用户名: 密码: 验证码:
水煤浆旋风炉高温低灰燃烧试验及模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着能源需求持续增长,我国天然气和石油的净进口依赖性将大幅上升。结合我国以煤为主的能源结构,迫切地需要发展洁净煤技术作为我国能源调整的重要战略选择。
     煤燃烧过程中火焰清洁度和污染物排放是其代油代气技术发展的瓶颈。因此,结合水煤浆技术低灰低硫和液态排渣旋风炉高捕渣率的特点,开发一种新型煤清洁利用工艺具有很好的应用前景。为满足工程应用需求,该技术将水煤浆在旋风炉内燃烧产生的高温低灰烟气作为工业生产所需热量来源。本文首次针对该技术利用过程中的关键问题开展了一系列基础研究。
     本文系统地就燃水煤浆型液态排渣旋风炉设计方案进行了冷态模化试验和数值模拟。研究结果在获取炉内流场分布规律和颗粒浓度分布的同时,评价了不同燃烧器、配风方式、雾化角度和捕渣管形式的优劣,为热态应用提供了参考依据。
     在冷模试验基础上,结合数值模拟手段对旋风炉燃用水煤浆的主要运行参数进行了评估。结果表明,水煤浆在旋风炉内燃烧组织良好,试验系统负荷适应性至少在75%~100%之间,结合分级配风可有效降低旋风炉内NOx生成和排放。水煤浆在旋风炉内燃烧可提供具有足够热量的低灰高温烟气,其烟气有效辐射能力优于油、气体燃料。系统捕渣率平均达到94%,有效降低了烟气飞灰含量,验证了工业应用的可行性。
     本文通过基于火焰图像的两步式辐射反问题分析法进行三维温度场重建,提出了一种新的针对旋风炉水煤浆燃烧的诊断方法。通过红外高温计对重建温度精度进行验证,其误差小于50K。根据重建温度特征,研究过量空气系数、配风方式和燃料负荷对燃烧性能的影响。火焰图像像素值的方差变化规律性反映了良好的火焰稳定性。不同工况下三维温度场特征有效地反映了炉内真实情况。通过合理的送风,可以保证燃烧效率大于99%。
     高温烟气流场特性是影响燃水煤浆型旋风炉二次室传热特性的重要因素。本文利用二维颗粒图像测速技术(Particle image Velocimetry, PIV)对其流场特性进行非接触式测量,直接以高温烟气携带的飞灰颗粒作为示踪粒子的方法在试验中得到验证。通过流场信息的时均化,试验研究了过量空气系数和燃料负荷的影响作用,并得出烟气经分流器进入二次室后可维持较强刚性从而避免直接冲刷受热面的结果。数值模拟结果对PIV系统测量炉内真实环境的可靠性进行了验证,对二维PIV系统在热态流场测量中的应用具有指导意义。
     液态渣在旋风炉氧化性气氛下对耐火材料的侵蚀作用不同于煤气化炉中的还原性气氛。本文对旋风炉内经过一段暴露时间后的高铬耐火材料进行剖析,研究了由于渗透渣相互作用造成的耐火材料显微结构变化及温度水平和熔渣粘度对该作用的影响。结果验证了氧化性气氛下渣中Fe的赋存形式主要为Fe203,其较高的熔点削弱了渣在氧化性气氛下的渗透和化学腐蚀作用。在煤渣渗透过程中,渣中Fe203与耐火材料中的Cr203反应直至耗尽。由于渣填充至耐火材料孔隙结构中,造成了Cr203的溶解。同时由于高温下熔渣的粘度较低,侵蚀深度随温度升高而增加。
Continuous increase of energy demand will result in raising the net oil&gas import dependency in China and underpin the coal-dominated energy structure of China in a long period. Thus the development of clean coal technology is the significant strategic choice of China's energy adjustment.
     The substitution of coal for oil and gas is limited by the poor cleanness of flame and pollutant emission in coal combustion. Combined with the low ash and sulfur level of coal water slurry (CWS) and high slag captured rate of slag-tap cyclone furnace, a novel clean coal utilization technology is very promising. The high temperature product gas with low content of ash produced by the combustion of CWS in cyclone furnaces can serve as heat source for industrial production. For the first time, a series of investigation have been conducted to evaluate the key problems of the utilization of this technology.
     In this thesis, cold model experiments and numerical simulations have been systematically carried out for the design of the vertical-type slag-tap cyclone furnace using CWS as fuel. Results depict the flow characteristics and particle concentration distribution in the furnace, and the effect of burners, air distribution patterns, spray angles and the structure of slag coagulating pipes was also evaluated. Results provide sufficient information for the application in thermal test.
     Based on the results of cold modeling, the operation characteristics of the CWS cyclone furnace was evaluated by thermal tests and numerical simulations. The combustion of CWS in the cyclone furnace is well organized with the load adaptability between75%~100%at least, and the NOx emission can be effectively reduced by air staging. This technique can produce low ash content high-temperature product gas with sufficient heat and better effective radiation capacity. The content of fly ash in the product gas is reduced to a very low level due to the high average slag captured rate (>94%) of the system. Therefore, the feasibility for industrial application was validated.
     This study presented a novel diagnostics for the combustion of CWS in a slag-tap vertical cyclone furnace using flame images and three-dimensional temperature distributions reconstructed from these flame images through a two-step inverse radiation analysis. The accuracy of the reconstructed temperature was evaluated by infrared thermometer measurements, with a discrepancy of less than50K. The effects of air/fuel equivalence ratio, air distribution pattern, and furnace load on combustion performance were analyzed based on the reconstructed temperature profiles. Experimental and analytical results showed that flame stability was clearly represented by the variance of the image pixel values. The three-dimensional temperature profiles also effectively illustrated the combustion characteristics in the cyclone furnace under different air/fuel settings. By appropriately supplying air, the combustion efficiency of CWS can be maintained at>99%in the proposed cyclone furnace.
     The flow characteristics of high-temperature flue gas are important factors in the heat transfer of CWS combustion furnaces. By examining a250kg/h vertical-type slag tap cyclone furnace, this paper presents non-intrusive measurements of flow field by using a two-dimensional (2D) particle-image velocimetry (PIV) technique. The method was verified through experiments that directly used fly ash in high-temperature flue gas as tracer particles. The flow field of the flue gas was analyzed by using a time-averaged method, based on which the effects of excess air ratios and loads were discussed. The flue gas separated by a gas separator maintained good rigidity near the furnace wall rather than eroding the heating surface. The numerical simulation results validate the reliability of the PIV system under actual circumstances in the furnace. This study provides guidelines for the application of2D PIV system to represent the flue gas in thermal test boilers.
     The mechanism of high-chromia refractory failure in the oxidizing atmosphere of cyclone furnaces differs from the reducing atmosphere in gasifiers. In this paper, postmortem analysis was conducted to investigate the changes in the microstructures of exposed high-chromia refractory caused by its interaction with infiltrating coal slag under cyclone furnace conditions. The effects of the temperature level and viscosity of the molten slag were also investigated. Postmortem analysis confirmed that the form of Fe found in the slag in an oxidizing atmosphere was Fe2O3rather than FeO, the phase present in a reducing atmosphere of gasifiers. Furthermore, the higher melting temperature of Fe2O3weakened the slag penetration and chemical corrosion in an oxidizing atmosphere. As coal slag infiltrated a high-chromia refractory, Fe2O3in the slag reacted with Cr2O3until Fe2O3depleted in the penetrating slag. Cr2O3was dissolved in the slag because of the permeation of the slag in large pores of the refractory. The depth of the slag penetration increased as the temperature increased because of its lower viscosity at higher temperature.
引文
[1]International Energy Agency,2012 Key World Energy Statistics [R]. Paris,2012.
    [2]International Energy Agency, World Energy Outlook 2012 [R]. Paris,2012.
    [3]British Petroleum, BP Statistical Review of World Energy June 2012 [R]. London, 2012.
    [4]International Energy Agency,能源技术统计手册[R]. Paris,2007.
    [5]International Energy Agency,天然气定价与监管:中国面临的挑战与国际经验借鉴[R].Paris,2012.
    [6]International Energy Agency, Energy Technology Perspectives 2012 [R]. Paris, 2012.
    [7]国家统计局能源统计司,中国能源统计年鉴2012[R].北京,2012.
    [8]International Energy Agency,中国洁净煤战略[R].Paris,2009.
    [9]姚强.洁净煤技术[M].北京:化学工业出版社,2005.
    [10]兰泽全.煤和黑液水煤浆沾污结渣机理及灰沉积动态特性研究[D].杭州;浙江大学,2004.
    [11]王岭.电站锅炉燃用水煤浆炉内结渣、传热及污染物排放特性的研究[D].杭州:浙江大学,2003.
    [12]Erickson T A, Allan S E, McCollor D P, et al. Modeling of Fouling and Slagging in Coal-Fired Utility Boilers [J]. Fuel Processing Technology,1995,44(1-3):155-171.
    [13]Papachristodoulou G, Trass O. Coal Slurry Fuel Technology [J]. Canadian Journal of Chemical Engineering,1987,65(2):177-201.
    [14]Atal A, Levendis Y A. Combuston of CWF Agglomerates from Pulverized or Micronized Bituminous Coal, Carbon-Black, and Diesel Soot [J]. Combustion and Flame,1994,98(4):326-349.
    [15]Atal A, Levendis Y A. Observations on the Combustion Behavior of Coal Water Fuels and Coal Water Fuels Impregnated with Calcium Magnesium Acetate [J]. Combustion and Flame,1993,93(1-2):61-89.
    [16]Ji D-g, Wang Z-n.2007. Research on the Suspension Combustion Rate of Coal Water Slurry[C]//Jing G, Gao J, Zhou A, et al. International Symposium on Mining Science and Safety Technology, Jiaozuo, P. R. China. Beijing, P. R. China:Science Press Beijing:1657-1661.
    [17]Kijo-Kleczkowska A. Combustion of Coal-Water Suspensions [J]. Fuel,2011, 90(2):865-877.
    [18]Ahn K Y, Baek S W, Choi C E. Investigation of a Coal-Water Slurry Droplet Exposed to Hot Gas-Stream [J]. Combustion Science and Technology,1994,97(4-6): 429-447.
    [19]Yavuz R, Kucukbayrak S, Williams A. Combustion Characteristics of Lignite-Water Slurries [J]. Fuel,1998,77(11):1229-1235.
    [20]Yao S C, Liu L. Behavior of Suspended Coal Water Slurry Droplets in a Combustion Environment [J]. Combustion and Flame,1983,51(3):335-345.
    [21]Liu G E, Law C K. Combustion of Coal Water Slurry Droplets [J]. Fuel,1986, 65(2):171-176.
    [22]岑可法,倪明江,曹欣玉.水煤浆滴的燃烧过程及其简化模型[J].工程热物理学报,1984,5(3):3540.
    [23]郑捷庆,罗惕乾,张军,等.不同雾滴要求下气力式雾化喷嘴的最佳气耗率[J].化学工程,2007,35(6):20-23.
    [24]黄镇宇,周志军,曹欣玉,等.撞击式多级雾化水煤浆喷嘴的试验研究[J].热力发电,2001,(3):40-42.
    [25]Berry G, Choi U, Chiu H. Modelling Coal-Water Mixture Spray Collective Combustion[C]//Proc 7th IntlSymposium on Coal Slurry Fuels Preparation and Utilisation, New Orleans. British Maritime Technology.
    [26]Dunnrankin D, Hoornstra J, Gruelich F A, et al. Combustion of Coal Water Slurries-Evolution of Particle-Size Distribution for Coals of Different Rank [J]. Fuel, 1987,66(8):1139-1145.
    [27]McHale E T, Scheffee R S, Rossmeissl N P. Combustion of Coal-Water Slurry [J]. Combustion and Flame,1982,45(2):121-135.
    [28]Cheng J, Zhou J H, Li Y C, et al. Effects of Pore Fractal Structures of Ultrafine Coal Water Slurries on Rheological Behaviors and Combustion Dynamics [J]. Fuel, 2008,87(12):2620-2627.
    [29]Rawlins D C, Germane G J, Hedman P O, et al. Laboratory-Scale Combustion of Coal Water Mixtures [J]. Combustion and Flame,1986,63(1-2):59-72.
    [30]Zhao C, Zhou J, Liu J, et al. Experiment Study on Characteristics of Combustion and NOx Emission in Coal Water Slurry Air-Staged Combusting [J]. Proceedings of the Chinese Society of Electrical Engineering,2011,31(8):13-17.
    [31]Nodelman I G, Pisupati S V, Miller S F, et al. Partitioning Behavior of Trace Elements during Pilot-Scale Combustion of Pulverized Coal and Coal-Water Slurry Fuel [J]. Journal of Hazardous Materials,2000,74(1-2):47-59.
    [32]Cheng J, Zhou J H, Zhou Z J, et al.2003. Sulfur Release Characteristics during Coal Water Slurry Combustion at High Temperature[C]//Chen K. International Conference on Energy and the Environment, Shanghai, P. R. China. Shanghai, P. R. China:Shanghai Scientific & Technical Literature Publication:422-425.
    [33]岑可法,姚强,骆仲泱,等.高等燃烧学[M].杭州:浙江大学出版社,2012.
    [34]Hsu B D, Branyon D P. Progress on the Investigation of Coal-Water Slurry Fuel Combustion in a Medium-Speed Diesel Engine.6. In-Cylinder Combustion Photography Studies [J]. Journal of Engineering for Gas Turbines and Power-Transactions of the Asme,1993,115(4):790-797.
    [35]Staub F W, Kimura S G, Spiro C L, et al. Coal-Water Slurry Combustion in Gas-Turbines [J]. Journal of Engineering for Gas Turbines and Power-Transactions of the Asme,1989,111(1):1-7.
    [36]Liu J G, Jiang X M, Zhou L S, et al. Co-Firing of Oil Sludge with Coal-Water Slurry in an Industrial Internal Circulating Fluidized Bed Boiler [J]. Journal of Hazardous Materials,2009,167(1-3):817-823.
    [37]Atesok G, Ozer M, Burat F, et al. Investigation on Interaction of Combustion Parameters of Coal-Water Mixtures Used in Fluidized Bed Combustor [J]. International Journal of Coal Preparation and Utilization,2012,32(2):57-68.
    [38]Wang H, Jiang X M, Zhang M X, et al. A New Fluidization-Suspension Combustion Technology for Coal Water Slurry [J]. Chemical Engineering and Processing,2010,49(10):1017-1024.
    [39]Yu G, Gong X, Liu H, et al. Coal-Water Slurry Gasification with Opposed Multi-Burners [J]. Modern Chemical Industry,2004,24(10):46-49.
    [40]Yu G S, Yan Z Y, Liang Q F, et al. The Investigations of Temperature Distributions in an Opposed Multi-Burner Gasifier [J]. Energy Conversion and Management,2011,52(5):2235-2240.
    [41]Chi G, Guo Q, Gong Y, et al. Ash Formation Mechanisms during Gasification in Coal-Water Slurry Gasifier [J]. Journal of Chemical Industry and Engineering (China), 2012,63(2):584-592.
    [42]Gong Y, Guo Q H, Liang Q F, et al. Three-Dimensional Temperature Distribution of Impinging Flames in an Opposed Multiburner Gasifier [J]. Industrial & Engineering Chemistry Research,2012,51(22):7828-7837.
    [43]王茂刚等.旋风炉设计与运行[M].北京:机械工业出版社,1980.
    [44]Marshak Y L, Barkov N N, Mansurov V 1. Investigation of Automatic Combustion Process Control in a Boiler with Vertical Cyclone Extension [J]. Thermal Engineering,1969,16(3):12-&.
    [45]Broadfie.Er. Refractory Linning for Cyclone Combustion Chamber of a Power Plant Boiler.I [J]. Refractories Journal,1969, (AUG):228-&.
    [46]Reznyako.Ab, Basina I P, Kurmanga.Mr. Investigating Combustion of Ekibastuz Coals in a Vertical Cyclone Slag-Tap Furnace [J]. Thermal Engineering,1968,15(12): 51-&.
    [47]Marshak Y L, Mansurov V I. Study of Combustion of Angren Brown Coal in a Furnace with VTI Cyclone Extension Chambers [J]. Thermal Engineering,1968, 15(2):26-&.
    [48]Malherbe C. An Examination into Combustion in a Cyclone Furnace [J]. Revue Generale De Thermique,1966,5(57):855-&.
    [49]Muravkin B N, Yudaev V G, Chelishc.Nv, et al. Commissioning a Prototype Slag-Tap Boiler with Direct Fuel Injection [J]. Thermal Engineering,1970,17(3): 42-&.
    [50]Mansurov V I, Kuvaev Y F, Marshak Y L, et al. Study of Combustion of Brown Coals in Vertical Cyclone Extension Furnaces with Tangential Introduction of Fuel and Air [J]. Thermal Engineering,1970,17(10):55-&.
    [51]Mansurov V I, Dik E P, Kuvaev Y F, et al. Combustion of Irsha-Borodino Coal in a Furnace Unit with Vertical Cyclone Extension Furnaces [J]. Thermal Engineering, 1970,17(7):23-&.
    [52]Tager S A, Talumaa R Y, Motin G I, et al. Combustion of High-Sulfur-Content Oil in a Test Rig Cyclone Furnace with Distributed Inputs [J]. Thermal Engineering, 1971,18(4):80-&.
    [53]Glebov V P, Motin G I, Sigal I Y, et al. Oxides of Nitrogen in Flue Gases with Combustion of High-Sulfur Oil in Cyclones and in Furnaces with Burners [J]. Thermal Engineering,1972,19(10):7-10.
    [54]Syred N, Beer J M. Combustion in Swirling Flows:A Review [J]. Combustion and Flame,1974,23(2):143-201.
    [55]Parida A, Khuntia S, Murty J S. Combustion of Coals with High Ash Fusion Temperatures in a Cyclone Furnace [J]. Fuel,1990,69(11):1345-1349.
    [56]Swoboda D P. Modifications Improve Combustion in Cyclone Boilers [J]. Power Engineering,1993,97(1):44-46.
    [57]张彦.75T/H前置立式旋风炉的结构特点[J].经济技术协作信息,2003,(7):48-48.
    [58]付玉洪.立式旋风炉的特点及技术应用[J].中国氯碱,2003,(07):29,38.
    [59]郭增强.浅谈立式旋风炉的运行[J].贵州电力技术情报,1991,(6):2-6.
    [60]李伯华.立式旋风炉及其效益分析[J].应用能源技术,1990,(3):36-38.
    [61]何英.75t/h立式旋风炉二次风速挡板调整方向的改造[J].黑龙江电力,1993,15(01):48-49,56.
    [62]付春岩,陈玉林.220t/h立式旋风炉运行中应注意的几个问题[J].佳木斯大学学报(自然科学版),1998,16(02):196-199.
    [63]高克,张帮杰.浅谈二次风与液态排渣立式旋风炉运行的关系[J].东北电力技术,2000,(06):14-15,24.
    [64]徐奇焕,徐鸣.立式旋风炉除渣装置的改进[J].四川电力技术,1995,(04):39-41.
    [65]孙超凡,郝福民.立式前置式旋风炉通用热力计算程序的研制[J].电站系统工程,1993,9(01):52-55,59.
    [66]侯见丁.动力旋风炉热力模拟[D].大连;大连理工大学,2001.
    [67]Qin G, He L, Lu X, et al. Study on Desulfurization during Combustion in Slag-Tapping Vertical Cyclone Furance [J]. Coal Conversion,2002,25(1):45-47.
    [68]王启民,高强,吕俊复,等.旋风炉飞灰重熔法燃烧固硫的实验研究[J].煤炭转化,2003,26(03):64-67.
    [69]水利电力部热工研究所,东北电业管理局技术改进局,武昌发电厂,等.旋风炉及其灰渣综合利用[M].北京:水利电力出版社,1979.
    [70]节能案例研究34(国家经贸委节能信息传播中心发布)液态排渣立式旋风炉技术及应用[J].设备管理与维修,2002,(06):36-37.
    [71]国家经贸委节能信息传播中心发布案例研究33:液态排渣立式旋风炉技术[J].中国能源,2002,(01):42-43.
    [72]陈运铣.旋风炉内固相质点的分布规律及炉内燃烧过程机理的商榷[J].浙江大学学报,1963,(2):85-128.
    [73]杨华,姜明宝.液态渣、粉煤灰应用技术研究[J].中国港湾建设,1995,(02):25-30.
    [74]Electric Power Research Institute, Coal Flow Measurement for Cyclone Boiler Application [R]. Palo Alto, CA,2002.
    [75]EPRI, Continuous Cyclone Barrel Flame Temperature Measurement Using Ultraviolet-Visible Emission Spectroscopy:System Description and Operations Manual [R]. Palo Alto, CA,2005.
    [76]Pittsburgh Energy Technology Center, The Coal Reburning for Cyclone Boiler NOx Control Demonstration Project-A DOE Assessment [R]. Pittsburgh, PA,1995.
    [77]Electric Power Research Institute, Layered NOxReduction Technologies on a 500 MW Cyclone-Fired Boiler [R]. Palo Alto, CA,2006.
    [78]Electric Power Research Institute, NOx Control Field Test Result on Coal-Fired Cyclone Boilers-CNCIG Programs [R]. Palo Alto, CA,1999.
    [79]Electric Power Research Institute, Assessment of NOx Reduction Potential from Combustion Modifications at Illinois Power-Baldwin Unit 1 [R]. Palo Alto, CA, and Illinois Power,1998.
    [80]Electric Power Research Institute, Cyclone Boiler NOx Control Technologies and Resulting NOx Reductions [R]. Palo Alto, CA,2003.
    [81]Reaction Engineering International, Cyclone Boiler Field Testing of Advanced Layer NOx Control Technology in Sioux Unit 1 [R]. Salt Lake City, Utah,2006.
    [82]Electric Power Research Institute, Evaluation of Corrosion Potential in Staged Cyclone Boilers [R]. Palo Alto, CA,1999.
    [83]Electric Power Research Institute, Evaluation of Cyclone Barrel Operational Impacts on Fly Ash Unburned Carbon Levels [R]. Palo Alto, CA,2002.
    [84]Electric Power Research Institute, Cyclone NOx Control:Technology and Issues Assessment [R]. Palo Alto, CA,1998.
    [85]Electric Power Research Institute, Cyclone Boiler Performance Optimization [R]. Palo Alto, CA,2011.
    [86]Carson W R, Tillman D. Cofiring Coal-Water Slurry in Cyclone Boilers:Some Combustion Issues and Considerations [J]. Proceedings of the 22nd International Technical Conference on Coal Utilization & Fuel Systems,1997,22:627-638.
    [87]杨再成.水煤浆(CWM)在液态排渣炉上燃烧论证[J].余热锅炉,1999,(1):9-17.
    [88]Clausen S. Local Measurement of Gas Temperature with an Infrared Fiber-Optic Probe [J]. Measurement Science & Technology,1996,7(6):888-896.
    [89]Dupuy J-L, Vachet P, Marechal J, et al. Thermal Infrared Emission-Transmission Measurements in Flames from a Cylindrical Forest Fuel Burner [J]. International Journal of Wildland Fire,2007,16(3):324-340.
    [90]Tsai C F, Young M S. Measurement System Using Ultraviolet and Multiband Infrared Technology for Identifying Fire Behavior [J]. Review of Scientific Instruments,2006,77(1):014901-7.
    [91]Godoy S M, Lockwood F C. Development of a Two-Co lour Infrared Pyrometer for Coal Particle Temperature Measurements during Devolatilisation [J]. Fuel,1998, 77(9-10):995-999.
    [92]Panagiotou T, Levendis Y, Delichatsios M. Measurements of Particle Flame Temperatures Using Three-Color Optical Pyrometry [J]. Combustion and Flame,1996, 104(3):272-287.
    [93]黄群星.炉内弥散介质辐射传递特性及燃烧过程优化控制研究[D],2005.
    [94]黄群星,王飞,常瑞丽,等.基于逆向蒙特卡罗法的煤粉炉内辐射能传递计算[J].中国电机工程学报,2007,27(08):88-93.
    [95]黄群星,王飞,严建华,等.乙烯/空气扩散火焰截面烟黑体积分数和温度分布的反投影重建[J].燃烧科学与技术,2009,15(03):209-213.
    [96]卫成业.燃煤锅炉炉膛火焰温度场和浓度场测量及燃烧诊断的研究[D],2001.
    [97]王飞,马增益,卫成业,等.根据火焰图像测量煤粉炉截面温度场的研究[J].中国电机工程学报,2000,20(07):40-43.
    [98]Wang F, Liu D, Huang Q X, et al.2007. Measurement of Three-Dimensional Temperature Distribution in an Absorbing, Emitting, and Anisotropically Scattering Medium[C]//Cai X, Wu Y, Huang Z, et al.5th International Symposium on Measurement Techniques for Multiphase Flows/2nd International Workshop on Process Tomography, Macao, P. R. China. Melville, USA:Amer Inst Physics,914: 661-672.
    [99]Farmer J T, Howell J R. Monte-Carlo Prediction of Radiative Heat-Transfer in Inhomogeneous, Anisotropic, Nongray Media [J]. Journal of Thermophysics and Heat Transfer,1994,8(1):133-139.
    [100]Lockwood F C, Shah N G. A New Radiation Solution Method for Incorporation in General Combustion Prediction Procedures [J]. Symposium (International) on Combustion,1981,18(1):1405-1414.
    [101]Li H Y, Ozisik M N. Identification of the Temperature Profile in an Absorbing, Emitting, and Isotropically Scattering Medium by Inverse Analysis [J]. Journal of Heat Transfer-Transactions of the Asme,1992,114(4):1060-1063.
    [102]Ozisik M N, Orlande H R B. Inverse Heat Transfer:A Fundamentals and Applications [M]. New York:Taylor & Francis Group,2000.
    [103]Bokar J C, Ozisik M N. An Inverse Analysis for Estimating the Time-Varing Inlet Temperature in Laminar-Flow inside a Parallel-Plate Duct [J]. International Journal of Heat and Mass Transfer,1995,38(1):39-45.
    [104]Liu L H, Tan H P, Yu Q Z. Inverse Radiation Problem of Sources and Emissivities in One-Dimensional Semitransparent Media [J]. International Journal of Heat and Mass Transfer,2001,44(1):63-72.
    [105]Park H M, Yoo D H. A Multidimensional Inverse Radiation Problem of Estimating the Strength of a Heat Source in Participating Media [J]. International Journal of Heat and Mass Transfer,2001,44(15):2949-2956.
    [106]Namjoo A, Sarvari S M H, Behzadmehr A, et al. Inverse Radiation Problem of Temperature Distribution in One-Dimensional Isotropically Scattering Participating Slab with Variable Refractive Index [J]. Journal of Quantitative Spectroscopy & Radiative Transfer,2009,110(8):491-505.
    [107]Liu L H, Tan H P, Yu Q Z. Inverse Radiation Problem of Temperature Field in Three-Dimensional Rectangular Furnaces [J]. International Communications in Heat and Mass Transfer,1999,26(2):239-248.
    [108]Wang F, Yan J, Cen K, et al. Simultaneous Measurements of Two-Dimensional Temperature and Particle Concentration Distribution from the Image of the Pulverized-Coal Flame [J]. Fuel,2010,89(1):202-211.
    [109]Correia D P, Ferrao P, Caldeira-Pires A. Flame Three-Dimensional Tomography Sensor for In-Furnace Diagnostics [J]. Proceedings of the Combustion Institute,2000,28(1):431-438.
    [110]Lou C, Li W-H, Zhou H-C, et al. Experimental Investigation on Simultaneous Measurement of Temperature Distributions and Radiative Properties in an Oil-Fired Tunnel Furnace by Radiation Analysis [J]. International Journal of Heat and Mass Transfer,2011,54(1-3):1-8.
    [111]Zhou H C, Lou C, Cheng Q, et al. Experimental Investigations on Visualization of Three-Dimensional Temperature Distributions in a Large-Scale Pulverized-Coal-Fired Boiler Furnace [J]. Proceedings of the Combustion Institute, 2005,30(1):1699-1706.
    [112]Zhou H C, Han S D, Sheng F, et al. Visualization of Three-Dimensional Temperature Distributions a Large-Scale Furnace via Regularized Reconstruction from Radiative Energy Images:Numerical Studies [J]. Journal of Quantitative Spectroscopy & Radiative Transfer,2002,72(4):361-383.
    [113]Liu L H, Tan H P. Inverse Radiation Problem in Three-Dimensional Complicated Geometric Systems with Opaque Boundaries [J]. Journal of Quantitative Spectroscopy & Radiative Transfer,2001,68(5):559-573.
    [114]Erturk H, Ezekoye O A, Howell J R. Comparison of Three Regularized Solution Techniques in a Three-Dimensional Inverse Radiation Problem [J]. Journal of Quantitative Spectroscopy & Radiative Transfer,2002,73(2-5):307-316.
    [115]Liu D, Wang F, Yan J H, et al. Inverse Radiation Problem of Temperature Field in Three-Dimensional Rectangular Enclosure Containing Inhomogeneous, anisotropically scattering media [J]. International Journal of Heat and Mass Transfer, 2008,51(13-14):3434-3441.
    [116]Liu D, Wang F, Huang Q-X, et al. Simulation Study on Reconstruction Model of Three-Dimensional Temperature Distribution within Visible Range in Furnace [J]. Chinese Physics B,2008,17(4):1312-1317.
    [117]冯玉霄,黄群星,梁军辉,等.三维燃烧介质和壁面温度的非接触联合重建研究[J].物理学报,2012,61(13):134702-1-134702-10.
    [118]Huang Q-x, Wang F, Yan J-h, et al. A Two-Step Discrete Method for Reconstruction of Temperature Distribution in a Three-Dimensional Participating Medium [J]. International Journal of Heat and Mass Transfer,2012,55(9-10): 2636-2646.
    [119]Liu D, Yan J, Cen K. On the Treatment of Scattering for Three-Dimensional Temperature Distribution Reconstruction Accuracy in Participating Medium [J]. International Journal of Heat and Mass Transfer,2011,54(7-8):1684-1687.
    [120]Wang F, Liu D, Cen K-f, et al. Efficient Inverse Radiation Analysis of Temperature Distribution in Participating Medium Based on Backward Monte Carlo Method [J]. Journal of Quantitative Spectroscopy & Radiative Transfer,2008, 109(12-13):2171-2181.
    [121]Wang F, Yan J H, Cen K F, et al. Simultaneous Measurements of Two-Dimensional Temperature and Particle Concentration Distribution from the Image of the Pulverized-Coal Flame [J]. Fuel,2010,89(1):202-211.
    [122]Wang F, Huang Q X, Liu D, et al. Improvement of Load-following Capacity Based on the Flame Radiation Intensity Signal in a Power Plant [J]. Energy & Fuels, 2008,22(3):1731-1738.
    [123]唐洪武等.现代流动测试技术及应用[M].北京:科学出版社,2009.
    [124]Adrian R J. Particle-Imaging Techniques for Experimental Fluid Mechanics [J]. Annual review of fluid mechanics,1991,23:261-304.
    [125]Adrian R J. Bibliography of Particle Velocimetry Using Imaging Methods, 1917-1995 [M]. Champaign and Urbana:Theoretical and Applied Mechanics, University of Illinois at Urbana-Champaign,1996.
    [126]Raffel M, Willert C E, Kompenhans J, et al. Particle Image Velocimetry:A Practical Guide [M].2nd ed. Berlin and Heidelberg:Springer,2007.
    [127]Kurada S, Rankin G W, Sridhar K. Particle-Imaging Techniques for Quantitative Flow Visualization-A Review [J]. Optics and Laser Technology,1993, 25(4):219-233.
    [128]Buchhave P. Particle Image Velocimetry-Status and Trends [J]. Experimental Thermal and Fluid Science,1992,5(5):586-604.
    [129]Laverman J A, Roghair I, Annaland M v S, et al. Investigation into the Hydrodynamics of Gas-Solid Fluidized Beds Using Particle Image Velocimetry Coupled with Digital Image Analysis [J]. Canadian Journal of Chemical Engineering, 2008,86(3):523-535.
    [130]Shi H X. Experimental Research of Flow Structure in a Gas-Solid Circulating Fluidized Bed Riser by PIV [J]. Journal of Hydrodynamics,2007,19(6):712-719.
    [131]Mizeraczyk J, Kocik M, Dekowski J, et al. Measurements of the Velocity Field of the Flue Gas Flow in an Electrostatic Precipitator Model Using PIV Method [J]. Journal of Electrostatics,2001,51-52:272-277.
    [132]Lecordier B, Mouqallid M, Vottier S, et al. CCD Recording Method for Cross-Correlation PIV Development in Unstationary High-Speed Flow [J]. Experiments in fluids,1994,17(3):205-208.
    [133]Zachos A, Kaiser M, Merzkirch W. PIV Measurements in Multiphase Flow with Nominally High Concentration of the Solid Phase [J]. Experiments in fluids, 1996,20(3):229-231.
    [134]Mungal M G, Lourenco L M, Krothapalli A. Instantaneous Velocity Measurements in Laminar and Turbulent Premixed Flames Using On-Line PIV [J]. Combustion Science and Technology,1995,106(4-6):239-265.
    [135]Hearst R J, Buxton O R H, Ganapathisubramani B, et al. Experimental Estimation of Fluctuating Velocity and Scalar Gradients in Turbulence [J]. Experiments in fluids,2012,53(4):925-942.
    [136]Giddings D, Azzopardi B J, Aroussi A, et al. Optical Investigation of a Long Throated Venturi Conveying Inert Spherical Particulate with Size Range Similar to Pulverised Coal [J]. Powder Technology,2011,207(1-3):370-377.
    [137]Agarwal G, Lattimer B, Ekkad S, et al. Influence of Multiple Gas Inlet Jets on Fluidized Bed Hydrodynamics Using Particle Image Velocimetry and Digital Image Analysis [J]. Powder Technology,2011,214(1):122-134.
    [138]Han Y, Zhang M, Cheng X, et al. Research on Flow Patterns of SL-II Ethylene Cracking Furnace [J]. Journal of Experiments in Fluid Mechanics,2007, 21(3):44-48.
    [139]Tokgoz S, Elsinga G E, Delfos R, et al. Spatial Resolution and Dissipation Rate Estimation in Taylor--Couette Flow for Tomographic PIV [J]. Experiments in fluids,2012,53(3):561-583.
    [140]Stewart K C, Vlachos P P. Vortex Rings in Radially Confined Domains [J]. Experiments in fluids,2012,53(4):1033-1044.
    [141]Kwark J H, Jeong Y K, Jeon C H, et al. Effect of Swirl Intensity on the Flow and Combustion of a Turbulent Non-Premixed Flat Flame [J]. Flow Turbulence and Combustion,2004,73(3-4):231-257.
    [142]Kim H S, Arghode V K, Gupta A K. Flame Characteristics of Hydrogen-Enriched Methane-Air Premixed Swirling Flames [J]. International Journal of Hydrogen Energy,2009,34(2):1063-1073.
    [143]Legrand M, Nogueira J, Lecuona A, et al. Atmospheric Low Swirl Burner Flow Characterization with Stereo PIV [J]. Experiments in fluids,2010,48(5): 901-913.
    [144]Stopper U, Aigner M, Ax H, et al. PIV,2D-LIF and 1D-Raman Measurements of Flow Field, Composition and Temperature in Premixed Gas Turbine Flames [J]. Experimental Thermal and Fluid Science,2010,34(3):396-403.
    [145]Chaves H, Herbst S, Skupsch C. Measurement of the Particle Velocity in a HVOF Spray with PIV under Industrial Conditions [J]. Journal of Thermal Spray Technology,2012,21(5):882-886.
    [146]Stella A, Guj G, Kompenhans J, et al. Application of Particle Image Velocimetry to Combusting Flows:Design Considerations and Uncertainty Assessment [J]. Experiments in fluids,2001,30(2):167-180.
    [147]Reinhold-Lopez K, Braeuer A, Schmitt A, et al. Flow Field Characterization in a Vertically Oriented Cold Wall CCVD Reactor by Particle Image Velocimetry [J]. Chemical Engineering Journal.2012,184:315-325.
    [148]Rottier C, Godard G, Corbin F, et al. An Endoscopic Particle Image Velocimetry System for High-Temperature Furnaces [J]. Measurement Science & Technology,2010,21(11):9.
    [149]Gamba M, Clemens N T, Ezekoye O A. Volumetric PIV and 2D OH PLIF Imaging in the Far-Field of a Low Reynolds Number Nonpremixed Jet Flame [J]. Measurement Science & Technology,2013,24(2):20.
    [150]Bohm B, Geyer D, Dreizler A, et al. Simultaneous PIV/PTV/OH PLIF Imaging:Conditional Flow Field Statistics in Partially Premixed Turbulent Opposed Jet Flames [J]. Proceedings of the Combustion Institute,2007,31(1):709-717.
    [151]Bennett J P, Kwong K S. Failure Mechanisms in High Chrome Oxide Gasifier Refractories [J]. Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science,2011,42A(4):888-904.
    [152]Kim H B, Oh M S. Changes in Microstructure of a High Chromia Refractory due to Interaction with Infiltrating Coal Slag in a Slagging Gasifier Environment [J]. Ceramics International,2008,34(8):2107-2116.
    [153]齐晓青,李宏,王玉范.水煤浆加压气化炉用高铬耐火材料的显微结构及损毁机理[J].耐火材料,2002,36(05):255-258.
    [154]Rawers J, Iverson L, Collins K. Initial Stages of Coal Slag Interaction with High Chromia Sesquioxide Refractories [J]. Journal of Materials Science,2002,37(3): 531-538.
    [155]Rawers J, Collins K, Peck M. Oxides Reactions with a High-Chrome Sesquioxide Refractory [J]. Journal of Materials Science,2001,36(20):4837-4843.
    [156]Guo Z Q, Zhang H. The Optimization of the Microstructure and Phase Assemblage of High Chromia Refractories [J]. Journal of the European Ceramic Society,1999,19(1):113-117.
    [157]Guo Z Q, Han B Q, Dong H. Effect of Coal Slag on the Wear Rate and Microstructure of the ZrO2-Bearing Chromia Refractories [J]. Ceramics International, 1997,23(6):489-496.
    [158]Wiedemeier R, McGee T D. Creep of High Chromia Refractories for Slagging Coal Gassifiers [J]. American Ceramic Society Bulletin,1986,65(9): 1236-1236.
    [159]Auger M L, Sengupta A, Sarin V K. Coal Slag Protection of Silicon Carbide with Chemically Vapor Deposited Mullite Coatings [J]. Journal of the American Ceramic Society,2000,83(10):2429-2435.
    [160]Taira S, Nakashima K, Mori K. Kinetic-Behavior of Dissolution of Sintered Alumina into CaO-SiO2-Al2O3 Slags [J]. Isij International,1993,33(1):116-123.
    [161]Chen E S, Buyukozturk O. Thermo mechanical Behavior and Design of Refractory Linings for Slagging Gasifiers [J]. American Ceramic Society Bulletin, 1985,64(7):988-994.
    [162]Buyukozturk O, Tseng T M. Thermomechanical Behavior of Refractory Concrete Linings [J]. Journal of the American Ceramic Society,1982,65(6):301-306.
    [163]Suk M O, Park J H. Corrosion Behaviors of Zirconia Refractory by CaO-SiO2-MgO-CaF2 Slag [J]. Journal of the American Ceramic Society,2009,92(3): 717-723.
    [164]Ramirez C, Ruz P, Riveros G, et al. Chrome-Magnesite Refractory Corrosion with Olivine Slag of High Cuprous Oxide Content [M]. Warrendale:Minerals, Metals & Materials Soc,2009.
    [165]Hon M H, Hsu C C, Wang M C. Corrosion of Magnesia-Chrome Brick in Molten MgO-Al2O3-SiO2-CaO-FetO Slag [J]. Materials Chemistry and Physics,2008, 110(2-3):247-255.
    [166]Hirata T, Morimoto T, Ohta S, et al. Improvement of the Corrosion Resistance of Alumina-Chromia Ceramic Materials in Molten Slag [J]. Journal of the European Ceramic Society,2003,23(12):2089-2096.
    [167]Melchior T, Biasing M, Putz G, et al. Surface Tension Measurements of Coal Ash Slags under Reducing Conditions at Elevated Pressures [J]. Fuel,2011,90(1): 280-287.
    [168]Zhao X L, Zeng C, Mao Y Y, et al. The Surface Characteristics and Reactivity of Residual Carbon in Coal Gasification Slag [J]. Energy & Fuels,2010,24: 91-94.
    [169]Li X Y, Li G Y, Cao Z D, et al. Research on Flow Characteristics of Slag Film in a Slag Tapping Gasifier [J]. Energy & Fuels,2010,24:5109-5115.
    [170]Li B Z, Brink A, Hupa M. Simplified Model for Determining Local Heat Flux Boundary Conditions for Slagging Wall [J]. Energy & Fuels,2009,23(7): 3418-3422.
    [171]Liu S, Hao Y L.2008. Numerical Study on Slag Flow in an Entrained-Flow Gasifier[C]//Proceedings of the Asme International Mechanical Engineering Congress and Exposition, Nov 11-15,2007, Seattle, WA. New York, USA:Amer Soc Mechanical Engineers,6:793-800,887.
    [172]Otaka M, Watanabe H, Hara S.2005. Numerical Simulation of Molten-Slag Fow in Coal Gasifier[C]//Proceedings of the ASME Power Conference 2005, Apr 05-07,2005, Chicago, IL. New York, USA:Amer Soc Mechanical Engineers: 1471-1476,1501.
    [173]阎常峰林陈.液排渣燃烧器液态渣膜厚度求解模型及传热分析[J].锅炉技术,2001,32(07):7-9.
    [174]Lin W, Liang Q, Liu H, et al. Study on the Thermal Stress of Slag Layer with Cracks and the Crack Extension in a Membrane Wall Entrained-Flow Gasifier [J]. Energy & Fuels,2012,26(1):518-523.
    [175]Molnar L, Vadasz P, Kozlovsky M. Study of Interactions at the Slag-Basic Refractory Boundary [J]. Ceramics-Silikaty,1993,37(3):121-&.
    [176]Kaneko T K, Bennett J P, Sridhar S. Effect of Temperature Gradient on Industrial Gasifier Coal Slag Infiltration into Alumina Refractory [J]. Journal of the American Ceramic Society,2011,94(12):4507-4515.
    [177]Kaneko T K, Thomas H, Bennett J P, et al. Synthetic Coal Slag Infiltration into Varying Refractory Materials [J]. Journal of the American Ceramic Society,2012, 95(10):3325-3333.
    [178]Kaneko T K, Zhu J, Thomas H, et al. Influence of Oxygen Partial Pressure on Synthetic Coal Slag Infiltration into Porous Al2O3 Refractory [J]. Journal of the American Ceramic Society,2012,95(5):1764-1773.
    [179]Besmann T M. Thermochemical Modeling of Refractory Corrosion in Slagging Coal Gasifiers [J]. Calphad-Computer Coupling of Phase Diagrams and Thermochemistry,2008,32(3):466-469.
    [180]Williford R E, Johnson K I, Sundararn S K. Modelling of High-Chromia Refractory Spalling in Slagging Coal Gasifiers [J]. Ceramics International,2008, 34(8):2085-2089.
    [181]Williford R E, Johnson K I, Sundaram S K, et al. Effective Diffusivity and Spalling Models for Slagging Coal Gasifiers [J]. Journal of the American Ceramic Society,2008,91(12):4016-4022.
    [182]Yu G, Zhu Q, Chi G, et al. Study on Slag Composition and Flow Property in a Bench-Scale OMB Gasifier [J]. Fuel Processing Technology,2012,104(12): 136-143.
    [183]Song W, Sun Y, Wu Y, et al. Measurement and Simulation of Flow Properties of Coal Ash Slag in Coal Gasification [J]. Aiche Journal,2011,57(3):801-818.
    [184]Song W, Dong Y, Wu Y, et al. Prediction of Temperature of Critical Viscosity for Coal Ash Slag [J]. Aiche Journal,2011,57(10):2921-2925.
    [185]Song W, Tang L, Zhu X, et al. Flow Properties and Rheology of Slag from Coal Gasification [J]. Fuel,2010,89(7):1709-1715.
    [186]Song W. Prediction of Temperature of Critical Viscosity for Synthetic Coal Ash Slags [J]. Abstracts of Papers of the American Chemical Society,2009,238:
    [187]孙勇.燃水煤浆旋风炉设计及再燃室传热流动研究[D].杭州;浙江大学,2012.
    [188]吴玖桓,张衍国,李清海.大颗粒在循环床密相区运动规律的可视化研究[J].中国电机工程学报,2006,26(04):41-45.
    [189]禹明忠,詹秀玲,庞东明,等.流场实时测量中示踪球性能的研究[J].水利水电技术,2002,33(02):43-45.
    [190]李晓东.循环流化床气固分离技术的试验及理论研究[D].杭州;浙江大学,1994.
    [191]岑可法.锅炉燃烧试验研究方法及测量技术[M].北京:水利电力出版社,1987.
    [192]周丛丛.旋流燃烧器中气固两相流实验及数值模拟的研究[D].杭州;浙江大学,2010.
    [193]赵永刚.烟花示踪法用于锅炉冷态空气动力场试验研究[J].内蒙古电力技术,1995,(02):46-52.
    [194]陈乐.水煤浆旋风炉高温烟气在辐射室传热与流动特性研究[D].杭州;浙江大学,2013.
    [195]容銮恩,袁镇福,刘志敏,等.电站锅炉原理[M].北京:中国电力出版社,1 997.
    [196]环境保护部国家质量监督检验检疫总局.GB13223-2011.火电厂大气污染物排放标准[S].北京:中国环境科学出版社,2011.
    [197]杨卫娟.电站锅炉变负荷引起的水冷壁渣层热应力和吹灰在线模糊优化运行的基础理论研究[D].杭州;浙江大学,2003.
    [198]李代力,王智化,许岩韦,等.液态排渣炉燃烧过程的数值模拟[J].浙江大学学报(工学版),2013,47(2):280-286.
    [199]严响林,徐党旗,聂剑平.液态排渣炉下炉膛一维热流密度分布特性计算[J].热力发电,2012,(09):27-29.
    [200]汪小憨,赵黛青,何立波,等.颗粒附壁燃烧机理及模拟方法探讨[J].力学学报,2006,38(4):462-470.
    [201]汪小憨,赵黛青,何立波,等.煤粉燃烧的灰渣沉积数值模型研究[J].力学进展,2005,(03):417-426.
    [202]Wang X, Zhao D, He L, et al. Modeling of a coal-fired slagging combustor: Development of a slag submodel [J]. Combustion and Flame,2007,149(3):249-260.
    [203]赵坚行.燃烧的数值模拟[M].北京:科学出版社,2002.
    [204]吴超.湍流燃烧模型在燃烧室数值计算中的应用研究[D].沈阳;沈阳航空工业学院,2009.
    [205]于延科.基于无焰燃烧的燃油锅炉节能改造研究[D].合肥;中国科学技术大学,2011.
    [206]王超.可调式机械雾化喷嘴的燃烧性能研究[D].青岛;中国石油大学,2011.
    [207]郭治民,张会强,王希麟,等.简化的联合PDF模型模拟湍流燃烧中NO生成[J].清华大学学报(自然科学版),2002,42(11):1504-1507.
    [208]Li W, Lou C, Sun Y, et al. Estimation of Radiative Properties and Temperature Distributions in Coal-Fired Boiler Furnaces by a Portable Image Processing System [J]. Experimental Thermal and Fluid Science,2011,35(2): 416-421.
    [209]Gonzalez-Cencerrado A, Pena B, Gil A. Coal Flame Characterization by Means of Digital Image Processing in a Semi-Industrial Scale PF Swirl Burner [J]. Applied Energy,2012,94(6):375-384.
    [210]Draper T S, Zeltner D, Tree D R, et al. Two-Dimensional Flame Temperature and Emissivity Measurements of Pulverized Oxy-Coal Flames [J]. Applied Energy, 2012,95(7):38-44.
    [211]Lu G, Yan Y, Cornwell S, et al. Impact of Co-Firing Coal and Biomass on Flame Characteristics and Stability [J]. Fuel,2008.87(7):1133-1140.
    [212]Lu G, Gilabert G, Yan Y. Vision Based Monitoring and Characterisation of Combustion Flames[C]//Prosser S, Yan Y. Sensors & Their Applications XIII.15: 194-200.
    [213]Yan Y, Lu G, Colechin M. Monitoring and Characterisation of Pulverised Coal Flames Using Digital Imaging Techniques [J]. Fuel,2002,81(5):647-655.
    [214]Kohse-Hoinghaus K, Barlow R S, Alden M, et al. Combustion at the Focus: Laser Diagnostics and Control [J]. Proceedings of the Combustion Institute,2005, 30(1):89-123.
    [215]Sielschott H. Measurement of Horizontal Flow in Scale Furnace Using Acoustic Vector Tomography [J]. Flow Measurement and Instrumentation,1997, 8(3-4):191-197.
    [216]Ballester J, Garcia-Armingol T. Diagnostic Techniques for the Monitoring and Control of Practical Flames [J]. Progress in Energy and Combustion Science, 2010,36(4):375-411.
    [217]Huang Q, Wang F, Yan J, et al. Simultaneous Estimation of the 3-D Soot Temperature and Volume Fraction Distributions in Asymmetric Flames Using High-Speed Stereoscopic Images [J]. Applied Optics,2012,51(15):2968-2978.
    [218]Jones M R. Inverse Analysis of Radiative Heat Transfer Systems [J]. Journal of Heat Transfer-Transactions of the Asme,1999,121(2):481-484.
    [219]Modest M F. Radiative Heat Transfer [M].2nd ed. New York:Academic Press,2003.
    [220]Lou C, Zhou H-C. Simultaneous Determination of Distributions of Temperature and Soot Volume Fraction in Sooting Flames Using Decoupled Reconstruction Method [J]. Numerical Heat Transfer Part a-Applications,2009,56(2): 153-169.
    [221]Ayranci I, Vaillon R, Selcuk N, et al. Determination of Soot Temperature, Volume Fraction and Refractive Index from Flame Emission Spectrometry [J]. Journal of Quantitative Spectroscopy & Radiative Transfer,2007,104(2):266-276.
    [222]Liu D, Wang F, Cen K F, et al. Noncontact Temperature Measurement by Means of CCD Cameras in a Participating Medium [J]. Optics Letters,2008,33(5): 422-424.
    [223]Chang H, Charalampopoulos T T. Determination of the Wavelength Dependence of Refractive-Indexes of Flame Soot [J]. Proceedings of the Royal Society-Mathematical and Physical Sciences,1990,430(1880):577-591.
    [224]Huang Q-x, Wang F, Liu D, et al. Reconstruction of Soot Temperature and Volume Fraction Profiles of an Asymmetric Flame Using Stereoscopic Tomography [J]. Combustion and Flame,2009,156(3):565-573.
    [225]Liu Z, Jiao J, Zheng Y. Study of Axial Velocity in Gas Cyclones by 2D-PIV, 3D-PIV, and Simulation [J]. China Particuology,2006,4(3-4):204-210.
    [226]Hu L, Zhou L, Luo Y, et al. Measurement and Simulation of Swirling Coal Combustion [J]. Particuology,2013,11(2):189-197.
    [227]林建忠,阮晓东,陈邦国,等.流体力学[M].北京:清华大学出版社,2005.
    [228]Hu G, Wang H, Qian F. Numerical Simulation on Flow, Combustion and Heat Transfer of Ethylene Cracking Furnaces [J]. Chemical Engineering Science, 2011,66(8):1600-1611.
    [229]Oprins A J M, Heynderickx G J. Calculation of Three-Dimensional Flow and Pressure Fields in Cracking Furnaces [J]. Chemical Engineering Science,2003, 58(21):4883-4893.
    [230]Al-Abbas A H, Naser J, Dodds D. CFD Modelling of Air-Fired and Oxy-Fuel Combustion in a Large-Scale Furnace at Loy Yang A Brown Coal Power Station [J]. Fuel,2012,102(12):646-665.
    [231]Yan L B, He B S, Yao F, et al. Numerical Simulation of a 600 MW Utility Boiler with Different Tangential Arrangements of Burners [J]. Energy & Fuels,2012, 26(9):5491-5502.
    [232]Cheng X, Hou G, Liang Q, et al. Experimental Study of Slag Flow on Membrane Wall in Entrained-Flow Gasifier [J]. Chemical Engineering,2012,40(3): 58-62.
    [233]Rawers J, Kwong J, Bennett J. Characterizing Coal-Gasifier Slag-Refractory Interactions [J]. Materials at High Temperatures,1999,16(4):219-222.
    [234]Biedenkopf P, Karwath T, Kobertz D, et al. Vaporization and Corrosion of Refractories in the Presence of Pressurized Pulverized Coal Combustion Slag [J]. Journal of the American Ceramic Society,2001,84(7):1445-1452.
    [235]Nakano J, Sridhar S, Bennett J, et al. Interactions of Refractory Materials with Molten Gasifier Slags [J]. International Journal of Hydrogen Energy,2011,36(7): 4595-4604.
    [236]Kwong K S, Bennett J, Krabbe R, et al. Engineered Refractories for Slagging Gasifiers [J]. American Ceramic Society Bulletin,2006,85(2):17-20.
    [237]Song W J, Tang L H, Zhu X D, et al. Effect of Coal Ash Composition on Ash Fusion Temperatures [J]. Energy & Fuels,2010,24:182-189.
    [238]Yuan H, Liang Q, Liu H, et al. Effects of CaCO3 on the Fusion Characteristic and Viscosity-temperature Behaviour of Coal Ashes [J]. Proceedings of the Chinese Society of Electrical Engineering,2012,32(20):49-55.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700