用户名: 密码: 验证码:
考虑多因素的换热网络优化改造方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
换热网络优化综合和改造同属于过程系统工程的重要领域,对于提高过程工业能量利用率具有重要的作用。经过近半个世纪的发展,各种换热网络优化综合和改造方法相继提出,该领域的研究已初具规模,研究成果广泛应用于实际过程工业系统,并创造了可观的节能效益。近年来,特别是1990年后,随着能源价格的上涨和节能工作越来越受到重视,对换热网络优化改造的研究也越来越受到关注,成为国内外学者近年来最感兴趣的热点研究方向之一。如何建立一套更加可靠有效、符合实际的换热网络优化改造方法,克服以往研究所做的简化假设以及复杂的优化求解代价,已成为提高整个过程工业系统尤其是能量回收子系统能量利用效率的亟待解决问题。
     本文主要围绕建立考虑多因素影响的换热网络优化改造方法的主题,借助同步优化改造数学规划法展开研究。
     1、建立换热网络优化改造数学模型。对Yee和Grossman提出的换热网络优化综合分级超结构进行了改进,增加了对于现有换热匹配、增加现有换热匹配换热面积和重新配置现有换热匹配等换热网络优化改造问题所特有的改造措施的描述,去除了等温混合的简化假设,构建了基于分级超结构的换热网络优化改造MINLP数学模型。
     2、考虑压降的换热网络优化改造方法研究。对本文所建立的换热网络优化改造模型增加压降因素的考虑,结合压降计算模型对换热网络优化改造模型进行了进一步扩展,提出了考虑压降因素的换热网络优化改造方法,同时权衡压降与换热网络改造结构调整对改造优化目标的影响,采用了外层换热网络结构优化和内层操作参数优化的双层求解策略,结合二进制遗传算法和GA/PSO混合算法对模型进行了求解。通过研究实例的优化改造结果验证了所提出的考虑压降的换热网络优化改造方法可以有效避免不考虑压降所出现的各项费用失衡情况和改造方案的不合理性,在换热网络改造中能够有效识别控制压降的关键改造影响因素,获得相比其他文献更好的优化改造结果。
     3、考虑强化传热的换热网络优化改造方法研究。对本文所建立的换热网络优化改造模型增加强化传热因素的考虑,结合现有成熟的强化传热技术及其对换热网络改造过程中换热设备总传热系数和新增换热面积的影响,对换热网络优化改造模型进行了进一步扩展,提出了考虑强化传热因素的换热网络优化改造方法,综合权衡强化传热投资成本、换热网络结构调整投资成本和运行费用的关系。通过研究实例的优化改造结果验证了所提出的考虑强化传热的换热网络优化改造方法可以合理的判断强化传热的关键应用部位,即使在换热网络结构接近最优时,仍可以通过采用强化传热措施减少所需增加的换热面积,降低改造投资成本,缩短投资回收期,从而获得更加优化的换热网络改造方案。
     4、考虑强化传热压降控制的换热网络优化改造方法研究。基于本文对于分别考虑压降和强化传热的换热网络优化改造方法的研究,针对强化传热所带来的压降增加所造成的换热网络优化结构偏离真正的最优结果,导致改造方案不合理的问题,给出了从换热网络改造系统建模角度控制强化传热压降问题的考虑强化传热压降控制的换热网络优化改造模型,并结合具体的换热网络优化改造工程实例从换热设备角度探讨了改变换热设备几何结构控制强化传热压降的方法。研究实例表明,改变换热设备几何结构可有效降低强化传热所增加的压降,在改变换热设备几何结构控制强化传热压降的方法中,改变壳体布置和使用螺旋折流板在减缓壳侧压降升高方面比较有效;改变壳体布置和减少管程数目在降低管侧压降方面比较有效。
     通过对于压降、强化传热以及两者结合影响等考虑多种因素的换热网络优化改造方法研究和实例的验证,本文所提出的考虑多因素的换热网络优化改造方法对于换热网络优化改造方法的研究和发展具有积极的促进作用和重要的实用价值。
Heat exchanger networks synthesis and retrofit have been the most important subjects during process integration field. The impact of network retrofit on improving energy saving has obvious effect. During the last over50years, various kinds of methods have been developed for heat exchanger network synthesis andretrofit. There has been made rapid process in this subject. The research results have been extensively to actual process industry for obtaining large energy-saving benefit. After1990s, due to rising energy prices, these subjects have attracted much more attention from researchers. The main focus of heat exchanger network retrofit is to develop a more effective and practical retrofit method, which can remove impractical assumptions and avoid unfavourable computational complexity. Research advances in retrofit approaches have an importent influence on improving energy recovery of the whole process industry'.
     This paper mainly contributes to propose a novel simultaneous approach for heat exchanger network retrofit considering multiple factors-topology modification, heat transfer enhancement and pressure drop limitation. Our main work includes four aspects as follows:
     1、Mathematical model of heat exchanger network retrofit. We proposed an improved stage-wise superstructure for heat exchanger network retrofit problems, which consists of exsiting exchangers, new heat exchangers, additional area and exchangers reassignments. Based on the improved superstructure, a simultaneous optimization mathematical model without the assumption of isothermal mixing is formulated to solve retrofit problems, which is a mixed integer non-linear programming model.
     2、Heat exchanger network retrofit with considering pressure drop. Based on the stage-wise superstructure model, the stream pressure drop calculation formulations are incorporated into the retrofit mathematical model for considering pumping device and pumping power costs during the total annual cost. In this study, a two-level optimization strategy is used for solving the above-mentioned complex model. In the outer level, the genetic algorithm has been used for generating new network structures and finding the optimal one. In the inner level, the PSO/GA hybrid algorithm has been used for optimizing operating parameters and sending the best cost of the achieved to the upper level for determination of fitness of existing network structure. The research results prove that the retrofit approach considering pressure drop enables the designer to study tradeoff among pumping cost, additional area cost and operating cost of the network, and is therefore to be reliable and applicable in engineering design.
     3、Heat exchanger network retrofit with considering heat-transfer enhancement. Heat transfer enhancements are very attractive options for heat exchanger network retrofit. To consider the influence of heat transfer enhancement on the retrofit option, combined with practical heat transfer enhancement techniques, an extended retrofit model is proposed to obtain a trade-off among enhancement cost, topology adjustment cost and operating cost. The case study indicates that the extended model can reasonably find the enhancement position in the network. During the optimal network topology, reasonable heat transfer enhancement may decrease the additional area demanding, and therefore a more optimal solution can be obtained with lower investment costs and investment recovery period.
     4、Heat exchanger network retrofit with considering heat-transfer enhancement and pressure drop limitation. Based on the researche results of heat exchanger network retrofit approaches with considering heat-transfer enhancement and pressure drop respectively, a more practical retrofit model considering the relationship between the heat transfer enhancement and increasing pressure drop is proposed to avoid the unreasonable pressure drop. A project case is studied to analysis the pressure drop control method through designing reasonable geometry structure of heat exchangers. The research results show that several exchanger structure modification methods are effective in tackling the problem of increased pressure drop. Among those exchanger structure modification methodologies, changing the shell arrangement and using helical baffle are effective in mitigation increases in the shell sidel pressure drop. Changing the shell arrangement and reducing the number of tube passes can be used to reduce the tube side pressure drop. Through the research results of heat exchanger network retrofit with considering multiple factors-network topology modifications, heat transfer enhancement and pressure drop, the proposed approach and the conclusions have important value of not only in theory but also practicality on the research field of heat exchanger network retrofit.
引文
[1]SMITH R, LINNHOFF B. The design of separators in the context of overall processes [J]. Chemical engineering research & design,1988,66(3):195-228.
    [2]崔峨,尹洪超.热能系统分析与最优综合[M].大连理工大学出版社,1994:177.
    [3]DOUGLAS J M. A hierarchical decision procedure for process synthesis [J]. AIChE Journal, 1985,31(3):353-362.
    [4]NISHIDA N, STEPHANOPOULOS G, WESTERBERG A W. A review of process synthesis [J]. AIChE Journal,1981,27(3):321-351.
    [5]姚平经,樊希山.过程系统分析与综合[M].大连理工大学出版社,2004:135.
    [6]中华人民共和国国务院新闻办公室.中国的能源政策(2012)白皮书[R].2012,10.
    [7]清华大学气候政策中心.2010年中国低碳发展报告[R].2011,2.
    [8]BROECK H T. Economic selection of exchanger sizes [J]. Industrial & Engineering Chemistry,1944,36(1):64-67.
    [9]HWA C S. Mathematical formulation and optimization of heat exchanger networks using separable programming [C]//AIChE-IChemE Symposium Series.1965,4:101-106.
    [10]MASSO A H, RUDD D F. The synthesis of system designs. II. Heuristic Structuring [J]. AIChE Journal,1969,15(1):10-17.
    [11]GUNDEPSEN T, NAESS L. The synthesis of cost optimal heat exchanger networks:an industrial review of the state of the art [J]. Computers & chemical engineering,1988, 12(6):503-530.
    [12]JEZOWSKI J. Heat exchanger network grassroot and retrofit design. The review of the state-of-the art:part i. Heat exchanger network targeting and insight based methods of synthesis [J]. Hungarian Journal of Industrial Chemistry,1994,22(4):279-294.
    [13]JEZOWSKI J. Heat exchanger network grassroot and retrofit design. The review of the state-of-the-art:Part Ⅱ. Heat exchanger network synthesis by mathematical methods and approaches for retrofit design [J]. Hungarian Journal of Industrial Chemistry, 1994,22(4):295-308.
    [14]FURMAN K C, SAHINIDIS N V. A critical review and annotated bibliography for heat exchanger network synthesis in the 20th century [J]. Industrial & engineering chemistry research,2002,41(10):2335-2370.
    [15]MORAR M, AGACHI P S. Review:Important contributions in development and improvement of the heat integration techniques [J]. Computers & chemical engineering,2010,34(8): 1171-1179.
    [16]肖云汉,朱明善.换热网络设计方法的研究进展[J].化工进展,1994(1):1-8.
    [17]李志红,尹清华.换热网络最优合成研究的进展与展望[J].炼油设计,1997,27(3):5-10.
    [18]张俊华,应启戛,黄为民.换热器网络优化研究进展[J].热能动力工程,2000,15(3):201-204.
    [19]赵辉,丁晓明,陈宏刚,等.换热网络综合方法的研究进展[J].计算机与应用化学,2009,26(10).
    [20]王春花,华贲.换热网络优化设计方法及多换热网络能量集成的研究进展[J].石油化工设备,2009,38(5):50-57.
    [21]霍兆义,尹洪超,赵亮,等.国内换热网络综合方法研究进展与展望[J].化工进展,2012,31(4):726-731.
    [22]HOHMANN E C. Optimum networks for heat exchanger [D]. Los Angeles:University of Southern California,1971.
    [23]LINNHOFF B, FLOWER J R. Synthesis of heat exchanger networks:Ⅰ. Systematic generation of energy optimal networks [J]. AIChE Journal,1978,24(4):633-642.
    [24]LINNHOFF B, FLOWER J R. Synthesis of heat exchanger networks:Ⅱ. Evolutionary generation of networks with various criteria of optimality [J]. AIChE Journal,1978, 24(4):642-654.
    [25]UMEDA T, ITOH J, SHIROKO K. Heat exchange system synthesis [J]. Chemical Engineering Progress,1978,74(7):70-76.
    [26]LINNHOFF B, HINDMARSH E. The pinch design method for heat exchanger networks [J]. Chemical Engineering Science,1983,38(5):745-763.
    [27]LINNHOFF B, AHMAD S. Supertargeting, or the optimization of heat exchanger networks prior to design [J]. World Cong. Ⅲ, Chem. Engng, Tokyo,1986.
    [28]LI Y, MOTARD R L. Optimal pinch approach temperature in heat-exchanger networks [J]. Industrial & engineering chemistry fundamentals,1986,25(4):577-581.
    [29]TOWNSEND D W, LINNHOFF B. Surface area targets for heat exchangers networks [C]. IChemE 11th Annual Res Meeting, Bath, UK,1988.
    [30]GUNDERSEN T, GROSSMANN I E. Improved optimization strategies for automated heat exchanger network synthesis through physical insights [J]. Computers & chemical engineering,1990,14(9):925-944.
    [31]LINNHOFF B, AHMAD S. Cost optimum heat exchanger networks—1. Minimum energy and capital using simple models for capital cost [J]. Computers & Chemical Engineering, 1990,14(7):729-750.
    [32]NISHIMURA H. A theory for the optimal synthesis of heat-exchanger systems [J]. Journal of Optimization Theory and Applications,1980,30(3):423-450.
    [33]AHMAD S, LINNHOFF B, SMITH R. Cost optimum heat exchanger networks—2. Targets and design for detailed capital cost models [J]. Computers & Chemical Engineering,1990, 14(7):751-767.
    [34]REV E, FONYO Z. Diverse pinch concept for heat exchange network synthesis:the case of different heat transfer conditions [J]. Chemical engineering science,1991,46(7): 1623-1634.
    [35]SU J L, MOTARD R L. Evolutionary synthesis of heat-exchanger networks [J]. Computers & chemical engineering,1984,8(2):67-80.
    [36]TRIVEDI K K, O'NEILL B K, ROACH J R, et al. Systematic energy relaxation in MER heat exchanger networks [J]. Computers & Chemical Engineering,1990,14(6):601-611.
    [37]ZHU J, HAN Z, RAO M, et al. Identification of heat load loops and downstream paths in heat exchanger networks [J]. The Canadian Journal of Chemical Engineering,1996, 74(6):876-882.
    [38]COLBERT R W. Industrial heat exchanger networks [J]. Chem Eng Prog,1982,78:47-54.
    [39]TRIVEDI K K, O'NEILL B K, ROACH J R. Synthesis of heat exchanger networks featuring multiple pinch points [J]. Computers & chemical engineering,1989,13(3):291-294.
    [40]REV E, FONYO Z. Hidden and pseudo pinch phenomena and relaxation in the synthesis of heat-exchange networks [J]. Computers & chemical engineering,1986,10(6):601-607.
    [41]TRIVEDI K K, O'NEILL B K, ROACH J R, et al. A new dual-temperature design method for the synthesis of heat exchanger networks [J]. Computers & chemical engineering,1989, 13(6):667-685.
    [42]WOOD R M, SUAYSOMPOL K, O'NEILL B K, et al. A new option for heat exchanger network design [J]. Chemical engineering progress,1991,87(9):38-43.
    [43]SUAYSOMPOL K, WOOD R M. The flexible pinch design method for heat exchanger networks. I:Heuristic guidelines for free hand designs [J]. Chemical engineering research & design,1991,69(6):458-464.
    [44]LINNHOFF B. Pinch analysis:a state-of-the-art overview:Techno-economic analysis [J]. Chemical engineering research & design,1993,71(5):503-522.
    [45]RASKOVIC P, STOILJKOVIC S. Pinch design method in the case of a limited number of process streams [J]. Energy,2009,34(5):593-612.
    [46]KEMP I C. Pinch analysis and process integration:a user guide on process integration for the efficient use of energy [M]. Butterworth-Heinemann,2011:35.
    [47]CERDA J, WESTERBERG A W, MASON D, et al. Minimum utility usage in heat exchanger network synthesis a transportation problem [J]. Chemical Engineering Science,1983,38(3): 373-387.
    [48]PAPOULIAS S A, GROSSMANN I E. A structural optimization approach in process synthesis—Ⅱ:Heat recovery networks [J]. Computers & Chemical Engineering,1983, 7(6):707-721.
    [49]JEZOWSKI J, FRIEDLER F. A simple approach for maximum heat recovery calculations [J]. Chemical engineering science,1992,47(6):1481-1494.
    [50]GUNDERSEN T, DUVOLD S, HASHEMI-AHMADY A. An extended vertical MILP model for heat exchanger network synthesis [J]. Computers & chemical engineering,1996,20:S97-S102.
    [51]GUNDERSEN T, TRAEDAL P, HASHEMI-AHMADY A. Improved sequential strategy for the synthesis of near-optimal heat exchanger networks [J]. Computers & chemical engineering,1997,21:S59-S64.
    [52]FLOUDAS C A, CIRIC A R, GROSSMANN I E. Automatic synthesis of optimum heat exchanger network configurations [J]. AIChE Journal,1986,32(2):276-290.
    [53]GALLI M I, CERDA J. Synthesis of structural-constrained heat exchanger networks—Ⅰ. Series networks [J]. Computers & chemical engineering,1998,22(7-8):819-839.
    [54]GALLI M I, CERDA J. Synthesis of structural-constrained heat exchanger networks-Ⅱ Split Networks [J]. Computers & chemical engineering,1998,22(7-8):1017-1035.
    [55]ZHU X X,O'NEILL B K, ROACH J R, et al. A new method for heat exchanger network synthesis using area targeting procedures [J]. Computers & chemical engineering,1995,19(2): 197-222.
    [56]ZHU X X,O'NEILL B K, ROACH J R, et al. Area-targeting methods for the direct synthesis of heat exchanger networks with unequal film coefficients [J]. Computers & chemical engineering,1995,19(2):223-239.
    [57]ZHU X X. Automated synthesis of HENs using block decomposition and heuristic rules [J]. Computers & chemical engineering,1995,19:155-160.
    [58]ZHU X X. Automated design method for heat exchanger network using block decomposition and heuristic rules [J]. Computers & chemical engineering,1997,21(10):1095-1104.
    [59]YUAN X, PIBOULEAU L, DOMENECH S. Experiments in process synthesis via mixed-integer programming [J]. Chemical Engineering and Processing:Process Intensification,1989, 25(2):99-116.
    [60]FLOUDAS C A, CIRIC A R. Strategies for overcoming uncertainties in heat exchanger network synthesis [J]. Computers & chemical engineering,1989,13(10):1133-1152.
    [61]CIRIC A R, FLOUDAS C A. Application of the simultaneous match-network optimization approach to the pseudo-pinch problem [J]. Computers & chemical engineering,1990, 14(3):241-250.
    [62]CIRIC A R, FLOUDAS C A. Heat exchanger network synthesis without decomposition [J]. Computers & chemical engineering,1991,15(6):385-396.
    [63]YEE T F, GROSSMANN I E, Kravanja Z. Simultaneous optimization models for heat integration—Ⅰ. Area and energy targeting and modeling of multi-stream exchangers [J]. Computers & chemical engineering,1990,14(10):1151-1164.
    [64]YEE T F, GROSSMANN I E. Simultaneous optimization models for heat integration—Ⅱ. Heat exchanger network synthesis [J]. Computers & Chemical Engineering,1990,14(10): 1165-1184.
    [65]DAICHENDT M M, GROSSMANN I E. A preliminary screening procedure for MINLP heat exchanger network synthesis using aggregated models:Process design [J]. Chemical engineering research & design,1994,72(A3):357-363.
    [66]DAICHENDT M M, GROSSMANN I E. Preliminary screening procedure for the MINLP synthesis of process systems—I. Aggregation and decomposition techniques [J]. Computers & chemical engineering,1994,18(8):663-677.
    [67]DAICHENDT M M, GROSSMANN I E. Preliminary screening procedure for the MINLP synthesis of process systems-II. Heat Exchanger Networks [J]. Computers & chemical engineering, 1994,18(8):679-709.
    [68]FLOUDAS C A. Nonlinear and Mixed-Integer Optimization:Fundamentals and Applications: Fundamentals and Applications [M]. Oxford University Press, USA,1995.
    [69]ZAMORA J M, GROSSMANN I E. A global MINLP optimization algorithm for the synthesis of heat exchanger networks with no stream splits [J]. Computers & Chemical Engineering, 1998,22(3):367-384.
    [70]ZAMORA J M, GROSSMANN I E. A comprehensive global optimization approach for the synthesis of heat exchanger networks with no stream splits [J]. Computers & Chemical engineering,1997,21:S65-S70.
    [71]BJORK K M, WESTERLUND T. Global optimization of heat exchanger network synthesis problems with and without the isothermal mixing assumption [J]. Computers & chemical engineering,2002,26(11):1581-1593.
    [72]HUANG K F, AL-MUTAIRI EM, KARIMI I A. Heat exchanger network synthesis using a stagewise superstructure with non-isothermal mixing [J]. Chemical Engineering Science,2012, 73:30-43.
    [73]SORSAK A, KRAVANJA Z. Simultaneous MINLP synthesis of heat exchanger networks comprising different exchanger types [J]. Computers & Chemical Engineering,2002, 26(4):599-615.
    [74]PONCE-ORTEGA J M, JIMENEZ-GUTIERREZ A, GROSSMANN I E. Optimal synthesis of heat exchanger networks involving isothermal process streams [J]. Computers & Chemical Engineering,2008,32(8):1918-1942.
    [75]PONCE-ORTEGA J M, SERNA-GONZALEZ M, JIMENEZ-GUTIERREZ A. Synthesis of heat exchanger networks with optimal placement of multiple utilities [J]. Industrial & Engineering Chemistry Research,2010,49(6):2849-2856.
    [76]GROSSMANN I E, WESTERBERG A W, BIEGLER L T. Retrofit design of processes [C]//Foundations of computer aided process operations:proceedings of the First International Conference on Foundations of Computer Aided Process Operations, Park City, Utah, July 5-10,1987. Elsevier Science Ltd,1987:403.
    [77]TJOE T N, LINNHOFF B. Using pinch technology for process retrofit [J]. Chemical Engineering,1986,93(8):47-60.
    [78]SILANGWA M. Evaluation of various surface area efficiency criteria in heat exchanger . network retrofits [D]. Manchester:UMIST,1986.
    [79]SHOKOYA C G, KOTJABASAKIS E. A new targeting procedure for the retrofit of heat exchanger networks [C]//International Conference, Athens, Greece.1991.
    [80]SHOKOYA C G. Retrofit of heat exchanger networks for debottlenecking and energy savings [D]. Manchester:UMIST,1992.
    [81]CARLSSON A, FRANCK P A, BERNTSSON T. Design better heat exchanger network retrofits [J]. Chemical Engineering Progress,1993,89(3):87-96.
    [82]CIRIC A R, FLOUDAS C A. A retrofit approach for heat exchanger networks [J]. Computers & chemical engineering,1989,13(6):703-715.
    [83]CIRIC A R, FLOUDAS C A. A mixed integer nonlinear programming model for retrofitting heat-exchanger networks [J]. Industrial & engineering chemistry research,1990,29(2): 239-251.
    [84]CIRIC A R, FLOUDAS C A. A comprehensive optimization model of the heat exchanger network retrofit problem [J]. Heat Recovery Systems and CHP,1990,10(4):407-422.
    [85]YEE T F, GROSSMANN I E. A screening and optimization approach for the retrofit of heat-exchanger networks [J]. Industrial & Engineering Chemistry Research,1991,30(1): 146-162.
    [86]BRIONES V, KOKOSSIS A C. Hypertargets:a Conceptual Programming approach for the optimization of industrial heat exchanger networks—Ⅱ. Retrofit design [J]. Chemical engineering science,1999,54(4):541-561.
    [87]MA K L, HUI C W, YEE T F. Constant approach temperature model for HEN retrofit [J]. Applied thermal engineering,2000,20(15):1505-1533.
    [88]SORSAK A, KRAVANJA Z. MINLP retrofit of heat exchanger networks comprising different exchanger types [J]. Computers & chemical engineering,2004,28(1):235-251.
    [89]ASANTE N D K, ZHU X X. An automated approach for heat exchanger network retrofit featuring minimal topology modifications [J]. Computers & chemical engineering,1996, 20:S7-S12.
    [90]ASANTE N D K, ZHU X X. An automated and interactive approach for heat exchanger network retrofit [J]. Chemical Engineering Research and Design,1997,75(3):349-360.
    [91]ZHU X X, ASANTE N D K. Diagnosis and optimization approach for heat exchanger network retrofit [J]. AIChE journal,1999,45(7):1488-1503.
    [92]SMITH R, JOBSON M, CHEN L. Recent development in the retrofit of heat exchanger networks [J]. Applied thermal engineering,2010,30(16):2281-2289.
    [93]POLLEY G T, PANJEH SHAHI M H, JEGEDE F 0. Pressure drop considerations in the retrofit of heat exchanger networks [J]. Chemical engineering research & design,1990,68(3): 211-220.
    [94]刘宏,魏新利,董其伍,等.考虑压降的换热网络合成的研究进展[J].轻工机械,2004,4:19-21.
    [95]POLLEY G T, PANJEH SHAHI M H. Interfacing heat exchanger network synthesis and detailed heat exchanger design [J]. Chemical engineering research & design,1991,69(6): 445-457.
    [96]NIE X R, ZHU X X. Heat exchanger network retrofit considering pressure drop and heat-transfer enhancement [J]. AIChE journal,1999,45(6):1239-1254.
    [97]SILVA M L, ZEMP R J. Retrofit of pressure drop constrained heat exchanger networks [J]. Applied thermal engineering,2000,20(15):1469-1480.
    [98]PANJEH SHAHI M H, TAHOUNI N. Pressure drop optimisation in debottlenecking of heat exchanger networks [J]. Energy,2008,33(6):942-951.
    [99]POLLEY G T, ATHIE R, GOUGH M. Use of heat transfer enhancement in process integration [J]. Heat Recovery Systems and CHP,1992,12(3):191-202.
    [100]ZHU X X, ZANFIR M, KLEMES J. Heat transfer enhancement for heat exchanger network retrofit [J]. Heat Transfer Engineering,2000,21(2):7-18.
    [101]PAN M, BULATOV I, SMITH R, et al. Improving energy recovery in heat exchanger network with intensified tube-side heat transfer [J]. Chemical Engineering Transactions,2011, 25:375-380.
    [102]PAN M, BULATOV I, SMITH R, et al. Novel optimization method for retrofitting heat exchanger networks with intensified heat transfer [J]. Computer Aided Chemical Engineering,2011,29:1864-1868.
    [103]PAN M, BULATOV I, SMITH R, et al. Novel MILP-based iterative method for the retrofit of heat exchanger networks with intensified heat transfer [J]. Computers & Chemical Engineering,2012,42:263-276.
    [104]PAN M, BULATOV I, SMITH R, et al. Optimisation for the retrofit of large scale heat exchanger networks with comprising different intensified heat transfer techniques [J]. Applied Thermal Engineering,2012.
    [105]WANG Y, SMITH R, KIM J K. Heat Exchanger Network Retrofit through Heat Transfer Enhancement [J]. Chemical Engineering Transactions,2011,25:593-598.
    [106]WANG Y, SMITH R, KIM J K. Heat exchanger network retrofit optimization involving heat transfer enhancement [J]. Applied Thermal Engineering,2012,43:7-13.
    [107]WANG Y, PAN M, BULATOV I, et al. Application of intensified heat transfer for the retrofit of heat exchanger network [J]. Applied Energy,2012,89(1):45-59.
    [108]PANJEH SHAHI M H. Pressure drop consideration in process integration [D]. Manchester: UMIST,1992.
    [109]JEGEDE F O. Power, capital and energy costs trade-offs in heat exchanger networks [D]. Manchester:UMIST,1990.
    [110]POLLEY G T, PANJEH SHAHI M H. Process integration retrofit subject to pressure drop constraint[C]//Process Technology Proceedings.1990,9:31-36.
    [111]JEGEDE F O, POLLEY G T. Optimum heat exchanger design:Process design [J]. Chemical engineering research & design,1992,70(A2):133-141.
    [112]POLLEY G T, PANJEH SHAHI M H, PICON NUNEZ M. Rapid design algorithms for shell-and-tube and compact heat exchangers [J]. Chemical engineering research & design,1991,69(6): 435-444.
    [113]ZHU X X, NIE X R. Pressure drop considerations for heat exchanger network grassroots design [J]. Computers & chemical engineering,2002,26(12):1661-1676.
    [114]SORSAK A, KRAVANJA Z. Simultaneous MINLP synthesis of heat and power integrated heat exchanger networks [J]. Computers & Chemical Engineering,1999,23:S143-S147.
    [115]FRAUSTO-HERNANDEZ S, RICO-RAMIREZ V, JIMENEZ-GUTIERREZ A, et al. MINLP synthesis of heat exchanger networks considering pressure drop effects[J]. Computers & chemical engineering,2003,27(8):1143-1152.
    [116]MIZUTANI F T, PESSOA F L P, QUEIROZ E M, et al. Mathematical programming model for heat-exchanger network synthesis including detailed heat-exchanger designs.1. Shell-and-tube heat-exchanger design [J]. Industrial & engineering chemistry research, 2003,42(17):4009-4018.
    [117]MIZUTANI F T, PESSOA F L P, QUEIROZ E M, et al. Mathematical programming model for heat-exchanger network synthesis including detailed heat-exchanger designs.2. Network synthesis [J]. Industrial & engineering chemistry research,2003,42(17): 4019-4027.
    [118]RAVAGNANI M, DA SILVA A P, ANDRADE A L. Detailed equipment design in heat exchanger networks synthesis and optimization [J]. Applied Thermal Engineering,2003,23(2): 141-151.
    [119]RAVAGNANI M, CABALLERO J A. Optimal heat exchanger network synthesis with the detailed heat transfer equipment design [J]. Computers & Chemical Engineering,2007,31(11): 1432-1448.
    [120]SERNA M, JIMENEZ A. An efficient method for the design of shell and tube heat exchangers [J]. Heat transfer engineering,2004,25(2):5-16.
    [121]SERNA M, JIMENEZ A. A compact formulation of the Bell-Delaware method for heat exchanger design and optimization [J]. Chemical Engineering Research and Design,2005, 83(5):539-550.
    [122]SERNA-GONZALEZ M, PONCE-ORTEGA J M, JIMENEZ-GUTIRRREZ A. Two-level optimization algorithm for heat exchanger networks including pressure drop considerations [J]. Industrial & engineering chemistry research,2004,43(21):6766-6773.
    [123]SOLTANI H, SHAFIEI S. Heat exchanger networks retrofit with considering pressure drop by coupling genetic algorithm with LP (linear programming) and ILP (integer linear programming) methods [J]. Energy,2011,36(5):2381-2391.
    [124]SERNA-GONZALEZ M, PONCE-ORTEGA J M. Total cost target for heat exchanger networks considering simultaneously pumping power and area effects [J]. Applied Thermal Engineering,2011,31(11):1964-1975.
    [125]FURMAN K C, SAHINIDIS N V. Computational complexity of heat exchanger network synthesis [J]. Computers & Chemical Engineering,2001,25(9):1371-1390.
    [126]METROPOLIS N, ROSENBLUTH A W, ROSENBLUTH M N, et al. Equation of State Calculations by Fast Computing Machines [J]. The Journal of Chemical Physics,1953,21(6): 1087-1092.
    [127]KIRKPATRICK S, JR. D G, VECCHI M P. Optimization by simulated annealing [J]. science, 1983,220(4598):671-680.
    [128]DOLAN W B, CUMMINGS P T, LEVAN M D. Process optimization via simulated annealing: application to network design[J]. AIChE Journal,1989,35(5):725-736.
    [129]ATHIER G, FLOQUET P, PIBOULEAU L, et al. Optimization of heat exchanger networks by coupled simulated annealing and NLP procedures [J]. Computers & chemical engineering, 1996,20:S13-S18.
    [130]ATHIER G, FLOQUET P, PIBOULEAU L, et al. Synthesis of heat-exchanger network by simulated annealing and NLP procedures [J]. AIChE journal,1997,43(11):3007-3020.
    [131]GLOVER F. Future paths for integer programming and links to artificial intelligence [J]. Computers & Operations Research,1986,13(5):533-549.
    [132]GLOVER F. Tabu search—part Ⅰ [J]. ORSA Journal on computing,1989,1(3):190-206.
    [133]GLOVER F. Tabu search—part Ⅱ [J]. ORSA Journal on computing,1990,2(1):4-32.
    [134]LIN B, MILLER D C. Tabu search algorithm for chemical process optimization [J]. Computers & chemical engineering,2004,28(11):2287-2306.
    [135]LIN B, MILLER D C. Solving heat exchanger network synthesis problems with Tabu Search [J]. Computers & chemical engineering,2004,28(8):1451-1464.
    [136]HOLLAND J H. Adaptation in natural and artificial systems:an introductory analysis with applications to biology, control and artificial intelligence [M]. MIT press, 1992.
    [137]LEWIN D R, WANG H, SHALEV 0. A generalized method for HEN synthesis using stochastic optimization-I. general framework and MER optimal synthesis [J]. Computers & chemical engineering,1998,22(10):1503-1513.
    [138]LEWIN D R. A generalized method for HEN synthesis using stochastic optimization—Ⅱ. The synthesis of cost-optimal networks [J]. Computers & chemical engineering,1998, 22(10):1387-1405.
    [139]LUO X, WEN Q Y, FIEG G. A hybrid genetic algorithm for synthesis of heat exchanger networks [J]. Computers & Chemical Engineering,2009,33(6):1169-1181.
    [140]RAVAGNANI M, SILVA A P, ARROYO P A, et al. Heat exchanger network synthesis and optimisation using genetic algorithm [J]. Applied Thermal Engineering,2005,25(7): 1003-1017.
    [141]REZAEI E, SHAFIEI S. Heat exchanger networks retrofit by coupling genetic algorithm with NLP and ILP methods [J]. Computers & Chemical Engineering,2009,33(9):1451-1459.
    [142]KENNEDY J, EBERHART R. Particle swarm optimization [C]//Neural Networks,1995. Proceedings., IEEE International Conference on. IEEE,1995,4:1942-1948.
    [143]KENNEDY J, EBERHART R C. A discrete binary version of the particle swarm algorithm [C]//Systems, Man, and Cybernetics,1997. Computational Cybernetics and Simulation., 1997 IEEE International Conference on. IEEE,1997,5:4104-4108.
    [144]SILVA A P, RAVAGNANI M A S S, BISCAIA JR E C. Particle Swarm Optimisation in heat exchanger network synthesis including detailed equipment design [J]. Computer Aided Chemical Engineering,2008,25:713-718.
    [145]SILVA A P, RAVAGNANI M A S S, BISCAIA JR E C, et al. Optimal heat exchanger network synthesis using particle swarm optimization [J]. Optimization and Engineering,2010, 11(3):459-470.
    [146]SHENOY U V. Heat exchanger network synthesis:process optimization by energy and resource analysis[M]. Gulf Publishing Company,1995.
    [147]BERGLES A E. The implications and challenges of enhanced heat transfer for the chemical process industries [J]. Chemical Engineering Research and Design,2001,79(4): 437-444.
    [148]GARCIA A, VICENTE P G, VIEDMA A. Experimental study of heat transfer enhancement with wire coil inserts in laminar-transition-turbulent regimes at different Prandtl numbers J]. International Journal of Heat and Mass Transfer,2005,48(21):4640-4651.
    [149]ABU-KHADER M M. Further understanding of twisted tape effects as tube insert for heat transfer enhancement [J]. Heat and mass transfer,2006,43(2):123-134.
    [150]CHIKAHIRO S. Numerical simulation on heat transfer enhancement in twisted-tape-inserted tubes [J]. Journal of Enhanced Heat Transfer,2004,11(4): 379-389.
    [151]SARMA P K, KISHORE P S, RAO V D, et al. A combined approach to predict friction coefficients and convective heat transfer characteristics in a tube with twisted tape inserts for a wide range of Re and Pr [J]. International journal of thermal sciences, 2005,44(4):393-398.
    [152]DATE A W. Numerical prediction of laminar flow and heat transfer in a tube with twisted-tape insert:effects of property variations and buoyancy [J]. Journal of enhanced heat transfer,2000,7(4):217-229.
    [153]KUMAR P, JUDD R L. Heat transfer with coiled wire turbulence promoters [J]. The Canadian Journal of Chemical Engineering,1970,48(4):378-383.
    [154]SETHUMADHAVAN R, RAJA RAO M. Turbulent flow heat transfer and fluid friction in helical-wire-coil-inserted tubes [J]. International journal of heat and mass transfer, 1983,26(12):1833-1845.
    [155]SHOJI Y, SATO K, OLIVER D R. Heat transfer enhancement in round tube using wire coil: Influence of length and segmentation [J]. Heat Transfer—Asian Research,2003,32(2): 99-107.
    [156]UTTARWAR S B, RAJA RAO M. Augmentation of laminar flow heat transfer in tubes by means of wire coil inserts [J]. Journal of heat transfer,1985,107(4):930-935.
    [157]INABA H, OZAKI K, KANAOKA S. A Fundamental Study of Heat-Transfer Enhancement and Flow-Drag Reduction in Tubes by Means of Wire Coil Insert [J]. Trans. JSME,1994,60: 240-247.
    [158]CARNAVOS T C. Heat transfer performance of internally finned tubes in turbulent flow [J]. Heat Transfer Engineering,1980,1(4):32-37.
    [159]RAVIGURURAJAN T S, BERGLES A E. Development and verification of general correlations for pressure drop and heat transfer in single-phase turbulent flow in enhanced tubes [J]. Experimental Thermal and Fluid Science,1996,13(1):55-70.
    [160]JENSEN M K, VLAKANCIC A. Technical Note Experimental investigation of turbulent heat transfer and fluid flow in internally finned tubes [J]. International journal of heat and mass transfer,1999,42(7):1343-1351.
    [161]GANAPATHY V. Design and evaluate finned tube bundles [J]. Hydrocarbon processing, 1996,75(9):103-111.
    [162]HASHIZUME K. Heat transfer and pressure drop characteristics of finned tubes in cross flow [J]. Heat Transfer Engineering,1981,3(2):15-20.
    [163]ZHANG J F, HE Y L, TAO W Q.3D numerical simulation on shell-and-tube heat exchangers with middle-overlapped helical baffles and continuous baffles-Part Ⅱ:Simulation results of periodic model and comparison between continuous and noncontinuous helical baffles [J]. International Journal of Heat and Mass Transfer,2009,52(23):5381-5389.
    [164]ZHANG J F, LI B, HUANG W J, et al. Experimental performance comparison of shell-side heat transfer for shell-and-tube heat exchangers with middle-overlapped helical baffles and segmental baffles [J]. Chemical Engineering Science,2009,64(8): 1643-1653.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700