用户名: 密码: 验证码:
两种重要食源性致病菌O血清型分子分型系统的建立、两株不同宿主来源的大肠杆菌比较基因组学和转录组学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要

     食源性致病菌严重危害着食品安全和人类健康,沙门氏菌和副溶血弧菌是两种常见的食源性致病菌。副溶血弧菌广泛分布在世界各地的河口、沿海岸和海洋,是海产品引发食源性疾病最重要的因素。沙门氏菌存在于多种食物中,包括肉、蛋类、奶制品、蔬菜等,可以通过这些食物进入人体,引起伤寒发热、沙门氏菌病等疾病爆发。致病菌感染与细菌血清型有着重要的关系,对致病菌血清型的鉴定对疾病评估、感染的控制和流行病学调查有着重要意义。
     本研究完成了副溶血弧菌O血清型决定簇基因序列的破译,筛选出副溶血弧菌所有13种O血清型的特异基因,建立了副溶血弧菌O血清型分型的多重PCR分子分型方法。这一方法经41株副溶血弧菌、21株其它种属细菌验证,具有很好的特异性。对从上海地区海产品中分离到的105份环境样品进行双盲实验检测,均得到正确的结果。灵敏度实验表明,该检测方法可以检测出1ng的基因组DNA,未经富集培养的细菌可以在104CFU/ml的水平被检测到,1CFU/ml的细菌经过富集培养也完全可以得到正确鉴定。每克牡蛎制备的模拟实际样品中含有2到8个CFU的细菌初始量即可通过我们的PCR体系检测到。
     另外我们建立了针对沙门氏菌所有46种O血清型的基因芯片检测方法,可以成功区分除了相似度特别高的6种血清型(沙门氏菌067和B,沙门氏菌E1和E4,沙门氏菌A和D1)外的所有40种O血清型。该芯片方法经293株沙门氏菌、186株大肠杆菌和志贺氏菌以及10株其它种属细菌验证,具有很好的特异性。灵敏度实验表明在50ng的基因组水平该芯片可以得到稳定有效的检测结果。模拟西红柿样品实验表明,每克样品中2到8个CFU的细菌即可被芯片方法鉴定。因此我们建立的两种食源性致病菌分子检测方法可以取代传统的血清型方法,应用到临床和环境样品检测中去。
     Ⅱ
     细菌在适应宿主环境的过程中会产生大量的突变,以此来更好地适应环境。系统地研究致病菌的基因表达和进化差异,对了解细菌适应宿主的机制和致病机制有着重要作用。
     我们研究了两株不同来源的大肠杆菌0156:H25菌株PT199和CB647,它们分别分离自羊和牛,而且只有CB647菌株会对人致病。它们对人结肠癌上皮细胞HT-29的吸附能力有明显差别。我们完成了PT199和CB647的全基因组测序,还有另外10株分离自病人、牛、羊和肉不同来源的大肠杆菌0156:H25菌株,通过比较基因组学分析揭示了它们的遗传差异和变化。同时研究了PT199和CB647菌株在与HT-29细胞吸附前后的基因表达变化和差异。通过对遗传差异和基因表达差异的综合分析,发现了它们可能与宿主特异性及致病性差异有关的基因,进行进一步的深入研究。

     Foodborn pathogens including Vibrio parahaemolyticus and Salmonella are great threat for food safety and health. V. parahaemolyticus is a human pathogen that is widely disseminated in estuarine, marine and coastal environments throughout the world, and is recognized as the leading cause of marine food-borne illness worldwide. Salmonella is widely distributed in nature, and it is transmitted via contaminated food, including meat, poultry, eggs, dairy products, and fresh produces, such as tomatoes and lettuces, thereby gaining entry into almost every aspect of the human food chain. It can cause human illnesses such as typhoid fever, paratyphoid fever, and other salmonelloses. Pathogens infections have been characterized by causal associations with multiple, diverse serotypes, and serotype determination of foodborn pathogens is important for disease assessment, infection control, and epidemiological surveillance.
     In this study, the O-serogroup genetic determinants (OGDs) of all13V. parahaemolyticus O serogroups were identified. A PCR assay based on the O-serogroup specific genes was developed for the identification and detection of all13V. parahaemolyticus O-serogroups. The assay was tested against41target strains and21strains of other species. A double-blind test including105environmental specimens was also performed, and was found to be highly specific and reproducible, with detection sensitivity of1ng of genomic DNA. It was demonstrated that V. parahaemolyticus at the level of104CFU/ml in mock water specimens and the enrichment culture of samples inoculated with at the level of1CFU/ml were detected. As few as2to18CFUs (initial inoculums) of V. parahaemolyticus was detectable in1g oyster sample after enrichment using this PCR method.
     A microarray system that targets the O antigen-specific genes of Salmonella was developed for simultaneously detection and identification all46Salmonella O serogroups. Of these,40serogroups can be confidently identified, and the remaining6, in three pairs (serogroups067and B, E1and E4, and serogroups A and D1), need to be further distinguished from each other using PCR methods or conventional serotyping methods. The microarray was shown to be highly specific when evaluated against293Salmonella strains,186Shigella strains, representative Escherichia coli strains, and10strains of other bacterial species. The assay correctly identified288(98%) of the Salmonella strains. The detection sensitivity was determined to be50ng genomic DNA per sample. By testing simulated samples in a tomato background,2to8CFU per gram inoculated could be detected after enrichment. These two molecular protocol developed in this study were suitable for rapid detection and identification of pathogens from clinical and environmental samples, with the potential for application in epidemiologic investigations and other food safety applications.
     Ⅱ
     Understanding bacterial adaptation is a great challenge for scientists and medical doctors to battle infectious diseases. Bacterial cells have a high level of mutation rate and can adapt to the dynamic host environments by selecting mutants which are more fit to the condition. Thus, a systematic investigation of the whole gene expression profiles of clinical isolates would be needed for modern diagnostic and treatment of infectious diseases.
     In this study we report the complete genome of two Escherichia coli O156:H25strains CB647and PT199, which were isolated from cattle and sheep respectively. Their ability to colonize to human intestinal epithelial cell HT-29has significant differences, while only CB647strain had been found in illness human. We also studied the transcriptome of the two strains in vitro and after3h attachment with HT-29cell. Our study presents the global bacterial gene expression profile of the two strains during infection of human intestinal epithelial cell and characterized their interactions; provides answers about the role of different animal species as reservoirs for human pathogenic types; elucidates genes and mechanisms which are important for human pathogenicity.
引文
[1]S. Delannoy L. Beutin, A. Mikol, N.A. Strockbine, B.A. Lindstedt4 D. Horn, Y. Burgos, P. Fach. Genotypes and characteristics of Escherichia coli 0104 strains of different origin and sources. VTEC 20128th International Symposium on Shiga Toxin (Verocytotoxin) Producing Escherichia coli cell Infections,2012,
    [2]H. J. Beckers. Public health aspects of microbial contaminants in food. Vet Q,1987, 9(4):342-347
    [3]V. Velusamy, K. Arshak, O. Korostynska, et al. An overview of foodborne pathogen detection: in the perspective of biosensors. Biotechnol Adv,2010,28(2):232-254
    [4]E. Scallan, R. M. Hoekstra, F. J. Angulo, et al. Foodborne illness acquired in the United States--major pathogens. Emerg Infect Dis,2011,17(1):7-15
    [5]WHO Collaborating Center for Reference and Research on Salmonella. Antigenic formulae of the Salmonella serovars,9th edn. Institut Pasteur, Paris, France,2007,
    [6]Y. Naide, H. Nikaido, P. H. Maekelae, et al. Semirough Strains of Salmonella. Proc Natl Acad Sci U S A,1965,53:147-153
    [7]W. Muhlenberg. Epidemiologic public health conclusions from observations of illnesses caused by Salmonella enteritidis. Gesundheitswesen,1993,55(1):21-27
    [8]A. M. Somily, M. H. Adam, M. O. Gad El Rab, et al. Detection of Salmonella typhi agglutinins in sera of patients with other febrile illnesses and healthy individuals. Ann Afr Med, 2011,10(1):41-44
    [9]O. Bucher, A. Fazil, A. Rajic, et al. Evaluating interventions against Salmonella in broiler chickens:applying synthesis research in support of quantitative exposure assessment. Epidemiol Infect,2012,140(5):925-945
    [10]P. Ollinger-Snyder, M. E. Matthews. Food safety:review and implications for dietitians and dietetic technicians. J Am Diet Assoc,1996,96(2):163-168,171; quiz 169-170
    [11]C. B. Behravesh, D. Blaney, C. Medus, et al. Multistate outbreak of Salmonella serotype Typhimurium infections associated with consumption of restaurant tomatoes, USA,2006: hypothesis generation through case exposures in multiple restaurant clusters. Epidemiol Infect, 2012,140(11):2053-2061
    [12]J. Janiec, M. R. Evans, D. R. Thomas, et al. Laboratory-based surveillance of Campylobacter and Salmonella infection and the importance of denominator data. Epidemiol Infect,2012:1-8
    [13]Y. Sasaki, A. Ikeda, K. Ishikawa, et al. Prevalence and antimicrobial susceptibility of Salmonella in Japanese broiler flocks. Epidemiol Infect,2012:1-8
    [14]F. P. Hardnett, R. M. Hoekstra, M. Kennedy, et al. Epidemiologic issues in study design and data analysis related to FoodNet activities. Clin Infect Dis,2004,38 Suppl 3:S121-126
    [15]Centers for Disease Control and Prevention. Investigation update:Multistate outbreak of human Salmonella Enteritidis infections associated with shell eggs.2010,
    [16]H. Zen-Yoji, S. Sakai, T. Tesayama, Y. Kudoh, T. Ito, M., and M. Nagasaki. Benoki. Epidemiology, enteropathogenicity and classification of Vibrio parahaemolyticus. The Journal of Infectious Diseases,1965,115(5):436-444
    [17]T. Kaneko, R. R. Colwell. Ecology of Vibrio parahaemolyticus in Chesapeake Bay. J Bacteriol,1973,113(1):24-32
    [18]H. Shirai, H. Ito, T. Hirayama, et al. Molecular epidemiologic evidence for association of thermostable direct hemolysin (TDH) and TDH-related hemolysin of Vibrio parahaemolyticus with gastroenteritis. Infect Immun,1990,58(11):3568-3573
    [19]M. Kishishita, N. Matsuoka, K. Kumagai, et al. Sequence variation in the thermostable direct hemolysin-related hemolysin (trh) gene of Vibrio parahaemolyticus. Appl Environ Microbiol, 1992,58(8):2449-2457
    [20]M. Yoh, N. Kawakami, Y. Funakoshi, et al. Evaluation of two assay kits for thermostable direct hemolysin (TDH) as an indicator of TDH-related hemolysin (TRH) produced by Vibrio parahaemolyticus. Microbiol Immunol,1995,39(2):157-159
    [21]A. K. Bej, D. P. Patterson, C. W. Brasher, et al. Detection of total and hemolysin-producing Vibrio parahaemolyticus in shellfish using multiplex PCR amplification of tl, tdh and trh. J Microbiol Meth,1999,36(3):215-225
    [22]L. N. Ward, A. K. Bej. Detection of Vibrio parahaemolyticus in shellfish by use of multiplexed real-time PCR with TaqMan fluorescent probes. Appl Environ Microb,2006, 72(3):2031-2042
    [23]S. Honda, I. Goto, I. Minematsu, et al. Vibrio parahaemolyticus infectious disease caused by Kanagawa phenomenon-negative O3:K6 originated from Maldives. Kansenshogaku Zasshi,1987, 61(9):1070-1078
    [24]Centers for Disease Control and Prevention (CDC). Outbreak of Vibrio parahaemolyticus infections associated with eating raw oysters--Pacific Northwest,1997. MMWR Morb Mortal Wkly Rep,1998,47(22):457-462
    [25]N. A. Daniels, L. MacKinnon, R. Bishop, et al. Vibrio parahaemolyticus infections in the United States,1973-1998. J Infect Dis,2000,181(5):1661-1666
    [26]A. DePaola, C. A. Kaysner, J. Bowers, et al. Environmental investigations of Vibrio parahaemolyticus in oysters after outbreaks in Washington, Texas, and New York (1997 and 1998). Appl Environ Microb,2000,66(11):4649-4654
    [27]M. Ansaruzzaman, M. Lucas, J. L. Deen, et al. Pandemic serovars (03:K6 and 04:K68) of Vibrio parahaemolyticus associated with diarrhea in Mozambique:Spread of the pandemic into the African continent. J Clin Microbiol,2005,43(6):2559-2562
    [28]G. B. Nair, T. Ramamurthy, S. K. Bhattacharya, et al. Global dissemination of Vibrio parahaemolyticus serotype O3:K6 and its serovariants. Clin Microbiol Rev,2007,20(1):39-48
    [29]Y. Chen, O. C. Stine, J. H. Badger, et al. Comparative Genomic Analysis of Vibrio parahaemolyticus:Serotype Conversion and Virulence. BMC Genomics,2011,12(1):294
    [30]M. Okura, R. Osawa, A. Tokunaga, et al. Genetic analyses of the putative O and K antigen gene clusters of pandemic Vibrio parahaemolyticus. Microbiol Immunol,2008,52(5):251-264
    [31]S. Kim, J. G Frye, J. X. Hu, et al. Multiplex PCR-based method for identification of common clinical serotypes of Salmonella enterica subsp enterica. Journal of Clinical Microbiology,2006, 44(10):3608-3615
    [32]A. Touron, T. Berthe, B. Pawlak, et al. Detection of Salmonella in environmental water and sediment by a nested-multiplex polymerase chain reaction assay. Res Microbiol,2005, 156(4):541-553
    [33]T. Y. Tsai, W. J. Lee, Y. J. Huang, et al. Detection of viable enterohemorrhagic Escherichia coli O157 using the combination of immunomagnetic separation with the reverse transcription multiplex TaqMan PCR system in food and stool samples. J Food Prot,2006,69(10):2320-2328
    [34]C. D. Sibley, G Peirano, D. L. Church. Molecular methods for pathogen and microbial community detection and characterization:current and potential application in diagnostic microbiology. Infect Genet Evol,2012,12(3):505-521
    [35]W. F. Doolittle. Phylogenetic classification and the universal tree. Science,1999, 284(5423):2124-2129
    [36]C. A. Petti. Detection and identification of microorganisms by gene amplification and sequencing. Clin Infect Dis,2007,44(8):1108-1114
    [37]G Zhou, S. Wen, Y. Liu, et al. Development of a DNA microarray for detection and identification of Legionella pneumophila and ten other pathogens in drinking water. Int J Food Microbiol,2011,145(1):293-300
    [38]M. Zou, S. Keelara, S. Thakur. Molecular Characterization of Salmonella enterica Serotype Enteritidis Isolates from Humans by Antimicrobial Resistance, Virulence Genes, and Pulsed-Field Gel Electrophoresis. Foodborne Pathog Dis,2012,
    [39]J. L. Jones, C. H. Ludeke, J. C. Bowers, et al. Biochemical, Serological, and Virulence Characterization of Clinical and Oyster Vibrio parahaemolyticus Isolates. J Clin Microbiol,2012, 50(7):2343-2352
    [40]J. Fierer, D. G Guiney. Diverse virulence traits underlying different clinical outcomes of Salmonella infection. J Clin Invest,2001,107(7):775-780
    [41]N. A. Bhuiyan, M. Ansaruzzaman, M. Kamruzzaman, et al. Prevalence of the pandemic genotype of Vibrio parahaemolyticus in Dhaka, Bangladesh, and significance of its distribution across different serotypes. J Clin Microbiol,2002,40(1):284-286
    [42]Y. Kim, S. Oh, S. Park, et al. Interactive transcriptome analysis of enterohemorrhagic Escherichia coli (EHEC) 0157:147 and intestinal epithelial HT-29 cells after bacterial attachment. Int J Food Microbiol,2009,131(2-3):224-232
    [43]D. C. Alexander, W. Hao, M. W. Gilmour, et al. Escherichia coli O104:H4 infections and international travel. Emerg Infect Dis,2012,18(3):473-476
    [44]D. A. Bastin, P. R. Reeves. Sequence and analysis of the O antigen gene (rfb) cluster of Escherichia coli O111. Gene,1995,164(1):17-23
    [45]B. Liu, Y. A. Knirel, L. Feng, et al. Structure and genetics of Shigella O antigens (vol 32, pg 627,2008). Ferns Microbiol Rev,2010,34(4):606-606
    [46]J. A. Bengoechea, H. Najdenski, M. Skurnik. Lipopolysaccharide O antigen status of Yersinia enterocolitica 0:8 is essential for virulence and absence of O antigen affects the expression of other Yersinia virulence factors. Mol Microbiol,2004,52(2):451-469
    [47]D. Li, B. Liu, M. Chen, et al. A multiplex PCR method to detect 14 Escherichia coli serogroups associated with urinary tract infections. J Microbiol Methods,2010,82(1):71-77
    [48]T. J. Han, T. J. Chai. Electrophoretic and chemical characterization of lipopolysaccharides of Vibrio parahaemolyticus. J Bacteriol,1992,174(10):3140-3146
    [49]G. Samuel, J. P. Hogbin, L. Wang, et al. Relationships of the Escherichia coli 0157, O111, and 055 O-antigen gene clusters with those of Salmonella enterica and Citrobacter freundii, which express identical O antigens. Journal of Bacteriology,2004,186(19):6536-6543
    [50]Q. Wang, A. Torzewska, X. Ruan, et al. Molecular and genetic analyses of the putative Proteus O antigen gene locus. Appl Environ Microbiol,2010,76(16):5471-5478
    [51]Q. A. Wang, X. J. Ruan, D. M. Wei, et al. Development of a serogroup-specific multiplex PCR assay to detect a set of Escherichia coli serogroups based on the identification of their O-antigen gene clusters. Mol Cell Probe,2010,24(5):286-290
    [52]X. M. Jiang, B. Neal, F. Santiago, et al. Structure and sequence of the rfb (O antigen) gene cluster of Salmonella serovar typhimurium (strain LT2). Mol Microbiol,1991,5(3):695-713
    [53]P. K. Brown, L. K. Romana, P. R. Reeves. Molecular analysis of the rfb gene cluster of Salmonella serovar muenchen (strain M67):the genetic basis of the polymorphism between groups C2 and B. Mol Microbiol,1992,6(10):1385-1394
    [54]S. J. Lee, L. K. Romana, P. R. Reeves. Sequence and structural analysis of the rfb (O antigen) gene cluster from a group C1 Salmonella enterica strain. J Gen Microbiol,1992, 138(9):1843-1855
    [55]M. Y. Popoff, L. Le Minor. Expression of antigenic factor 0:54 is associated with the presence of a plasmid in Salmonella. Ann Inst Pasteur Microbiol,1985,136B(2):169-179
    [56]W. J. Keenleyside, M. Perry, L. Maclean, et al. A plasmid-encoded rfbO:54 gene cluster is required for biosynthesis of the 0:54 antigen in Salmonella enterica serovar Borreze. Mol Microbiol,1994, 11(3):437-448
    [57]W. J. Keenleyside, C. Whitfield. Lateral transfer of rfb genes:a mobilizable ColEl-type plasmid carries the rfbO:54 (O:54 antigen biosynthesis) gene cluster from Salmonella enterica serovar Borreze. J Bacteriol,1995,177(18):5247-5253
    [58]N. K. Verma, N. B. Quigley, P. R. Reeves. O-antigen variation in Salmonella spp.:rfb gene clusters of three strains. Journal of Bacteriology,1988,170(1):103-107
    [59]D. Liu, N. K. Verma, L. K. Romana, et al. Relationships among the rfb regions of Salmonella serovars A, B, and D. J Bacteriol,1991,173(15):4814-4819
    [60]L. Wang, L. K. Romana, P. R. Reeves. Molecular analysis of a Salmonella enterica group E1 rfb gene cluster:O antigen and the genetic basis of the major polymorphism. Genetics,1992, 130(3):429-443
    [61]S. H. Xiang, A. M. Haase, P. R. Reeves. Variation of the rfb gene clusters in Salmonella enterica. J Bacteriol,1993,175(15):4877-4884
    [62]S. H. Xiang, M. Hobbs, P. R. Reeves. Molecular analysis of the rfb gene cluster of a group D2 Salmonella enterica strain:evidence for its origin from an insertion sequence-mediated recombination event between group E and D1 strains. J Bacteriol,1994,176(14):4357-4365
    [63]H. Curd, D. Liu, P. R. Reeves. Relationships among the O-antigen gene clusters of Salmonella enterica groups B, D1, D2, and D3. Journal of Bacteriology,1998,180(4):1002-1007
    [64]L. Wang, K. Andrianopoulos, D. Liu, et al. Extensive variation in the O-antigen gene cluster within one Salmonella enterica serogroup reveals an unexpected complex history. J Bacteriol, 2002,184(6):1669-1677
    [65]C. Fitzgerald, R. Sherwood, L. L. Gheesling, et al. Molecular analysis of the rfb O antigen gene cluster of Salmonella enterica serogroup 0:6,14 and development of a serogroup-specific PCR assay. Appl Environ Microbiol,2003,69(10):6099-6105
    [66]C. Fitzgerald, M. Collins, S. van Duyne, et al. Multiplex, bead-based suspension array for molecular determination of common Salmonella serogroups. J Clin Microbiol,2007, 45(10):3323-3334
    [67]Y. Y. Li, D. Liu, B. Y. Cao, et al. Development of a serotype-specific DNA Microarray for identification of some Shigella and pathogenic Escherichia coli strains. Journal of Clinical Microbiology,2006,44(12):4376-4383
    [68]B. Liu, F. Wu, D. Li, et al. Development of a serogroup-specific DNA microarray for identification of Escherichia coli strains associated with bovine septicemia and diarrhea. Vet Microbiol,2010,142(3-4):373-378
    [69]M. Ishibashi, K. Ohta, T. Shimada, T. Honda, J. Sugiyama, T. Miwatani, and H. Yokoo. Current status of OK serotype combinations of Vibrio parahaemolyticus. Nippon Saikingaku Zasshi,2000,55(539-541)
    [70]Y. Hara-Kudo, DePaola, A. Detection of Pathogenic Vibrios. Pathogenic Vibrios and Food Safety,2012, Yi-Cheng Su 179-210
    [71]L. Wang, P. R. Reeves. Organization of Escherichia coli 0157 O antigen gene cluster and identification of its specific genes. Infect Immun,1998,66(8):3545-3551
    [72]N. Hashii, Y. Isshiki, T. Iguchi, et al. Structural analysis of the carbohydrate backbone of Vibrio parahaemolyticus 02 lipopolysaccharides. Carbohyd Res,2003,338(10):1063-1071
    [73]T. Iguchi, S. Kondo, K. Hisatsune. Vibrio parahaemolyticus O serotypes from 01 to 013 all produce R-type lipopolysaccharide:SDS-PAGE and compositional sugar analysis. FEMS Microbiol Lett,1995,130(2-3):287-292
    [74]A. R. Wong, J. S. Pearson, M. D. Bright, et al. Enteropathogenic and enterohaemorrhagic Escherichia coli:even more subversive elements. Mol Microbiol,2011,80(6):1420-1438
    [75]Y. Chen, J. Dai, J. G. Morris, Jr., et al. Genetic analysis of the capsule polysaccharide (K antigen) and exopolysaccharide genes in pandemic Vibrio parahaemolyticus O3:K6. BMC Microbiol,2010,10:274
    [76]H. Han, H. C. Wong, B. Kan, et al. Genome plasticity of Vibrio parahaemolyticus: microevolution of the 'pandemic group'. BMC Genomics,2008,9:570
    [77]C. Fitzgerald, L. Gheesling, M. Collins, et al. Sequence analysis of the rfb loci, encoding proteins involved in the biosynthesis of the Salmonella enterica 017 and 018 antigens: serogroup-specific identification by PCR. Appl Environ Microbiol,2006,72(12):7949-7953
    [78]C. G. Clark, C. C. Grant, K. M. Trout-Yakel, et al. The 028 Antigen Gene Clusters of Salmonella enterica subsp. enterica Serovar Dakar and Serovar Pomona Are Different. Int J Microbiol,2010,2010:209291
    [79]L. Wang, P. R. Reeves. The Escherichia coli O111 and Salmonella enterica O35 gene clusters: gene clusters encoding the same colitose-containing O antigen are highly conserved. Journal of Bacteriology,2000,182(18):5256-5261
    [80]C. G. Clark, A. M. Kropinski, H. Parolis, et al. Escherichia coli 0123 O antigen genes and polysaccharide structure are conserved in some Salmonella enterica serogroups. Journal of Medical Microbiology,2009,58(7):884-894
    [81]B. Liu, Y. A. Knirel, L. Feng, A. V. Perepelov, S. N. Senchenkova, P. R. Reeves, L. Wang. Structural diversity in Salmonella O antigens and its genetic basis. FEMS Microbiol Rev,2013,
    [82]F. R. Blattner, G. Plunkett,3rd, C. A. Bloch, et al. The complete genome sequence of Escherichia coli K-12. Science,1997,277(5331):1453-1462
    [83]B. Hu, A. V. Perepelov, B. Liu, et al. Structural and genetic evidence for the close relationship between Escherichia coli O71 and Salmonella enterica 028 O-antigens. Ferns Immunol Med Mic,2010,59(2):161-169
    [84]A. V. Perepelov, B. Liu, S. N. Senchenkova, et al. Structures of the O-polysaccharides of Salmonella enterica O59 and Escherichia coli 015. Carbohydr Res,2011,346(2):381-383
    [85]R. D. Fleischmann, M. D. Adams, O. White, et al. Whole-genome random sequencing and assembly of Haemophilus influcnzae Rd. Science,1995,269(5223):496-512
    [86]C. J. Bult, O. White, G. J. Olsen, et al. Complete genome sequence of the methanogenic archaeon, Methanococcus jannaschii. Science,1996,273(5278):1058-1073
    [87]M. Margulies, M. Egholm, W. E. Altman, et al. Genome sequencing in microfabricated high-density picolitre reactors. Nature,2005,437(7057):376-380
    [88]G. Turcatti, A. Romieu, M. Fedurco, et al. A new class of cleavable fluorescent nucleotides: synthesis and optimization as reversible terminators for DNA sequencing by synthesis. Nucleic Acids Res,2008,36(4):e25
    [89]J. Shendure, G. J. Porreca, N. B. Reppas, et al. Accurate multiplex polony sequencing of an evolved bacterial genome. Science,2005,309(5741):1728-1732
    [90]M. Pop, A. Phillippy, A. L. Delcher, et al. Comparative genome assembly. Brief Bioinform, 2004,5(3):237-248
    [91]B. Ewing, P. Green. Base-calling of automated sequencer traces using phred. Ⅱ. Error probabilities. Genome Res,1998,8(3):186-194
    [92]D. Gordon. Viewing and editing assembled sequences using Consed. Curr Protoc Bioinformatics,2003, Chapter 11:Unit11 12
    [93]A. L. Delcher, K. A. Bratke, E. C. Powers, et al. Identifying bacterial genes and endosymbiont DNA with Glimmer. Bioinformatics,2007,23(6):673-679
    [94]J. Besemer, A. Lomsadze, M. Borodovsky. GeneMarkS:a self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions. Nucleic Acids Res,2001,29(12):2607-2618
    [95]D. Hyatt, G L. Chen, P. F. Locascio, et al. Prodigal:prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics,2010,11:119
    [96]J. C. Abbott, D. M. Aanensen, K. Rutherford, et al. WebACT--an online companion for the Artemis Comparison Tool. Bioinformatics,2005,21(18):3665-3666
    [97]A. E. Darling, B. Mau, N. T. Perna. progressiveMauve:multiple genome alignment with gene gain, loss and rearrangement. PLoS One,2010,5(6):e11147
    [98]S. Kurtz, A. Phillippy, A. L. Delcher, et al. Versatile and open software for comparing large genomes. Genome Biol,2004,5(2):R12
    [99]P. S. Dehal, M. P. Joachimiak, M. N. Price, et al. MicrobesOnline:an integrated portal for comparative and functional genomics. Nucleic Acids Res,2010,38(Database issue):D396-400
    [100]Y. Shao, X. He, E. M. Harrison, et al. mGenomeSubtractor:a web-based tool for parallel in silico subtractive hybridization analysis of multiple bacterial genomes. Nucleic Acids Res,2010, 38(Web Server issue):W194-200
    [101]R. R. Chaudhuri, N. J. Loman, L. A. Snyder, et al. xBASE2:a comprehensive resource for comparative bacterial genomics. Nucleic Acids Res,2008,36(Database issue):D543-546
    [102]M. McClelland, K. E. Sanderson, S. W. Clifton, et al. Comparison of genome degradation in Paratyphi A and Typhi, human-restricted serovars of Salmonella enterica that cause typhoid. Nat Genet,2004,36(12):1268-1274
    [103]K. I. Udekwu. Transcriptional and post-transcriptional regulation of the Escherichia coli luxS mRNA; involvement of the sRNAMicA. Plos One,2010,5(10):e13449
    [104]J. Z. Levin, M. Yassour, X. Adiconis, et al. Comprehensive comparative analysis of strand-specific RNA sequencing methods. Nat Methods,2010,7(9):709-715
    [105]I. H. Lin, T. T. Liu, Y. T. Teng, et al. Sequencing and comparative genome analysis of two pathogenic Streptococcus gallolyticus subspecies:genome plasticity, adaptation and virulence. Plos One,2011,6(5):e20519
    [106]刘万飞 王西亮 赵宇慧 曾瀞瑶 耿佳宁 胡松年.基于第二代测序技术的细菌基因组与转录组研究策略简介.《微生物学通报》,2011年,11期
    [107]R. Sorek, P. Cossart. Prokaryotic transcriptomics:a new view on regulation, physiology and pathogenicity. Nat Rev Genet,2010,11(1):9-16
    [108]C. M. Sharma, S. Hoffmann, F. Darfeuille, et al. The primary transcriptome of the major human pathogen Helicobacter pylori. Nature,2010,464(7286):250-255
    [109]H. Li, R. Durbin. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics,2009,25(14):1754-1760
    [110]B. Langmead, C. Trapnell, M. Pop, et al. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol,2009,10(3):R25
    [111]R. Li, C. Yu, Y. Li, et al. SOAP2:an improved ultrafast tool for short read alignment. Bioinformatics,2009,25(15):1966-1967
    [112]B. Tjaden. Prediction of small, noncoding RNAs in bacteria using heterogeneous data. J Math Biol,2008,56(1-2):183-200
    [113]A. Herbig, K. Nieselt. nocoRNAc:characterization of non-coding RNAs in prokaryotes. BMC Bioinformatics,2011,12:40
    [114]P. P. Gardner, J. Daub, J. G. Tate, et al. Rfam:updates to the RNA families database. Nucleic Acids Res,2009,37(Database issue):D136-140
    [115]J. Shendure, H. Ji. Next-generation DNA sequencing. Nat Biotechnol,2008, 26(10):1135-1145
    [116]S. C. Schuster. Next-generation sequencing transforms today's biology. Nat Methods,2008, 5(1):16-18
    [117]J. P. Nataro, J. B. Kaper. Diarrheagenic Escherichia coli. Clin Microbiol Rev,1998, 11(1):142-201
    [118]M. Bugarel, A. Martin, P. Fach, et al. Virulence gene profiling of enterohemorrhagic (EHEC) and enteropathogenic (EPEC) Escherichia coli strains:a basis for molecular risk assessment of typical and atypical EPEC strains. Bmc Microbiol,2011,11:142
    [119]H. M. Verweyen, H. Karch, M. Brandis, et al. Enterohemorrhagic Escherichia coli infections:following transmission routes. Pediatr Nephrol,2000,14(1):73-83
    [120]R. A. Moxley. Escherichia coli 0157:H7:an update on intestinal colonization and virulence mechanisms. Anim Health Res Rev,2004,5(1):15-33
    [121]M. Blanco, J. E. Blanco, A. Mora, et al. Serotypes, virulence genes, and intimin types of Shiga toxin (verotoxin)-producing Escherichia coli isolates from healthy sheep in Spain. J Clin Microbiol,2003,41(4):1351-1356
    [122]J. E. Blanco, M. Blanco, M. P. Alonso, et al. Serotypes, virulence genes, and intimin types of Shiga toxin (verotoxin)-producing Escherichia coli isolates from human patients:prevalence in Lugo, Spain, from 1992 through 1999. J Clin Microbiol,2004,42(1):311-319
    [123]A. Karger, M. Ziller, B. Bettin, et al. Determination of serotypes of Shiga toxin-producing Escherichia coli isolates by intact cell matrix-assisted laser desorption ionization-time of flight mass spectrometry. Appl Environ Microbiol,2011,77(3):896-905
    [124]H. S. Hussein, T. Sakuma. Prevalence of shiga toxin-producing Escherichia coli in dairy cattle and their products. J Dairy Sci,2005,88(2):450-465
    [125]Ludger Johannes and Winfried Romer. Shiga toxins — from cell biology to biomedical applications. NATURE REVIEWS| Microbiology,2010, VOLUME 8| FEBRUARY 2010| 105
    [126]C. L. Gyles. Shiga toxin-producing Escherichia coli:An overview. J Anim Sci,2007, 85:E45-E62
    [127]T. Tobe, S. A. Beatson, H. Taniguchi, et al. An extensive repertoire of type III secretion effectors in Escherichia coli 0157 and the role of lambdoid phages in their dissemination. P Natl Acad Sci USA,2006,103(40):14941-14946
    [128]C. J. Hueck. Type III protein secretion systems in bacterial pathogens of animals and plants. Microbiol Mol Biol R,1998,62(2):379-+
    [129]G S. Abu-Ali, L. M. Ouellette, S. T. Henderson, et al. Differences in adherence and virulence gene expression between two outbreak strains of enterohaemorrhagic Escherichia coli 0157:H7. Microbiology,2010,156(Pt 2):408-419
    [130]N. Jandu,N. K. Ho, K. A. Donato, et al. Enterohemorrhagic Escherichia coli O157:H7 gene expression profiling in response to growth in the presence of host epithelia. Plos One,2009, 4(3):e4889
    [131]A. J. Roe, D. E. Hoey, D. L. Gaily. Regulation, secretion and activity of type Ⅲ-secreted proteins of enterohaemorrhagic Escherichia coli 0157. Biochem Soc Trans,2003,31(Pt l):98-103
    [132]R. M. La Ragione, A. Best, M. J. Woodward, et al. Escherichia coli O157:H7 colonization in small domestic ruminants. FEMS Microbiol Rev,2009,33(2):394-410
    [133]I. Vlisidou, O. Marches, F. Dziva, et al. Identification and characterization of EspK, a type III secreted effector protein of enterohaemorrhagic Escherichia coli O157:H7. FEMS Microbiol Lett,2006,263(1):32-40
    [134]E. Loukiadis, R. Nobe, S. Herold, et al. Distribution, functional expression, and genetic organization of Cif, a phage-encoded type Ⅲ-secreted effector from enteropathogenic and enterohemorrhagic Escherichia coli. J Bacteriol,2008,190(1):275-285
    [135]P. Dean. Functional domains and motifs of bacterial type III effector proteins and their roles in infection. FEMS Microbiol Rev,2011,35(6):1100-1125
    [136]S. Gruenheid, I. Sekirov, N. A. Thomas, et al. Identification and characterization of NleA, a non-LEE-encoded type III translocated virulence factor of enterohaemorrhagic Escherichia coli O157:H7. Mol Microbiol,2004,51(5):1233-1249
    [137]J. A. Giron, A. G Torres, E. Freer, et al. The flagella of enteropathogenic Escherichia coli mediate adherence to epithelial cells. Mol Microbiol,2002,44(2):361-379
    [138]R. S. Friedlander, H. Vlamakis, P. Kim, et al. Bacterial flagella explore microscale hummocks and hollows to increase adhesion. Proc Natl Acad Sci U S A,2013, 110(14):5624-5629
    [139]O. A. Soutourina, P. N. Bertin. Regulation cascade of flagellar expression in Gram-negative bacteria. FEMS Microbiol Rev,2003,27(4):505-523
    [140]K. Paul, D. Brunstetter, S. Titen, et al. A molecular mechanism of direction switching in the flagellar motor of Escherichia coli. Proc Natl Acad Sci U S A,2011,108(41):17171-17176
    [141]L. L. McCarter. Regulation of flagella. Curr Opin Microbiol,2006,9(2):180-186
    [142]O. Soutourina, A. Kolb, E. Krin, et al. Multiple control of flagellum biosynthesis in Escherichia coli:role of H-NS protein and the cyclic AMP-catabolite activator protein complex in transcription of the flhDC master operon. J Bacteriol,1999,181(24):7500-7508
    [143]T. Tobe, N. Nakanishi, N. Sugimoto. Activation of motility by sensing short-chain fatty acids via two steps in a flagellar gene regulatory cascade in enterohemorrhagic Escherichia coli. Infect Immun,2011,79(3):1016-1024
    [144]K. Melican, R. M. Sandoval, A. Kader, et al. Uropathogenic Escherichia coli P and Type 1 fimbriae act in synergy in a living host to facilitate renal colonization leading to nephron obstruction. Plos Pathog,2011,7(2):e1001298
    [145]A. S. Low, N. Holden, T. Rosser, et al. Analysis of fimbrial gene clusters and their expression in enterohaemorrhagic Escherichia coli O157:H7. Environ Microbiol,2006, 8(6):1033-1047
    [146]R. R. Spurbeck, A. E. Stapleton, J. R. Johnson, et al. Fimbrial Profiles Predict Virulence of Uropathogenic E. coli Strains:Contribution of Ygi and Yad Fimbriae. Infect Immun,2011,
    [147]A. S. Low, F. Dziva, A. G Torres, et al. Cloning, expression, and characterization of fimbrial operon F9 from enterohemorrhagic Escherichia coli 0157:H7. Infect Immun,2006, 74(4):2233-2244
    [148]N. Holden, I. C. Blomfield, B. E. Uhlin, et al. Comparative analysis of FimB and FimE recombinase activity. Microbiology,2007,153(Pt 12):4138-4149
    [149]L. Geue, S. Schares, B. Mintel, et al. Rapid microarray-based genotyping of enterohemorrhagic Escherichia coli serotype O156:H25/H-/Hnt isolates from cattle and clonal relationship analysis. Appl Environ Microbiol,2010,76(16):5510-5519
    [150]K. A. Bettelheim. The non-0157 shiga-toxigenic (verocytotoxigenic) Escherichia coli; under-rated pathogens. Crit Rev Microbiol,2007,33(1):67-87
    [151]I. Aktan, K. A. Sprigings, R. M. La Ragione, et al. Characterisation of attaching-effacing Escherichia coli isolated from animals at slaughter in England and Wales. Vet Microbiol,2004, 102(1-2):43-53
    [152]M. Blanco, J. E. Blanco, A. Mora, et al. Serotypes, virulence genes, and intimin types of Shiga toxin (verotoxin)-producing Escherichia coli isolates from cattle in Spain and identification of a new intimin variant gene (eae-xi). J Clin Microbiol,2004,42(2):645-651

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700