶,菅浩然,李致空,等.基于递推最小二乘改进算法的洪水预报模型研究[J].河海大学学报(自然科学版).2007,35(1):77-80.
    [115]张小峰,穆锦斌,袁晶.一维非恒定水动力学模型的实时洪水预报[J].水动力学研究与进展A辑.2005,20(3):400-404.
    [116]袁晶,张小峰.基于遗忘因子和误差修正的水文实时预报方法研究[J].中国农村水利水电.2006(9):32-35.
    [117]Romanowicz R J, Young P C, Beven K J. Data assimilation and adaptive forecasting of water levels in the river Severn catchment, United Kingdom[J]. Water resources research.2006,42(6):1-12.
    [118]Pedregal D J, Rivas R, Feliu V, et al. A non-linear forecasting system for the Ebro River at Zaragoza, Spain[J]. Environmental Modelling & Software.2009,24(4):502-509.
    [119]Bogdanoff J L, Kozin F, Kailath T. Engineering Applications of Random Function Theory and Probability[M]. Physics Today,1963.
    [120]Madsen H, Skotner C. Adaptive state updating in real-time river flow forecasting—a combined filtering and error forecasting procedure[J]. Journal of Hydrology.2005,308(1):302-312.
    [121]吴晓玲,王船海.基于卡尔曼滤波的水动力模型实时校正方法[J].武汉大学学报(工学版).2008,41(3):5-12.
    [122]吴晓玲,王船海,向小华.实时校正中系统噪声均值的空间分布[J].河海大学学报(自然科学版).2008,36(4):448-451.
    [123]吴晓玲,向小华,王船海,等.结合滤波增益的模型误差校正研究[J].水动力学研究与进 展A辑.2010(4):453-459.
    [124]Wu X, Wang C, Chen X, et al. Kalman filtering correction in real-time forecasting with hydrodynamic model[J]. Journal of Hydrodynamics, Ser. B.2008,20(3):391-397.
    [125]李庆扬,关治.数值计算原理[M].清华大学出版社有限公司,2000.
    [126]李光炽,王船海.大型河网水流模拟的矩阵标识法[J].河海大学学报(自然科学版).1995,23(1):36-43.
    [127]杭州市市区河道配水详细规划(杭政函[2010]20号)[M].杭州市水利规划设计研究院,2010.
    [128]姚姚,地球科学.地球物理反演基本理论与应用方法[M].中国地质大学出版社,2002.
    [129]王家映.地球物理反演理论[M].中国地质大学出版社,1998.
    [130]张小琴,包为民,梁文清,等.河道糙率问题研究进展[J].水力发电.2008,34(6):98-100.
    [131]赵庆奎.河道糙率的影响因素分析[J].地下水.2011,33(001):176-177.
    [132]郑邦民,齐鄂荣.天然河道非恒定流条件下阻力系数变化规律的研究[J].水动力学研究与进展A辑.1990,5(3):49-59.
    [133]袁世琼.天然河道的糙率计算[J].水电站设计.1997,13(1):82-85.
    [134]Berenbrock C, Bennett J P. Simulation of flow and sediment transport in the white sturgeon spawning habitat of the Kootenai River near Bonners Ferry, Idaho[R]. U. S. Geological Survey,2005.
    [135]Neal J C, Atkinson P M, Hutton C W. Flood inundation model updating using an ensemble Kalman filter and spatially distributed measurements[J]. Journal of Hydrology.2007,336(3):401-415.
    [136]郭杭.迭代扩展卡尔曼滤波用于实时GPS数据处理[J].武汉测绘科技大学学报.1999,24(2):112-114.
    [137]刘杰.附等式约束的卡尔曼滤波算法研究与应用[D].中南大学,2011.
    [138]赖炎连,高自友,贺国平.非线性最优化的广义梯度投影法[J].中国科学A辑.1992,(9):916-924.
    [139]张学峰.集合卡尔曼滤波数据同化方法在海温数值预报中的应用研究[D].浙江大学,2005.
    [140]Cloke H L, Pappenberger F. Ensemble flood forecasting:a review[J]. Journal of Hydrology.2009, 375(3):613-626.
    [141]Shamir E, Lee B, Bae D, et al. Flood forecasting in regulated basins using the ensemble extended Kalman filter with the storage function method[J]. Journal of Hydrologic Engineering.2010,15(12): 1030-1044.
    [142]Moradkhani H, Sorooshian S. General review of rainfall-runoff modeling:model calibration, data assimilation, and uncertainty analysis[M]. Hydrological Modelling and the Water Cycle, Springer, 2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700