用户名: 密码: 验证码:
斯特林发动机活塞杆Leningrader密封性能相关问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
斯特林发动机闭式回热循环的工作特性要求活塞杆密封装置必须具有可靠的密封性能。活塞杆Leningrader密封性能具体表现为泄漏量、使用寿命与摩擦功耗,而根据密封原理可知,密封摩擦副的摩擦学行为是决定其密封性能的关键。所以,本文以密封摩擦副的弹流润滑特性研究为切入点,揭示关键工况与结构因素及密封件的粗糙度对Leningrader密封性能的作用机理与影响规律,构建斯特林发动机活塞杆密封基础理论,为密封装置的创新设计和密封结构的优化设计提供科学依据与理论指导。
     本文按照递进关系及理论研究与实验验证相结合的研究方案,首先进行系统工况因素对Leningrader密封性能的影响研究,由定量研究到动态研究;在此基础上,再研究扩撑、过盈与磨损三个关键结构因素对Leningrader密封性能的作用机理与影响规律;基于工况与结构因素对密封性能影响的研究结论,创建混合润滑状态下考虑密封件表面粗糙度影响的活塞杆滑动密封性能分析数学模型,揭示粗糙度对密封性能的作用机理及其与其它因素共同作用的影响规律;最后,进行Leningrader结构润滑特性实验与密封性能实验,再通过数值比对与综合分析,确定Leningrader密封性能设计的关键参数及其规划策略。
     1)对Leningrader密封结构进行了简化、建模,在工况参数定量条件下研究了密封摩擦副的润滑特性,在此基础上,解析了润滑油压对摩擦副摩擦学行为的影响规律,再结合工程实际,重点研究了热效应、变速及挤压应力对Leningrader密封性能的动态影响,揭示了关键工况因素对密封性能的作用机理与影响规律。
     2)构建了Leningrader密封原理数学模型,研究了撑环扩撑作用下密封入口区“喇叭口”的弹性力学特性,基于EHD理论,解析了扩撑与过盈对Leningrader密封摩擦副弹流润滑特性的影响机制,再结合密封件的摩擦磨损性能,揭示了磨损对Leningrader密封性能的作用机理与影响规律。
     3)基于关键工况与结构因素对Leningrader密封性能影响的研究结论,创建了混合润滑状态下包括表面粗糙度影响的活塞杆滑动密封性能分析数学模型,综合流体动力学、变形力学与接触力学,研究了密封区混合润滑状态的形成机理,解析了密封表面粗糙度对密封性能的作用机理,揭示了粗糙度与系统结构及工况参数之间的匹配关系及相互作用规律。
     4)针对理论研究的实验验证问题,研制了机械结构上实现全封闭、数据检测上实现微流量测量的往复式活塞杆密封性能试验机,进行了Leningrader结构润滑特性与密封性能两种状态下的实验验证,完成了数值比对与综合分析,确定了活塞杆Leningrader密封性能设计的关键。
     总之,系统工况与结构参数的优化配置是进一步提升Leningrader密封性能的关键。性能设计的主要参数有速度、润滑油压、过盈量、加工精度、扩撑量与弹性模量,基本配置策略是在保证弹性模量稍小的密封件表面粗糙度的基础上,适当增大配合过盈量,在保证理想“喇叭口”形状的前提下,增大润滑油压,在系统热平衡的条件下,加大杆速。
The high-performance of piston rod sealing device ensures the closed type regenerative cycle in Stirling engine. The sealing property of Leningrader seal embodies leakage rate, working life and friction power consumption. According to the sealing principle of Leningrader seal, it is obvious that the tribological behavior of friction pair is the root of the problem. So, based on the research on the elastohydrodynamic lubrication characteristics of friction pair, to explore and analyse the mechanism and influence law of key condition or structure factors and roughness in Leningrader seal, so as to build the basic sealing theory for Stirling engine piston-rod, and provide scientific proof for the innovative design of the sealing device and theoretical guidance for the optimization design of the sealing structure.
     In this dissertation, according to the gradual, layers of in-depth and theoretical studies combined with experiment research plan, the impact in sealing performance of the key condition factors in the Leningrader system is resaerched firstly. Then, on the basis of the reasearch of key condition factors, the action mechanism and influence laws of the key structural factors of Leningrader seal are studied. And then, based on the foregoing research conclusions, the numerical model of reciprocating rod seal including surface roughness and mixed lubrication is built, thus the action mechanism and influence laws of roughness combined with other key factors are explored. Finally, two experiments of lubricating property and sealing performance for the Leningrader seal are tested, and through the numerical comparison and comprehensive analysis, the key design parameters and their planning strategy for Leningrader seal are determined.
     1) A simplified model for Leningrader seal is built, and under the precondition of quantitative condition parameters, the lubrication characteristics of core sealing area is studied firstly. Then, bsed on the quantitative study, the action mechanism of lubrication pressure for friction pair lubrication properties is researched. Finally, combining with the engineering practice, the action mechanism and influence laws of heating effect, varying velocity and crushing stress in Leningrader sealing system are explored.
     2) The mathematical model of Leningrader sealing principle is built, and the elastic mechanical properties of sealing element under the action of expansion ring is researched firstly. Then, based on EHD theory, the influencing mechanism of the expansion and interference for the elastohydrodynamic characteristics of the Leningrader sealing area is studied. And finally, the action mechanism and influence laws of the wear are explored.
     3) Based on the research conclusions of working condition and structure factors, a numerical model of reciprocating rod seal including surface roughness and mixed lubrication is built. The model consists of three coupled ananlysis of fluid mechamics, deformation and contact mechamics. And then the formation mechanism of mixed lubrication state in sealing area is analysed, the action mechanism of roughness for sealing property is explored, and the interactional laws and matching relation between roughness and the system structure or the working condition factors are announced.
     Basically, the optimal allocation of system working condition and structure parameters is the key point to promote Leningrader sealing performance. The key parameters are velocity of the rod, lubrication pressure, magnitude of interference, machining precision, amount of expansion and elasticity modulus. The basic allocation strategy of these parameters is, on the basis of high surface quality of smaller elastic modulus sealing element, increasing the assembling interference; on the premise of ideal entrance shape of sealing core, strengthening the lubricating oil pressure; and under the condition of thermal equilibrium in the system, improving the shaft speed.
引文
[1]http://www.sdpc.gov.cn/hjbh/
    [2]许庆,范英.预期原油供给威胁与外部价格传导——一个液态生物质能源缓解能源安全危机的视角.世界经济文汇.2011(04):107-120
    [3]王六玲,李明,杨志坤,等.槽式聚光太阳能热电联供复合循环.太阳能学报.2009,30(08):1054-1057
    [4]李鑫,李安定,李斌,等.碟式/斯特林太阳能热发电系统经济性分析.中国电机工程学报.2005,25(12):108-111
    [5]王六玲,徐永锋,李明,等.聚光太阳能热电系统的实验研究.太阳能学报.2010,31(09):1154-1160
    [6]延庆建亚洲首座兆瓦级太阳能热电式发电站.光机电信息.2009(02):54-55
    [7]金东寒.绿色动力——斯特林发动机.世界科学.1997(6):25-27
    [8]李丰,陈鸿伟.斯特林发动机在能源利用领域中的应用.能源研究与利用.2006(04):30-32
    [9]Duncan A P. WHO CAN SEE THE WIND? Designing Natural Ventilation. Canadian Consulting Engineer.2008,49(5):34
    [10]Rhone R, Noah K. THE PROMISE OF SOLAR ENERGY. UN Chronicle.2007, 44(2):63
    [11]Cameron C, Cornelius C. A Systems-Driven Approach to Solar Energy R&D. IEEE.2007
    [12]Bancha K, Somchai W. A review of solar-powered Stirling engines and low temperature differential Stirling engines. Renewable and Sustainable Energy Reviews.2003(7):131-154
    [13]Tursunbaev I A. Analytic Model of Solar Power Plant with a Stirling Engine. Applied Solar Energy.2007,43(1):13-16
    [14]Der Minassians A, Sanders S R. Multiphase Stirling Engines. Journal of Solar Energy Engineering.2009,131:21011-21013
    [15]Tavakolpour A R, Zomorodian A, Golneshan A A. Simulation, construction and testing of a two-cylinder solar Stirling engine powered by a flat-plate solar collector without regenerator. Renewable Energy.2008,33:77-87
    [16]Thombarea D G, Verma S K. Technological development in the Stirling cycle engines. Renewable and Sustainable Energy Reviews.2008(12):1-38
    [17]金东寒.斯特林发动机技术.哈尔滨:哈尔滨工程大学出版社,2009
    [18]Tanaka A. Gas Seals of Stirling Engine. JSME International Journal Series Ⅲ. 1989,32(3):349-355
    [19]Gronau H. Investigations on Gland Packings and Sealing Rings for High Hydraulic Pressure:[dissertation]. Berlin:University of Berlin,1935
    [20]White C M, Denny D F, Britain G. The sealing mechanism of flexible packings. HM Stationery Office,1948
    [21]杨继隆,俞浙青,裴翔,等.液压往复密封的技术进展.中国机械工程.2001,12(7):842-846
    [22]Johnson K L. Contact mechanics. London:Cambridge university press,1987
    [23]Chadwick P. Thermo-mechanics of Rubberlike Materials. Philos Trans R Soc Lond Ser A.1974,276:371-403
    [24]Price C. Thermodynamics ofRubber Elasticity. Proc R Soc Lond Ser A.1976, 351:331-350
    [25]Ogden R W. Recent Advances in the Phenomenological Theory of Rubber Elasticity. Rubber Chem Techno.1986,59(3):361-383
    [26]Lawrie J M, Donoghue J P O. The Mechanism of Lubricmion in a Reciprocating Seal:the Second International Conference on Fluid Sealing. England:1964:B6, 69-80
    [27]Dowson D, Swales P D. An Elastohydrodynamic Approach to the Problem of the Reciprocating Seal. In:the Third International Conference on Fluid sealing. England,1967,33-44
    [28]Dowson D, Swales P D. The Development of Elastohydrodynamic Conditions in a Reciprocating Seal. In:the Fourth International Conference on Fluid sealing. England,1969,2-10
    [29]Wemecke P. W往复密封过程分析in国际流体密封会议文集.北京:机械工业出版社,1991
    [30]Nikas G K. Analytical study of the extrusion of rectangular elastomeric seals for linear hydraulic actuators. Proceedings of the Institution of Mechanical Engineers, Part J:Journal of Engineering Tribology.2003,217(5):365-374
    [31]Nikas G K. Transient elastohydrodynamic lubrication of rectangular elastomeric seals for linear hydraulic actuators. Proceedings of the Institution of Mechanical Engineers, Part J:Journal of Engineering Tribology.2003,217(6): 461-473
    [32]Nikas G K. Elastohydrodynamics and mechanics of rectangular elastomeric seals for reciprocating piston rods. Journal of Tribology.2003,125(1):60-69
    [33]Nikas G K, Sayles R S. Modelling and optimization of composite rectangular reciprocating seals. Proceedings of the Institution of Mechanical Engineers, Part J:Journal of Engineering Tribology.2006,220(4):395-412
    [34]Nikas G K, Sayles R S. Nonlinear elasticity of rectangular elastomeric seals and its effect on elastohydrodynamic numerical analysis. Tribology International. 2004,37(8):651-660
    [35]Nikas G K, Sayles R S. Nonlinear elasticity of rectangular elastomeric seals and its effect on elastohydrodynamic numerical analysis. Sealing Technology.2005, 2005(3):6-11
    [36]Maser N B. Numerical model of a reciprocating rod seal, including surface roughness and mixed lubrication:[dissertation]. Georgia:Georgia Institute of Technology,2006
    [37]Yang B, Salant R F. A Numerical Model of a Reciprocating Rod Seal With a Secondary Lip. Tribology Transactions.2008,51(2):119-127
    [38]Yang B, Salant R F. Numerical Model of a Tandem Reciprocating Hydraulic Rod Seal. ASME J. Tribol.2008,130(3):32201
    [39]Salant R F, Maser N, Yang B. Numerical Model of a Reciprocating Hydraulic Rod Seal. ASME J. Tribol.2007,129(1):91-97
    [40]Thatte A, Salant R F. Transient EHL analysis of an elastomeric hydraulic seal. Tribology International.2009,42(10):1424-1432
    [41]柏红专.工程机械液压油缸密封型式与公差配合的选择.凿岩机械气动工具.1994(1):37-44
    [42]张秋慧.液压缸的泄漏与防止.冶金译丛.1999(4):91-98
    [43]刘世军,雷天觉,刘红旗,等.高压往复轴动密封柱塞偏心率.清华大学学报(自然科学版).2000,40(8):25-27
    [44]刘世军,雷天觉,刘红旗,等.高压往复动密封柱塞微扰摆动的稳定性分析.清华大学学报(自然科学版).2001,41(2):50-53
    [45]吴瑞明,周晓军,雷良育.液压缸密封工艺分析.机床与液压.2003,324(6):306-307
    [46]谭晶,杨卫民,丁玉梅.矩形橡胶密封圈的有限元分析.润滑与密封.2007,32(2):36-39
    [47]刘观华.液压缸的密封结构.液压气动与密封.2008,28:9-12
    [48]易孟林,杨振球.有限元法在液压缸Y形密封圈接触应力分析中的应用.液压气动与密封.2005(6):8-10
    [49]谌彪,张赞牢,杨建勇.静密封条件下Y形橡胶密封圈有限元分析.润滑与 密封.2009,34(3):72-75
    [50]褚卫彬.超高压往复压缩机填料密封失效原因分析及措施:[天津大学硕士学位论文].天津:天津大学,2009
    [51]王仕仙,徐建生,卢霞.基于ANSYS的滑动摩擦热结构耦合分析.武汉工程大学学报.2009,31:67-70
    [52]李传敏,刘晓玲.液压系统中往复运动密封分析.煤矿机械.2010,31(5):89-93
    [53]Mao J, Wang W, Liu Y. Experimental and theoretical investigation on the sealing performance of the combined seals for reciprocating rod. Journal of mechanical science and technology.2012,26(6):1765-1772
    [54]冯全科,束鹏程,赵忖.往复式压缩机填料摩擦特性的模拟研究.西安交通大学学报.1998,32(1):45-48
    [55]张康雷,周志鸿,许同乐.液压缸活塞杆密封的泄漏量计算.润滑与密封.2006(8):102-105
    [56]任晓,吴承伟,周平.粗糙表面的气体密封性能研究.机械工程学报.2010,46(16):176-181
    [57]刘晓玲,李传敏,宋飞宇.活塞杆密封的流体润滑分析.煤矿机械.2011,32(8):99-101
    [58]Krauter A I. Measurement of Oil Film Thickness for Application to Elastomeric Stirling Engine Rod Seals. Journal of Lubrication Technology.1982,104(4): 455-459
    [59]Yang Y. Thermal and Elastohydrodynamic Analysis of Reciprocating Rod Seals in the Stirling Engine:[dissertation]. United States -- Pennsylvania:Carnegie Mellon University,1983,130
    [60]Eusepi M W, Walow J A. EHD Analysis of and Experiments on Pumping Leningrader Seals. NASA,1986
    [61]Huang S C, Berggren R. Evaluation of Stirling engine appendix gap losses. NASA,1986
    [62]Yang B. Elastohydrodynamic model of reciprocatng hydraulic rod seals:[dissertation]. United States -- Georgia:Georgia Institute of Technology, 2010
    [63]Radcliffe C. Sealing material developments for reciprocating gas compressors. Sealing Technology.2005(11):7-11
    [64]Schubert R. The influence of a gas atmosphere and its moisture on sliding wear in PTFE compositions. Lubrication Technology.1971(4):216-223
    [65]Lancaster J K. Accelerated wear testing of PTFE composite bearing materials. Tribology.1979(4):65-75
    [66]Maer P S, Mitchell P J, Atkins B R. Multi-phase filled-plastics piston rings for non-lubricated compressors:A comparison of the performance of filled ptfe and epoxy-bonded materials in dry gases. Tribology.1973,6(4):129-134
    [67]Hart R R. Performance of ptfe based piston rings in an unlubricated reciprocating compressor. Proceedings of the Institution of Mechanical Engineers.1966,181(1):13-22
    [68]汪萍.填充PTFE制品的成型工艺及应用.现代塑料加工应用.1997(03):20-22
    [69]柳志荣,杨文光.填充PTFE活塞环的设计应用.压缩机技术.1996(05):11-15
    [70]周亚明.填充PTFE的发展和应用.有机氟工业.1989(03):67-69
    [71]张招柱,薛群基,刘维民,等.陶瓷颗粒填充PTFE复合材料的摩擦磨损性能研究.高分子材料科学与工程.2001(02):45-47
    [72]张招柱,薛群基,刘维民,等.金属硫化物及石墨填充PTFE复合材料的摩擦磨损性能研究.复合材料学报.1999(04):34-36
    [73]张招柱,薛群基,沈维长,等.金属填充PTFE复合材料的摩擦磨损性能研究.高分子材料科学与工程.1999(01):98-101
    [74]张招柱,薛群基,刘维民,等.铝及其化合物填充PTFE复合材料的磨擦磨损性能研究:第十届全国复合材料会议.上海:1998
    [75]张红烨,邓联勇.碳粉填充PTFE复合材料的研究.润滑与密封.2007(12):45-48
    [76]万芳新,何春霞,黄晓鹏.碳材料填充PTFE复合材料摩擦磨损性能.润滑与密封.2008,33(09):45-47
    [77]万芳新,何春霞,黄晓鹏.硬碳填充PTFE复合材料摩擦磨损性能研究.润滑与密封.2008(10):58-60
    [78]单昆仑,向定汉.短玻璃纤维和石墨填充PTFE的摩擦磨损特性研究.润滑与密封.2006(05):67-69
    [79]刘晓霞,李同生,吕仁国.石墨、MoS2填充PTFE的摩擦学转移特性研究.化工新型材料.2002(01):56-58
    [80]黄晓鹏,万芳新,何春霞.软碳填充PTFE复合材料摩擦磨损性能研究.润滑与密封.2009(08):50-52
    [81]胡萍,姜明,汪巍,等.聚四氟乙烯基固体润滑剂结晶度、冷却工艺及摩擦性能相关性研究.润滑与密封.2006(2):96-100
    [82]郭恒,赵俊,孙希桐.填充聚四氟乙烯无油润滑滑动磨损机理的研究.北京航空航天大学学报.1990(4):32-39
    [83]余达强,肖建中,胡树兵.短玻纤填充PTFE复合材料磨损性能研究.润滑与密封.2004(06)
    [84]万芳新,何春霞,黄晓鹏.碳纤维填充PTFE复合材料摩擦磨损性能研究.甘肃农业大学学报.2009,44(02):157-160
    [85]万芳新,何春霞,黄晓鹏.碳黑填充PTFE复合材料干摩擦磨损性能分析.润滑与密封.2007,32(12):87-99
    [86]杨学宾,晋欣桥,杜志敏,等.往复式无油润滑压缩机填料密封的摩擦力研究.上海交通大学学报.2009,43(04):669-673
    [87]杨学宾,晋欣桥,杜志敏,等.无油润滑空压机填料密封环的摩擦特性.机械工程学报.2009,v.45(07):114-119
    [88]杨学宾,晋欣桥,杜志敏,等.滑动速度和正压力对三种PTFE自润滑材料摩擦系数的影响.内燃机工程.2010(02):105-108
    [89]杨学宾,晋欣桥,杜志敏,et al. Experimental Study on Frictional and Sealing Performances of Packing Rings in an Oil-free Gas Compressor. Journal of Shanghai Jiaotong University(Science).2009(06):725-731
    [90]杨学宾,周湘江,罗义英.往复式空压机填料密封环径向弹簧贴紧力研究.低温与超导.2008,36(04):58-61
    [91]杨学宾,魏刚强.高压无油润滑压缩机密封材料的选择.压缩机技术.2004(01):35-36
    [92]Maer P S, Mitchell P J, Atkins B R. Multi-phase filled-plastics piston rings for non-lubricated compressors::A comparison of the performance of filled ptfe and epoxy-bonded materials in dry gases. Tribology.1973,6(4):129-134
    [93]Brushan B, Wilcock D F. Wear behavior of polymeric compositions in dry reciprocating sliding. Wear.1982,75(1):41-70
    [94]Lai S, Li T, Liu X, et al. A Study on the Friction and Wear Behavior of PTFE Filled with Acid Treated Nano-Attapulgite. Macro. Mater.& Eng.2004, 289(10):916-922
    [95]Mcelwain S E, Blanchet T A, Schadler L S, et al. Effect of particle size on the wear resistance of alumina-filled PTFE micro-and nanocomposites. Tribology Transactions.2008,51(3):247-253
    [96]Lai S, Li T, Liu X, et al. The tribological properties of PTFE filled with thermally treated nano-attapulgite. Tribology International.2006,39(6): 541-547
    [97]Xian-Hua C, Qian-Qian S. Effect of rare earths on mechanical and tribological properties of carbon fibers reinforced PTFE composite. Tribology Letters.2006, 23(2):93-99
    [98]Zhang H, Zhang Z, Guo F, et al. Study on the tribological behavior of hybrid PTFE/cotton fabric composites filled with Sb2O3 and melamine cyanurate. Tribology International.2009,42(7):1061-1066
    [99]Cheng X, Xue Y, Xie C. Tribological investigation of PTFE composite filled with lead and rare earths-modified glass fiber. Materials Letters.2003, 57(16-17):2553-2557
    [100]Liwen M U, Feng X, Zhu J, et al. Comparative study of tribological properties of different fibers reinforced PTFE/PEEK composites at elevated temperatures. Tribology Transactions.2010,53(2):189-194
    [101]Chen B, Wang J, Yan F. Microstructure of PTFE-Based Polymer Blends and Their Tribological Behaviors Under Aqueous Environment. Tribology Letters. 2012,45(3):387-395
    [102]苏尚勤,马六成.活塞杆用密封结构与密封圈.机械工程师.1999(01):30-31
    [103]徐林平.山形组合密封圈的特点及其应用.液压与气动.2002,1:42-43
    [104]严桃平,赵迎生,包海涛.新型组合密封圈的密封机理及其应用.机床与液压.2003(1):244-245
    [105]谭晶,杨卫民,丁玉梅,等.滑环式组合密封件的研究(Ⅰ)——方形同轴密封件(格来圈)的分析.润滑与密封.2007,32(01):53-56
    [106]谭晶,梁军,杨卫民,等.滑环式组合密封件的研究(Ⅱ)——阶梯形同轴密封件(斯特圈)的有限元分析.润滑与密封.2007,32(07):16-20
    [107]喻九阳,高九阳,吴艳阳,等.机械振打器不同往复密封结构功率损耗的分析.润滑与密封.2011,4:69-71
    [108]Curulla J F, Beck T L. Testing of reciprocating seals for application in a Stirling cycle engine. NASA,1980
    [109]Euseip M W, Walowit J A, Pinkus O, et al. Performance of Oil Pumping Ring-An Analytical and Experimental Study. NASA,1986
    [110]邹隆清,刘洪硕,邓十洲.斯特林发动机.长沙:湖南大学出版社,1985
    [111]谢友柏.弹性流体力学润滑理论——研究现状及其在实际中的应用.西安交通大学学报.1963(3):34-46
    [112]Patankar S. Numerical heat transfer and fluid flow. Washington:Hemisphere Publishing Corp.,1980
    [113]Pavyar P, Salant R F. A Computational Method for Cavitation in a Wavy Mechanical Seal. ASME Journal of Tribology.1992,114:199-204
    [114]Patir N, Cheng H S. An Average Flow Model for Determining Effects of Three-Dimensional Roughness on Partial Hydrodynamic Lubrication. J. of Lubrication Technology.1978,100:12-17
    [115]Patir N, Cheng H S. Application of Average Flow Model to Lubrication Between Rough Sliding Surfaces. J. of Lubrication Technology.1979,101: 220-229
    [116]Streator J L. A Model of Mixed Lubrication with Capillary Effects. Proc.15th Leeds-Lyon Symposium on Tribology.2001:121-128

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700