用户名: 密码: 验证码:
杭州海相软土的固化及其理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
杭州地区海相沉积软土具有天然含水量高,压缩性高,承载力低,有机质含量高等工程特性,在对其进行固化处理时,由于高有机质含量的存在,水泥固化效果并不理想,因此有必要选择适宜的添加剂来改善水泥固化的效果,从而配制一种高效复合固化剂,并且开发针对各种不同有机质含量软土的固化剂产品;为了将所开发的固化剂更好的应用于工程实际,需要对固化土的强度形成规律和固化土渗透性等物理力学特性进行研究;另外,研究适宜固化土的本构模型是对固化土进行数值模拟的基础。为此,本文主要开展如下工作:
     (1)从软土的成因分布,化学,物理力学性质,应力应变关系,结构性等方面对杭州地区第四纪全新统海相沉积软土进行系统的研究,从而科学评价杭州软土的工程特性。
     (2)针对杭州地区海相软土高有机质含量和高含水量的特性,在添加水泥的基础上,从选择合适的矿物填料,减薄土壤双电层的厚度,提高土壤PH值,增强早期强度,调节水泥离子和黏土颗粒的活性等五个方面选定生石膏,生石灰,碳酸钠,FDN,水玻璃,三乙醇胺等六种添加剂来改善有机质软土的固化,开发性能优越的高效复合固化剂。
     (3)利用响应面法来对添加剂进行优选和配方研究,并考察各影响因子的交互作用规律。确定不同有机质含量的最优固化剂掺量和水泥掺量,使得所开发的固化剂产品能适应于各种不同有机质含量的软土。
     (4)采用水泥及固化剂GX08对有机质土进行固化,分析各种因素对强度的影响规律,在此基础上,建立同时考虑固化土中有机质含量、水泥掺量、固化剂掺量和龄期影响的固化土综合强度预测模型。
     (5)分析固化土的重度和含水量等指标受不同配比和龄期影响的变化规律。在对复合固化剂作用下固化土渗透性的变化规律进行研究的基础上,建立复合固化土的渗透系数预测方法。
     (6)考虑有机质含量,固化剂掺量和水泥掺量三个因素影响下的损伤本构模型参数的变化规律,以及损伤变量的演化规律,最终建立综合考虑有机质含量,固化剂掺量和水泥掺量影响的固化土弹塑性损伤模型。
When Hangzhou marine soft clay with high natural water content, high compressibility, and low bearing capacity, are cemented, the stabilization effect of single-doped cement is not satisfactory, due to the adverse influence of high organic matter content on soil cementation. As a consequence, extra admixtures are added to accelerate the reactions of cement and improve the stabilization effect in the actual projects. The purpose of this study is to develop a kind of composite curing agent which is high efficient to soft soil stabilization, and to develop series products of curing agent used for stabilizing different soft soil with various organic matter contents. In order to apply the developed curing agent to the the actual engineering better, it is necessary to research the physical and mechanical characteristics of the stabilized soil. Moreover, an appropriate constitutive model on stabilized soil is the basis of the numerical simulation. Based on the above points, the dissertation mainly carried out the following work:
     (1) The distribution, the chemical and physicals properties and the stress-strain relationship of the marine soft soil in Hangzhou were comprehensively researched to scientifically evauate the engineering properties of soft soil in Hangzhou.
     (2) For Hangzhou marine soft soil possessing high organic matter content and high water content, gypsum, calcium oxide, sodium carbonate, FDN, sodium silicate, and triethanolamine were selected as six kinds of additives to improve the stabilization of organic matter soil. It is based on the consideeriation of the following five aspects:the choice of appropriate mineral filler, reduction of the thickness of soil electrical double layer, increase of the PH value of soil, enhancement of the early strength, and improvement of the activity between cement ion and clay particle.
     (3) Response surface methodology was used to optimize the mixture ratio of the additives and analyze the interaction effect among the factors. The optimal curing agent content and cement content were determined so that the developed curing agents can be applied to soft soils with various organic matter contents.
     (4) Based on the quantification of various factors on the influence of strength, a strength model was proposed, which has incorporated the positive effect of curing time, cement and stabilizing agent content, and the adverse effect of organic matter on the strength of stabilized soil.
     (5) Based on the analysis of permeability variation of stabilized soil with different curing agents, a simple method was established to predict the coefficient of permeability of stabilized soil.
     (6) Based on the analysis of the effect of organic matter, cement and curing agent on the parameters of damage constitutive model, an elastic and plastic damage model of stabilized soil was proposed, which has considered the effect of organic matter content, cement content and curing agent content on the stabilized soil.
引文
[1]Acosta H.A., Edil T. B., and Benson C. H. Soil stabilization and drying using fly ash [M].Geo Engineering Report of University of Wisconsin-Madison,2003.
    [2]Arroyo M., Nova R., Tsige M. Microstructure and compactive instabilities of a stabilized residue [J]. Journal of Materials in Civil Engineering,2006,18(2):272-282.
    [3]Bell F G. Assessment of cement PFA and lime-PFA used IO stabilize clay-size materials [J]. Bulletin of the international Association of Engineering Geology,1994,49:25-32.
    [4]Byung Sik Chun, Jin Chun Kim. A Study on the Soil Improvement Properties of FGC StabilizingAgent[C]. Melbourne Australia:Proceedings of GeoTech,2000.
    [5]Chen J. F., Han J., Yu S. B.Centrifugal modeling of an embankment backfilled with lime-stabilized soil on marine clay [J]. Marine Georesources and Geotechnology,2010, 28(1):25-36.
    [6]Eriktius D.T., Leong, E.C, and Rahardjo. H,Shear strength of peaty soil-cement mixes [J]. Soft soil engineering.2001:551-556.
    [7]Filz, G. M. Hodges, D.K Weatherby, D. E. and. Marr. W.A.Standardized definitions and laboratory procedures for soil-cement specimens applicable to the wet method of deep mixing [J],Innovations in Grouting and Soil Improvement.2005:1-13
    [8]Fook-Hou Lee, Yeong Lee, Soon-Hoe Chew, and Kwet-Yew Yong. Strength and modulus of marine clay-cement mixes [J]. Journal of geotechnical and geoenvironmental engineering.2005,131 (2):178-186.
    [9]Glen A. Lorenzo and Dennes T. Bergado. Fundamental parameters of cement-admixed clay-new approach [J]. Journal of geotechnical and geoenvironmental engineering.2004, 130(10):1042-1050.
    [10]Harvey Omar R.. Harris John P., Herbert Bruce E. Natural organic matter and the formation of calcium-silicate-hydrates in lime-stabilized smectites:A thermal analysis study [J]. Thermochimica Acta,2010,505(1-2):106-113.
    [11]HARVEY R, HARRIS P, HERBERT E, STIFFLER A, HANEY P. Natural organic matter and the formation of calcium-silicate-hydrates in lime-stabilized smectites:A thermal analysis study [J]. Thermochimica Acta,2010,505(1-2):106-113.
    [12]Heikki Kukko. Stabilization of Clay with Inorganic By-products [J]. Journal of Materials in Civil Engineering,2000,12(4):307-309.
    [13]Helene Tremblay, Josee Duchesne, Jacques Locat, and Serge Leroueil. Influence of the nature of organic compounds on fine soil stabilization with cement [J]. Canada Geotech. J.2002,39:535-546.
    [14]Hilmi Lav A. Microstructural Development of Stabilized Fly Ash as Pavement Base Material [J]. Journal of Materials in Civil Engineering,2000,12(2):157-163.
    [15]Horpibulsuk, S. Miura N and Nagaraj. T. S. Assessment of strength development in cement-admixed high water content clays with Abram's law as a basis [J]. Geotechnique, 2003,53(4):439-444.
    [16]Horpibulsuk, S., Miura, N., and Bergado, D.T.Undrained shear behavior of cement admixed clay at high water content [J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE,2004,130(10):1096-1105.
    [17]Horpibulsuk S, Norihiko M, Nagaraj T S, Clay-water/cement ratio identity for cement admixed soft clays[J] Journal of geotechnical and geoenvionmental engineering,2005, 131(2)187-192.
    [18]Horpibulsuk, S., Shibuya, S., Fuenkajorn, K., and Katkan, W. Assessment of engineering properties of Bangkok clay [J]. Can. Geotech.J.2007(44):173-187.
    [19]Horpibulsuk S, Rachan R, Suddeepong A. Assessment of strength development in blended cement admixed Bangkok clay [J]. Construction and Building Materials,2011,25: 1521-1531.
    [20]Imen Khouni, Benoit Marrot, Philippe Moulin, Raja Ben Amar. Decolourization of the reconstituted textile effluent by different process treatments [J]. Enzymatic catalysis, coagulation/flocculation and nanofiltration processes,2011,268(1-3):27-37.
    [21]Jiunn-Jyi Lay. Modeling and optimization of anaerobic digested sludge converting starch to hydrogen [J]. Biotechnology and Bioengineering,2000,68(3):269-278.
    [22]Kiyonbu Kasama et al. On the stress-strain Behaviour of Lightly Cemented clay based on an Extended Critical State Concept. Soils and Foundations [J]. Japanese Geotechnical society.2000,40(3):37-47.
    [23]Kolias, S. Kasselouri-Rigopoulou, V. Karahalios A.Stabilisation of clayey soils with high calcium fly ash and cement [J]. Cement & Concrete Composites.2005(27):301-313.
    [24]LI Xue-gang, XU Ri-qing, RONG Xue-ning. Assessment of strength development in cement-admixed artificial organic soil with GX07 [J]. Journal of Central South Univ-ersity. 2012(19):2999-3005.
    [25]LIU M.D. and CARTER J.P. Virgin compression of structured soils [J]. Geotechnique, 1999(49), No.1,73-57.
    [26]LIU M.D and CARTER J.P.Modelling the des tructuring of soils during virgin compression [J]. Geotechnique,2000(50), No.4,479-483.
    [27]Medina J, Guida H N,Stabilization of lateritic soils with phosphoric acid[J]. Geotechnical and Geological Engineering,1995,13(4)199-216.
    [28]Miller G A. Zaman M. Field and laboratory evaluation of cement kiln dust as a soil stabilizer [J]. Transportation Reasearch Record,2000 a,17(14):25-32.
    [29]Miller G A., Azad Shahriar. Influence of soil type on stabilization with cement kiln dust [J]. Construction and Building Materials.2000 b (14):89-97.
    [30]Modmoltion Chirdchanin, Lu Jiang, Onitsuka Katsutada,腐殖酸与盐分浓度对石灰加固土有明粘土的影响以及微观结构研究[J].岩土工程学报,2004,26(2):281-286.
    [31]Narendra B. S., Sivapullaiah P. V., Suresh S. Prediction of unconfined compressive strength of soft grounds using computational intelligence techniques:A comparative study [J]. Computers and Geotechnics,2006,33(3):196-208.
    [32]Ning J., Huang X.. Guo Y. Effects of cement contents on the structure formation of stabilized silt:Principle and method of optimization design for soft-soil stabilizer[C]. IEEE 2008:4162-4165.
    [33]Omar Saeed Baghabra Al-Amoudi. Characterization and Chemical Stabilization of Al-Qurayyah Sabkha Soil [J]. Journal of materials in civil engineering,2002,14(6): 478-484.
    [34]Osula D. O. A. A comparative evaluation of cement and lime modification of laterite [J].Engineering Geology,1996 (42):71-81.
    [35]Piccolo A., Spaccini R., Tagliatesta Petal. Sequestration of soil organic carbon by an "in situ" polymerization reaction [C]. Thailand,2002.
    [36]Raymond N, Yonga V, ahid R, Ouhadib. Experimental study on instability of bases on natural and lime/cement -stabilized clayey soils [J]. Applied Clay Science,2007,35(3-4): 145-282.
    [37]Reza Tabaraki, Ashraf Nateghi. Optimization of ultrasonic-assisted extraction of natural antioxidants from rice bran using response surface methodology [J]. Ultrasonics Sonochemistry,2011,18(6):1279-1286.
    [38]Rose Wright Fox, James G. Macfarlane. Alternative Chemical Soil Stabilizers [M].Division of New Technology, Materials and Research, Department of Transportation, State of California,1993.
    [39]Salminen J. Effects of Pentachlorophenol and Biotic Interactions on Soil Fauna and Decomposition in Humus Soil [J]. Academic Press,1995,1071:250-257.
    [40]Samir Hebib, Farrell Eric R. Some experiences on the stabilization of Irish peats [J]. Can.Geotech,2003, (40):170-120.
    [41]Seishi Tomohisa, Kohei Sawa, Mari Tachibana et. al..Hardening treatment of muddy soil with coal fly ashes [J]. Journal of Hazardous Materials,1999(59):223-231.
    [42]S.G.Chung, P.H. Giao, G.J.Kim, and S.Leroueil. Geotechnical properties of Push chays [J].Can.Geotech.J,2002,39:1050-1060.
    [43]Shenbaga R.Kaniraj, Vasant G. Havanagi. Compressive strength of cement stabilized fly ash-soil mixtures [J]. Cement and concrete research.1999(29):673-677.
    [44]Shirazi H. Field and laboratory evaluation of the use of lime fly ash to replace soil cement as a base course [J].Transportation Research Record,1999,1652:270-275.
    [45]Shogaki, T., and Kaneko, M. Effects of sample disturbance on strength and consolidation parameters of soft clay [J]. Soils and Foundations,1994,34(3):1-10.
    [46]Shu Lin Zhan, Shu Sen Gao, Jun Ying Lai. Research about the effect of Polypropylene Fiber on mechanical properties of curing sludge [J]. Advanced Materials Research,2011, 250-253:788-794.
    [47]Sirdharan, A., Abraham, B.M., and Jose, B.T. Improved technique for estimation of preconsolidation pressure [J]. Geotechnique,1991,41(2):263-268.
    [48]Sivapullaiah P. V., Lakshmi Kantha H., Madhu Kiran K. Geotechnical properties of stabilized Indian red earth [J]. Geotechnical and Geological Engineering,2003,21: 399-413.
    [49]Tomohisa S, Sawa K, Naitoh N. Hedoro hardening treatment by industrial wastes [J].Journal of the Society of Materials Science,1995,44(503):1023-1026.
    [50]Vatsala A.et al. Elastoplastic Model for Cemented Soils [J]. Journal of Geotechnical and Geoenvironmental Engineering.2001, Vol.127(8):679-687.
    [51]Yuzhen Yu, Jialiu Pu and Keizo Ugai. Study of mechanical properties of soil-cement mixture [J]. Soils and foundations.1997,37(4):93-103.
    [52]Zalihe N, Emin G. Improvement of calcareous expansive soils in semi-arid environments [J].Jou rnal of Arid Environments.2001,47(4):453-463.
    [53]曹瑞军,刘毅.一种水玻璃组合物及其用途[J].无机硅化合物,2008,2:36-38.
    [54]常晶明.固化土渗透性能试验研究[J].山西水利,2010,2:39-41.
    [55]陈甦,宋少华,沈剑林,陈越.水泥粉喷桩桩体水泥黑土力学性质试验研究[J].岩土工程学报.2001,23(3):302-305.
    [56]程鉴基.水泥-水玻璃软土灌浆技术[J].煤炭学报,1997,22(3):294-299.
    [57]陈慧娥,王清.有机质对水泥加固软土效果的影响[[J].岩石力学与工程学报,2005,24(增2):5816-5821.
    [58]陈慧娥.有机质影响水泥加固软土效果的研究[D].吉林:吉林大学,2006.
    [59]陈仁鹏,DAITA, R K., DRNEVICH, V P., KIM, D H室内TDR试验检测石灰矿渣加固粘性土的物理化学反应过程[J].岩土工程学报,2006,28(2):249-255.
    [60]陈仁鹏,王进学,陈云敏,张延红.TDR技术在石灰炉渣加固土中的应用[J].岩土工程学报,2007,29(5):676-683.
    [61]陈艺南,潘华良,刘松玉,缪林昌.连云港滨海相软土工程特性[J].岩土工程技术,2001,4:212-216.
    [62]邓小轩,黄新,宁建国.外掺剂对水泥固化土强度的影响[J].岩土工程学报,2011,33(10):1628-1633.
    [63]丁锐.水玻璃与粘土矿物之间表面反应的实验研究[J].岩土工程学报,1999,21(3):334-337.
    [64]董国亮,王爱霞.用NCS固化剂处理高液限粘土填土路基[J].山西建筑,2000,26(5):171-172.
    [65]董金梅,刘汉龙,洪振舜等.聚苯乙烯轻质混合土三轴压缩试验研究[J].河海大学学 报,2005,33(1):99-103.
    [66]董邑宁,徐日庆,龚晓南.固化剂ZDYT-1加固土试验研究[J].岩土工程学报,2001,23(4):472-475.
    [67]董邑宁,张青娥等.固化剂对软土强度影响的试验研究[J].岩土力学,2008,29(2):475-478.
    [68]范昭平,朱伟,张春雷.有机质含量对淤泥固化效果影响的试验研究[J].岩土力学.2005.26(8):1327-1334.
    [69]方祥位,孙树国,陈正汉等.GT型土固化剂改良土的工程特性研究[J].岩土力学,2006,27(9):1545-1548.
    [70]高明霞,巨娟丽,王国栋.粉煤灰固化土护面材料的力学及渗透性能研究[J].2004,2(1):57-61.
    [71]龚晓南,熊传祥,项可祥.粘土结构性对其力学性质的影响及形成原因分析[J].水利学报.2000,(10)43-47.
    [72]龚晓南.高等土力学[M].中国建筑工业出版社,2008.77-79.
    [73]顾明光,汪庆华,卢成忠等.杭州城市平原区三维第四系结构调查研究方法探讨[J].中国地质,2008.35(2):232-237.
    [74]顾明光,龚日祥,颜铁增,等.杭州上泥盆统西湖组露头层序地层研究[J].华南地产与矿产,2009(1):8-13.
    [75]顾正维,孙炳楠,董邑宁.粘土的原状土、重塑土和固化土渗透性试验研究[J].岩石力学与工程学报,2003,22(3):505-508.
    [76]郭印.淤泥质土的固化及力学特性的研究[D].杭州:浙江大学.2007.
    [77]郝巨涛.水泥土材料力学特性的探讨[J].岩土工程学报,1991,13(3):53-59.
    [78]侯浩波,周曼,张大捷,梁静.HAS土固化剂固化土料的特性及工程应用[J].工业建筑,2006,36(7):32-34.
    [79]侯立国.营口地区工业废料固化处理及工程应用的研究[D].沈阳:沈阳建筑大学.2011.
    [80]侯永峰,龚晓南.水泥土的渗透特性.浙江大学学报[J].2000,34(2):189-193.
    [81]黄春香,简文斌.软土特性与水泥—水玻璃加固土效应的试验[J].福州大学学报,2001,29(3):91-95.
    [82]黄殿瑛,张可能,曹祥熹.SF对水泥土的影响初探[J].大地构造与成矿学,1995,19(3):284-287.
    [83]黄晓明,张书生,廖公云.TR型土固化剂路用性能试验研究[J].公路交通科技,2002,19(3):23-27.
    [84]黄新,周国均.水泥加固土硬化机理初探[J].岩土工程学报.1994a,16(1):62-68.
    [85]黄新,周国均.工业废石膏在地基加固中的应用[J].工业建筑.1994b(9):24-28.
    [86]黄新,周国均.软土地基水泥-石膏固化剂的适用条件及加固机理初探[J].地基处理,1994c,5(2):13-20.
    [87]黄新,胡同安.工业废石膏与水泥配全加固软土地基[J].建筑技术,2001,32(3):161-163.
    [88]黄新,宁建国,徐晟.根据土样性质指标进行软土固化剂设计的方法.工业建筑[J].2006,36(7):12-16
    [89]黄新,许晟,宁建国.含铝固化剂固化软土的试验研究[J].岩石力学与工程学报,2007,26(1):156-161.
    [90]简文彬,吴铭炳,唐宗鑫,黄振光.水泥水玻璃加固软土研究[J].建筑技术开发,2002,29(2):30-40.
    [91]简文彬,吴振祥,刘慧明,陈志波,张敏霞.闽东南沿海地区软土静力触探参数相关分析[J].岩土力学,2005.26(5):733-738.
    [92]金克盛,黄英,龚羊庆.路邦土壤强固剂对红土力学特性的影响研究.云南水利发电,2005,21(1):16-19.
    [93]金鹏康,王晓昌.腐殖酸-铝盐共聚络合反应特性[J].中国给水排水,2004,20(1):40-43.
    [94]孔令伟,吕海波,汪稔,郭爱国.海口某海域软土工程特性的微观机制浅析[J].岩土力学,2002.23(1):36-40.
    [95]寇秉厚.杭州市区地质概况及工程地质水文地质条件[R].杭州:杭州市勘测设计研究院,1996.
    [96]赖有修,詹达美.水泥搅拌法在含有机质软土中的应用[J].土工基础.2004,18(2):9-10.
    [97]雷华阳,肖树芳.软土结构性的试验研究及其对工程特性的影响[J].吉林大学学报(地球科学版),2004.34(1):106-110.
    [98]骊建俊.水泥土的强度特性、固结机理与本构关系的研究[D].西安:西安建筑科技大学,2005.
    [99]李涛,钱寿易.土样扰动影响的评价及其先期固结应力的确定[J].岩土工程学报,1987.9(5):21-30.
    [100]李迎春,前春香,刘松玉等.粉土固化稳定机理研究[J].岩土工程学 报,2004,26(2):268-271.
    [101]李悦,李学辉,张务民等.一种新型软土固化剂及其固化机理研究[J].市政技术,2010,(4):142-144.
    [102]梁国钱,张民强,俞炯奇,孙伯永.浙江沿海地区软土工程特性[J].中国矿业大学学报,2002.31(5):435-441.
    [103]林春明,黄志诚,朱嗣昭.杭州湾沿岸平原晚第四纪沉积特征和沉积过程[J].地质学报,1999.73(2):120-130.
    [104]刘瑾,张峰君,陈晓明等.新型水溶性高分子土体固化剂的性能及机理研究[J].材料科学与工程.2001,19(4):62-65.
    [105]刘增永.有机质土加固试验研究[D].浙江大学硕士学位论文.2005.
    [106]卢雪松,项伟,范文彦.ISS固化土工程特性试验研究[J].2009,40(15):67-69.
    [107]孟庆山,杨超,雷学文等.武汉东湖淤泥早强固化试验研究[J].岩土力学,2010,31(3):707-712.
    [108]缪林昌,张军辉,陈艺南.江苏海相软土压缩特性试验研究[J].岩土工程学报,2007,29(11):1711-1714.
    [109]缪志萍.堤坝水泥固化土渗透特性研究[J].西部探矿工程,2005,105(2):18-20.
    [110]宁建国,黄新.利用工业废渣配制水泥系软土固化剂探讨[J].工业建筑,2005,35(增刊):432-437.
    [111]潘林有.特殊区域淤泥质软土水泥搅拌桩加固探索[J].四川建筑科学研究.2001,27(4):58-59.
    [112]潘永灿,蒋莹玉.水泥土强度受有机质含量影响试验研究[J].盐城工学院学报,2002,15(1):29-31.
    [113]裴向军,吴景华.搅拌法加固海相软土水泥外掺剂的选择[J].岩土工程学报,2000,22(3):319-322.
    [114]彭波,李文瑛,戴经梁.液体固化剂加固土的研究[J].西安公路交通大学学报,2001,21(1):15-18.
    [115]彭家惠,瞿金东等.FDN减水剂对建筑石膏水化和硬化体结构的影响[J].建筑材料学报,2007,10(1):14-19.
    [116]邵俐,刘松玉,杜广印等.水泥粉煤灰加固有机质土的试验研究[J].工程地质学报,2008,(3):408-414.
    [117]邵玉芳.含腐殖酸软土的加固研究[D].杭州:浙江大学.2006.
    [118]邵玉芳,龚晓南,徐日庆.有机质对土壤固化剂的加固效果影响的研究[J].农机化研究,2005(1):23-24.
    [119]邵玉芳,龚晓南等.含腐殖酸软土的固化试验研究[J].浙江大学学报,2007,41(9):1472-1476.
    [120]沈珠江.软土工程特性和软土地基设计[J].岩土工程学报,1998,20(1):100-111.
    [121]童小东,龚晓南,姚恩瑜.稳定材料在应力π平面上屈服曲线的特性[J].浙江大学学报,1998,32(5):643-647.
    [122]童小东.水泥土添加剂及其损伤模型试验研究[D].浙江大学博士学位论文.1999.
    [123]童小东.水泥加固土的弹塑性损伤模型[J].工程力学.2002,19(6):33-38.
    [124]拓勇飞,孔令伟,郭爱国,谭罗荣.湛江地区结构性软土的赋存规律及其工程特性[J].岩土力学,2004.25(12):1879-1884.
    [125]汤怡新,刘汉龙.水泥固化土工程特性试验研究[J].岩土工程学报.2000,22(5):549-554.
    [126]王宝勋,李夕兵,杜东菊等.应用碱性水泥外掺剂固化天津海积软土的试验研究[J].工程地质学报,2009,14(3):426-432.
    [127]王国欣,肖树芳,周旺高.原状结构性土先期固结应力及结构强度的确定[J].岩土工程学报,200325(2):249-251.
    [128]王国欣,肖树芳,黄宏伟.杭州海积软土应力-应变特征与结构强度损伤规律研究[J],岩石力学与工程学报,2005.24(9):1555-1560.
    [129]王家涛,张明义,阎岩.1SS在改善土壤工程性质方面的试验研究[J].建筑技术开发,2005,32(4):27-28.
    [130]王立峰.纳米硅水泥土工程特性及本构模型研究[D].杭州:浙江大学,2003.
    [131]王立峰,朱向荣.纳米硅水泥土强度研究和经济分析[J].浙江建筑,2005.22(4):57-60.
    [132]王丽华.水中天然腐殖酸的高锰酸钾预氧化特性研究[D].陕西:西安建筑科技大学,2005.
    [133]王荣富.外掺材料对水泥土强度及渗透性能影响的研究[J].城市道桥及防洪,2008,12(12):131-136.
    [134]王文军.纳米硅粉水泥土的强度特性及固化机理研究[J].岩土力学.2004a,25(6):922-926.
    [135]王文军.纳米矿粉水泥土固化机理及损伤特性研究[D].杭州:浙江大学,2004b.
    [136]王文军,朱向荣,方鹏飞.纳米硅粉水泥土固化机理研究[J].浙江大学学报(工学版).2005,39(1):148-153.
    [137]汪益敏,贾娟.ISS加固土的微观结构及强度特征[J].华南理工大学学报,2002,30(9):96-99.
    [138]王银梅,韩文峰,谌文武.新型高分子固化材料与水泥加固黄土力学性能对比研究[J].岩土力学,2004,25(11):1761-1764.
    [139]王振军,翁优灵,杜少文.矿渣粉加固粉土的理论分析及路用性能研究[J].工程地质学报,2006,14(5):709-714.
    [140]徐建民,袁可能.我国地带性土壤有机质氧化稳定性的研究[J].土壤通报,1995,16(1)1-2.
    [141]徐伟.鱿鱼加工废弃物低盐鱼酱油速酿工艺及生化特性研究[D].青岛:中国海洋大学.2008.
    [142]徐渊博,张复实等.PAMCATS土壤固化剂的研制[J].中国科技信息,2005,15A:132-133.
    [143]薛立公.ISS土壤稳定剂用于道路土基的试验研究荀勇[J].东北公路,2002,25(1):29-30.
    [144]荀勇.含工业废料的水泥系固化剂加固软土试验研究[J].岩土工程学报.2000,22(2):210-213.
    [145]颜庆智,付长波,饶江,杨风军.东营软土工程特性及参数相关方程[J].中国石油大学学报(自然科学版),2010.34(3):130-134.
    [146]杨志宏,张炳宏.新型材料奥特赛特(Aught-Set)土固化剂的应用技术[J].铁道标准设计,2000,20(5):1-4.
    [147]叶观宝,陈望春,杨晓明.水泥土早期强度的室内试验研究[J].岩土工程技术,2003(6):346-348.
    [148]叶为民,朱悦铭,陈宝等.上海软土非饱和压缩特征[J].同济大学学报(自然科学版),2011,39(10):1458-1462.
    [149]殷杰,洪振舜,高玉峰.天然沉积连云港软粘土的屈服特性[J].东南大学学报(自然科学版),2009,39(5):1059-1064.
    [150]曾卫东,唐雪云,何沁洲.深层搅拌法在处理泥炭质土中的应用[J].地质灾害与环境保护,2002,13(2):67-69.
    [151]张春雷.淤泥固化土力学性质及固化机理研究[D].河海大学硕士学位论文.2003.
    [152]张明,白晓红.粉煤灰在深层搅拌桩中的应用[J].太原理工大学学报,2001,32(1):78-80.
    [153]张树彬,王清,陈剑平等.土体腐殖酸组分对水泥土强度影响效果试验[J].工程地质学 报,2009,(6):842-846.
    [154]张铁军,洪振舜,邓东升等.水泥固化粉质土的无侧限抗压强度预测[J].东南大学学报(自然科学版),2008,38(5):839-843.
    [155]张土乔.水泥土的应力应变关系及搅拌桩破坏特性研究[D].博士论文.杭州:浙江大学,1992.
    [156]赵春彦,周顺华,庄丽.上海地区软土的循环累积孔压模型[J].铁道学报,2012,34(1):77-82.
    [157]赵苏,郭兴华, 田静.三乙醇胺在水泥-水界面的吸附现象及其促凝作用[J].混凝土,2010,4:66-70.
    [158]储诚富,洪振舜,刘松玉.用似水灰比对水泥土无侧限抗压强度的预测[J].岩土力学.2005.26(4):645-649.
    [159]朱伟,曾科林,张春雷.淤泥固化处理中有机物成分的影响[J].岩土力学,2008,29(1):33-36.
    [160]周承刚,高俊良.水泥土强度的影响因素[J].煤田地质与勘探,2001,29(1):45-48.
    [161]周明凯,沈卫国,冯修吉.HS软土固化剂性能研究[J].武汉工业大学学报,1996,18(4):120-122.
    [162]周平,朱长岐,楚斌.粉喷桩-石灰桩联合加固软弱地基试验研究[J].岩土力学,2004,25(7):1163-1166.
    [163]庄心善,王功勋.含工业废料加固土的特性研究[J].土木工程学报,2005,38(8):114-117.
    [164]邹斌,沈如,齐琳琳.改性脲醛树脂加固基床土质的研究[J].西南交通大学学报,2001,36(1):33-36.
    [165]邹开学,李玉峰.南昆铁路膨胀岩(土)改良研究[J].路基工程,2000,4:1-4.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700