用户名: 密码: 验证码:
体内植入器件的Witricity系统设计与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为一个新方法,磁耦合谐振无线能量传输技术受到了国内外研究学者的广泛关注,但是还有很多问题尚未解决,特别是在对体内植入器件进行无线能量传输方面,关注的学者和研究机构相对较少,需要解决的问题还很多。
     本文主要针对应用于体内植入器件的小型磁耦合谐振无线能量传输系统进行研究,首先利用耦合模理论研究了磁耦合无线能量传输系统的传输规律及最佳工作条件,然后对系统进行建模分析,在仿真分析的基础上设计出适用于体内植入器件的小尺寸谐振器。最后,将小尺寸谐振系统放置于不同的实验环境中进行实验研究,并应用时域有限差分方法计算系统工作时人体的比吸收率,依此判断该方法对体内器件供电的安全性。
     本文主要研究工作有以下几个方面:
     1、应用耦合模理论,计算线圈中能量并研究两个线圈在强耦合和弱耦合状态下的能量传输效率、线圈固有频率的改变对能量传输状态的影响以及谐振频率对线圈品质因数的影响,最后研究扰动对工作效率以及损耗效率的影响。
     2、建立立方体螺旋谐振器及平面螺旋谐振器仿真计算模型,通过改变谐振器各参数,确定各参数对谐振器谐振频率的影响。仿真结果表明线圈线径和介质厚度对线圈谐振频率影响最大,传输效率在谐振点达到最大。在仿真基础上,设计了适用于体内植入器件的小尺寸谐振器,谐振器体积1.35cm3。
     3、建立了人体头部及胸腔数值仿真模型,对Witricity系统给体内植入器件进行供电时人体头部及胸腔的SAR值进行计算。通过计算得出,应用Witricity系统对体内植入器件进行供电时,人体头部及胸腔的SAR值均低于国际限值标准。
     4、对立方体螺旋谐振器、平面螺旋谐振器及小尺寸平面螺旋谐振器分别进行了实验分析,通过改变系统两谐振器之间的垂直距离、水平位移以及旋转角度,计算系统传输功率及效率。此外,将系统置于空气、模拟人体组织液及新鲜猪肉这三种不同环境下,进行能量传递,计算系统在不同环境下的传输功率及效率。实验结果表明模拟人体组织液和新鲜猪肉对系统的传输效率影响很小。最后对整流滤波稳压电路进行实验,得到了充电模块所需的电压,验证了整流滤波稳压部分的正确性。
     本文对磁耦合谐振无线能量传输的传输机理、传输条件进行了研究,还在仿真研究基础上设计出适用于体内植入器件的小型磁耦合谐振无线能量传输系统,并计算了系统工作时对人体的生物安全性,这在国内尚属首次,这也为无线能量传输技术在医学领域发展奠定了基础。
Nowadays the magnetic coupling resonant wireless power transmission technology hasreceived wide attention as a new theory by the scholars at home and abroad. But manyproblems have not been solved, especially in the aspect of the in vivo implantable devices.
     In this paper the small size magnetic coupling resonant wireless power transmissionused in implantable devices has been analysed. At first the magnetic coupling transmissionrule of wireless energy transmission system and the best working conditions are studied bycoupled-mode theory. Then the system numerical model is established and the small sizeresonator is designed on the basis of simulation analysis. Finally, the small size resonantsystem is placed in different experiment environments and the finite difference time domainmethod is used to calculate the SAR of human body to judge the safety of the power supplydevice.
     Main points of this paper are as follows:
     1. The coil energy transfer efficiency in the condition of strong coupling and weakcoupling using coupled-mode theory, the effects of the change of coil natural frequency onthe energy transfer state and the quality factor is calculated, and the effect of disturbance onthe work efficiency and the loss efficiency is studied.
     2. The cube spiral resonator and planar spiral resonator simulation model is established.The parameters influence on the resonance frequency of resonators by changing theresonator parameters is determined.The simulation results show that the coil wire diameterand the medium thickness of coil has the greatest effect on the resonant frequency. Thesmall size resonator with the volume of1.35cm3is designed based on the simulation.
     3. The human head and chest numerical simulation model is established and the SARof head and chest is calculated by FDTD when the implanted device is powered byWitricity system. As the results of the model calculation, the SAR values are lower than theinternational standard limit.
     4. Experiments are carried out to the cube spiral resonator, planar spiral resonator andsmall size plane spiral resonator respectively. The system transmission power andefficiency is calculated by changing the vertical distance between two resonators,horizontal displacement and rotation Angle. In addition, the system is placed in the air,simulated human body tissue fluid and fresh pork to transfer energy and the transmissionpower and efficiency under the different environment is studied. Experimental results showthat the simulated human body tissue fluid and the fresh pork have little effect on systemII
     transmission efficiency. Finally the voltage needed for the charging module is got byrectifier filter circuit.
     In this paper the transmission mechanism and transmission conditions of magneticcoupling resonant wireless power transmission system has been studied, and a small sizemagnetic coupling resonant wireless power transmission system suitable for implantabledevices has been designed based on the simulation.The biological safety to human bodywhen the system is working has been calculated for the first time in our country, and it haslaid a foundation for the wireless energy transmission technology developing in the medicalfield.
引文
[1]杨庆新,陈海燕,徐桂芝,等.无接触电能传输技术的研究进展.电工技术学报[J],2010,25(7):6~13
    [2]赵军,徐桂芝,张超,等.磁耦合谐振无线能量传输系统头部植入线圈对人体头部电磁辐射影响的研究[J].中国生物医学工程学报,2012,31(5):54~59
    [3] http://www.thestreet.com/story/11114146/1/thoratec-announces-development-agreement-with-witricity-for-proprietary-energy-transfer-technology.html[Web Page]
    [4]唐治德.植入电子器件的体导电能量传递原理及方法研究[D].重庆:重庆大学,2007
    [5]冯正权,吴宝明,卓豫,等.医学植入微电子系统的研究与应用进展[J].医疗卫生装备,2007,28(6):30~33
    [6]卓勇.生物体内置电装置的外部供电模式研究[D].重庆:重庆大学,2007
    [7]唐春森.非接触电能传输系统软开关工作点研究及应用[D].重庆:重庆大学,2009
    [8]封阿明.基于全桥谐振变换器的非接触电能传输系统基本特性研究[D].江苏:南京航空航天大学,2011
    [9]王智慧.基于包络线调制的非接触电能传输模式研究[D].重庆:重庆大学,2009
    [10] http://www.j-kanban.com/thread-3977-1-1.html[Web Page]
    [11] http://news.rfidworld.com.cn/2008_8/2008826921297669.html[Web Page]
    [12] http://news.rfidworld.com.cn/2009_1/200919855406370.html[Web Page]
    [13] http://china.nikkeibp.com.cn/news/news/39-mobi/48219-20091011.html[Web Page]
    [14] Teck C B, Imura T, Kato M, et al. Basic study of improving efficiency of wireless power transfervia magnetic resonance coupling based on impedance matching[C].2010IEEE InternationalSymposium on Industrial Electronics(ISIE),2010:2011~2016
    [15] Teck C B, Imura T, Kato M, et al. Automated impendence matching system for robust wirelesspower transfer via magnetic resonance coupling[C].2010IEEE International Symposium onIndustrial Electronics (ISIE),2010
    [16] Imura T, Okabe H, Hori Y. Basic experimental study on helical antennas of wireless power transferfor electric vehicles by using magnetic resonant coupling[C]. Vehicle power and propulsionconference,2009:936~940
    [17] Hee-Jin Lee, Jin-young bang, Chin-work Chung. Electromagnetically coupled resonators usingtoroidal ferrite core for wireless power transfer[C]. Microwave workshop series on innovativewireless power transmission.2012:183~186
    [18] Sample A P, Meyer D A,Smith J R. Analysis experimental results and range adaptation ofmagnetically coupled resonators for wireless power transfer[J].IEEE transactions on industrialelectronics.2011,2(58):544~554
    [19] Cannon B L, Hoburg J F, stancil D D, et al.Magnetic resonant coupling as a potential means forwireless power transfer to multiple small receivers[J]. IEEE transactions on power electronics.2009,24(7):1819~1825
    [20] Dionigi M, Mongiardo M. Muliti band resonators for wireless power transfer and near fieldmagnetic communications[C].Microwave workshop series on innovative wireless powertransmission,2012:61~64
    [21] Duccio Gallichi, Leccese Fabio. A simple method for calculating lumped parameters of planarspiral coil for wireless energy transfer [C].201211th international conference on environment andelectrical engineering,2012:869~872
    [22] Dionigi M, Mongiardo M. Magnetically coupled resonant wireless power transmission systems withrelay elements[C]. Microwave workshop series on innovative wireless power transmission,2012:223~226
    [23] http://www2.toyota.co.jp/en/news/11/04/04272.html[Web Page]
    [24]http://www.dailytech.com/Audi+Working+on+Wireless+Charging+for+EVs+Using+WiTricity+Technology/article24140html[Web Page]
    [25] Xiaoyu Liu, fei Zhang, Steven A Hackworth, et al. Modeling and simulation of a thin film powertransfer cell for medical devices and implants[C]. IEEE international symposium on circuits andsystems2009(ISCAS2009),2009:3086~3089
    [26] Fei zhang, Hackworth S A, Xiaoyu Liu,et al.Wireless power delivery for wearable sensors andimplants in body sensor networks[C].Engineering in medicine and biology society (EMBC),2010:692~695
    [27] Fei Zhang, Hackworth S A, Xiaoyu Liu, et al. Wireless energy transfer platform for medical sensorsand implantable devices[C].Engineering in medicine and biology society (EMBC),2009:1045~1048
    [28] Fei Zhang, Xiaoyu Liu,Hackworth S A, et al. In vitro and in vivo studies on wireless powering ofmedical sensors and implantable devices [C]. Life science systems and applications workshop(LISSA),2009:84~87
    [29] Fei Zhang, Xiaoyu Liu, Hackworth S A, et al. Wireless energy delivery and data communication forbiomedical sensorsand implantable devices[C].2009IEEE35th annual northeast bioengineeringconference,2009
    [30] Xiaoyu Liu,Fei Zhang, Hackworth S A, et al.Wireless power transfer system design for implantedand worn devices[C].2009IEEE35th annual northeast bioengineering conference
    [31] Fei Zhang, Hackworth S A, Weinong Fu, et al. The relay effect on wireless power transfer usingwitricity[C]. IEEE conference on Electromagnetic Field Computation(CEFC2010),2010
    [32] http://news.cecb2b.com/info/20110719/19758.html[Web Page]
    [33] http://www.thestreet.com/story/11114146/1/thoratec-announces-development-agreement-with-witricity-for-proprietary-energy-transfer-technology.html[Web Page].
    [34]孙跃.非接触电能传输系统的频率稳定性研究[J].电工技术学报,2005,20(11):56~59
    [35] Sun Y, Tang C, Hu A P, et al. Multiple soft-switching operating points-based power flow control ofcontrol of contactless power transfer systems[J]. IET power electronics,2011,4(6):725~731
    [36] C S Tang, Y Sun,Y G Su, et al.Determining multiple steady-state ZCS operating points of a switch-mode contactless power transfer system[J].IEEE transaction on power electronics,2009,24:416~425
    [37]孙跃,夏晨阳,戴欣,等.感应耦合电能传输系统互感耦合参数的分析与优化[J].中国电机工程学报,2010(33):44~50
    [38]翟渊,孙跃,戴欣,等.磁共振模式无线电能传输系统建模与分析[J].中国电机工程学报,2012,32(12):155~160
    [39]周煜,于歆杰,程锦闽,等.用于心脏起搏器的经皮能量传输系统[J].电工技术学报,2010,25,(3):48~54
    [40]周煜,于歆杰,李臻,等.无线经皮能量传输系统的试验研究和分析[J].电工技术学报,2010,25(7):14~18
    [41]金建强.基于“witricity”体内植入器件无线电能传输方法研究[D].天津:河北工业大学,2010
    [42]史万钊.基于无线传能的脑深部电刺激器设计[D].天津:河北工业大学,2010
    [43]张超.磁谐振耦合无线电能传输系统谐振器的仿真和实验研究[D].天津:河北工业大学,2011
    [44]闫卓.基于磁谐振耦合的多用户无线电能传输技术研究[D].天津:河北工业大学,2011
    [45]张伟.体内植入器件无线电能传输系统优化设计和实验研究[D].天津:河北工业大学,2012
    [46]赵婧.无线传能系统电磁特性的计算机仿真分析[D].天津:河北工业大学,2012
    [47] Ning Yin, Guizhi Xu, Qingxin Yang, et al. Analysis of wireless energy transmission for implantabledevice based on coupled magnetic resonance[J].IEEE transaction on magnetics,2012,48(2):723~726.
    [48] Qingxin Yang, Guizhi Xu, Jianqiang Jin, et al. Optimal design of energy transmission system forimplantable device base on witricity[C].IEEE conference on electromagnetic field computation(CEFC),2010
    [49] Jun Zhao, Guizhi Xu, Chao Zhang,et al. A contrastive studies between magnetic couplingresonance and electromagnetic induction in wireless energy transmission[C]. The sixth internationalconference on electromagnetic field problems and applications (ICEF),2012
    [50] Jun Zhao, Guizhi Xu, Chao Zhang, et al. The design and research of a new kind small size resonatorused in magnetic coupling resonance wireless energy transmission system [J]. IEEE transactions onmagnetics,2012,48(11):4030~4033
    [51]赵军,徐桂芝,张超,等.一种适用于磁耦合谐振无线能量传输系统的新型小尺寸谐振器的仿真与实验研究[J].电工技术学报,2013,已录用
    [52] Jun Zhao, Guizhi Xu, Chao Zhang, et al. Research on electromagnetic radiation to head from headimplantable coil powered via Witricity[C]. The6th International Conference on Bioinformatics andBiomedical Engineering,2012
    [53]傅文珍,张波,丘东元.频率跟踪式谐振耦合电能无线传输系统研究[J].变频世界,2009:41~46
    [54]傅文珍,张波,丘东元,王伟.自谐振线圈耦合式电能无线传输的最大效率分析与设计[J].中国电机工程学报,2009,29(18):21~26
    [55]傅文珍,张波,丘东元.基于谐振耦合的电能无线传输系统设计[J].机电工程,2011,28(6):746~749
    [56]朱春波,于春来,毛银花,陈清泉.磁共振无线能量传输系统损耗分析[J].电工技术学报,2012,27(4):13~17
    [57]曲立楠.磁耦合谐振式无线能量传输机理的研究[D].哈尔滨:哈尔滨工业大学,2010
    [58]马爽.基于电场耦合模理论的空间无线能量传输技术研究[D].哈尔滨:哈尔滨工业大学,2008
    [59]任立涛.磁耦合谐振式无线能量传输功率特性研究[D].哈尔滨:哈尔滨工业大学,2009
    [60]毛银花.用于无线传感器网络的磁共振式无线能量传输系统[D].哈尔滨:哈尔滨工业大学,2011
    [61]张小壮.磁耦合谐振式无线能量传输距离特性及其实验装置研究[D].哈尔滨:哈尔滨工业大学,2009
    [62]王敬苗.用于无线能量传输的高频电流测量技术研究[D].哈尔滨:哈尔滨工业大学,2010
    [63]于春来,朱春波,毛银花,等.谐振式无线能量传输系统驱动源[J].电工技术学报,2011,26(1):177~181
    [64]黄辉,黄学良,谭林林,等.基于磁场谐振耦合的无线电力传输发射及接收装置的研究[J].电工电能新技术,2011,30(1):32~35
    [65]张浩,黄学良,谭林林,等.基于动态协调实现感应耦合无线嗲能传输系统的最大功率传输[J].中国科学,2012,42(7):830~837
    [66]谭林林,黄学良,黄辉,等.基于频率控制的磁耦合共振式无线电力传输系统传输效率优化控制[J].中国科学,2012,41(7):913~919
    [67] S.L.Ho, Junhua wang, W N Fu,et al. A comparative study between novel witricity and traditionalinductive magnetic coupling in wireless charging[J]. IEEE transactions on magnetics,2011,47(5):1522~1525
    [68] Xiu Zhang, S.L.Ho, and W N Fu. Quantitative analysis of a wireless power transfer cell with planarspiral structures [J]. IEEE transactions on magnetics,2011,47(10):3200~3203
    [69] Junhua Wang, S L Ho, W N Fu,et al. Finite element analysis and corresponding experiments ofresonant energy transmission for wireless transmission devices using witricity[C]. IEEE conferenceon electromagnetic field computation(CEFC),2010
    [70] Junhua Wang, S L Ho, W N Fu, et al. FEM simulations and experiments for the advanced witricitycharger with compound Nano-Tio interlayers [J]. IEEE transactions on magnetics,2011,47(10):4449~4452
    [71] Junhua Wang, S L Ho, W N Fu,et al.Analytical design study of a novel witricity charger withlateral and angular misalignments for efficient wireless energy transmission[J]. IEEE transactionson magnetics,2011,47(10):2616~2619
    [72] Fei Zhang, Steven A. Hackworth, et al. Relay effect of wireless power transfer using stronglycoupled magnetic resonances [J]. IEEE transactions on magnetics,2011,47(5):1478~1481
    [73]张献.基于电磁-机械同步共振的无线电能传输与转换方法研究[D].天津:河北工业大学,2012
    [74] Xian Zhang, Qingxin Yang, Haiyan Chen, et al. Analysis of a novel near-field non-radiativewireless power transimission system[C].2011international conference on control,automation andsystems engineering,2011
    [75] Li Yang, Yang Qingxin, Chen Haiyan, et al.Experimental system design of wireless power transferbased on witricity technology[C].2011international conference on control, automation and systemsengineering,2011:445~449
    [76] Xian Zhang, Qingxin Yang, Haiyan Chen. Direct fieled-circuit coupled analysis and correspondingexperiments of electromagnetic resonant coupling system [J].IEEE transactions on magnetics,2002,48(11):3961~3964
    [77] Xian Zhang, Qingxin Yang, Haiyan Chen. Modeling and validation of a dynamic stronglynumerical method for giant magnetostrictive actuator[J].IEEE transactions on magnetics,2002,48(11):911~914
    [78]聂一雄,文波,刘艺.无接触功率传输技术[J].电力科学与技术学报,2010,25(3):13~24
    [79] Steven A H, Xiaoyu Liu, Chengliu Li, et al. Wireless solar energy to homes: a magnetic resonanceapproach[C]. International journal of innovations in energy systems and power,2010,5(1):40~44
    [80] Alanson P S, David A M, Joshua R S. Analysis experimental results, and range adaptation ofmagnetically coupled resonatorsfor wireless power transfer[J]. IEEE transactions on industrialelectronics,2011,58(2):544~554
    [81] Benjamin L C, James F H, Daniel D S, et al. Magnetic resonant coupling as a potential means forwireless power transfer to multiplesmall receivers[J]. IEEE transactions on power electronics,2009,24(7):1819~1825
    [82]王磊.面向嵌入式故障诊断系统的磁耦合谐振式无线供能研究[D].长沙:国防科学技术大学,2011
    [83]齐剑.LTCC无源元件建模与应用[D].南京:南京邮电大学,2011
    [84]吴宽.无源网络插入衰减器的最小失配网络的研究[D].大连:大连海事大学,2011
    [85]张邦成.微波陶瓷在微波炉中的应用研究[D].厦门:厦门大学,2009
    [86]褚瑞.基于新型微扰小环的微带双模带通滤波器[D].上海:上海交通大,2009
    [87]田永刚.RFID读写器六端口射频通道分析及扩展研究[D].西安:西北大学,2008
    [89]金梦笔.手机电磁辐射的时域有限差分法分析及应用[D].杭州:浙江大学,2006
    [90]杨毅,韦钢,周冰.工频电磁场对人体的影响的综述[C].中国高等学校电力系统及其自动化专业第二十四届学术年会论文集(下册),2008
    [91]訾军,常秀丽,何永华,等.工频电磁场暴露限值的确立依据及有关争议[J].环境与职业医学,2010,27(10):607~610
    [94]韦钢,杨毅,周冰.工频电磁场对人体的影响及相关标准分析[J].上海电力学院学报,2009,25(2):145~149
    [95]訾军,周志俊.国际工频电磁场职业接触限值简介[J].中国工业医学杂志,2010,23(1):65~67
    [96]周永军.电磁场与生物体相互作用及安全性分析[D].西安:西安电子科技大学,2011
    [97]蒋丽微.手机辐射电磁场分析及天线的改进[D].天津:河北工业大学,2011
    [98]翟磊.人头模型与双频PIFA天线相互作用的仿真研究[D].西安:西安电子科技大学,2010
    [99]闻映红,张林昌.在手机辐射作用下人体内外的场强分布[J].点播科学学报,1998,13(1):97~101
    [100]牛中奇,侯建强,周永军,等.生物电磁剂量学及人体吸收电磁剂量的数值分析[J].中国生物医学工程学报,2006,25(5):580~589
    [101]刘畅.人体头部比吸收率(SAR)数值仿真分析研究[D].北京:北京邮电大学,2010
    [102]姚军.电磁波测井的时域差分模拟研究[D].吉林:吉林大学,2008
    [103]冯正权,吴宝明,卓豫,等.医学植入微电子系统的研究与应用进展[J].医疗卫生装备,2007,28(6):30~32
    [104]武文君.植入式电子装置经皮感应充电系统设计[D].天津:天津大学,2007
    [105]杨蓓蓓.微型化低纹波压电陶瓷驱动电源的研制[D].合肥:合肥工业,2009
    [106]彭艳.小尺寸TFTLCM电路设计与测试平台的研究[D].,西安:电子科技大学:2006
    [107]郑丽.基于FPGA的便携式数字存储示波器设计[D].西安:电子科技大学:2010
    [108]冯立营,马永强,霍振宇,等.锂电池线性充电芯片CN3051A/CN3052A及其应用[J].科技情报开发与经济,2006,16(20):146~147

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700