用户名: 密码: 验证码:
改进的粒子群优化算法研究及其若干应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
化学工业在国民经济领域中始终占有极其重要地位,它不仅牵涉千家万户的日常生活,还影响着其它行业甚至国防等重要领域。由于现代化的化工过程存在着许多复杂性,而传统的优化方法已无法解决其中的诸多问题,因此智能的建模和优化方法倍受关注。本文针对合成氨、德士古气化以及甲醇合成等复杂的煤化工过程,研究了神经网络(NN)的智能建模方法以及粒子群优化算法(PSO)进化方法,并将提出的新方法应用于煤化工过程软测量建模。此外,还针对物流集配的组合实际问题提出了一种新的智能技术。本文的主要研究成果如下:
     (1)讨论了常见智能优化算法的分类和特点、粒子群优化算法及软测量建模的基本原理。着重介绍了粒子群优化算法的发展、算法改进和应用情况以及软测量技术的发展。回顾了合成氨、甲醇工业的发展现状、生产工艺及工作原理,并简述了企业内部物料配送过程特别是托盘集配问题,最后介绍了智能优化方法在这些领域的应用。
     (2)为了克服粒子群优化算法(PSO)易于“早熟收敛”问题,提出一种自导式粒子群优化算法(Self-Government Particle Swarm Optimization,SGPSO)。在SGPSO中,粒子位置的更新不仅与粒子历史局部最优和粒子群全局最优的有关,而且与粒子在之前实验中所搜索到的局部最优位置信息有关,从而大大提高了算法的寻优能力。通过对典型测试函数的仿真结果表明,所提出的SGPSO和RSGPSO这2种新算法无论在收敛速度还是收敛精度上均优于标准PSO算法。将SGPSO和RSGPSO算法与BP神经网络结合,建立了基于SGPSO-NN的气化炉炉温软测量模型。模型结果表明,SGPSO-NN的测试误差较小,具有较强的泛化能力,能够满足实际生产中对气化炉炉温的测量要求。
     (3)PSO的学习因子直接影响到算法的寻优能力,提出了学习因子的2种随机取值的调整方式:激进调整方式和保守调整方式,从而提出随机学习因子的PSO算法(RLFPSO)。为了进一步提高算法的性能,有效降低种群陷入局部最优的风险,提出了两类随机学习因子混沌粒子群优化算法(RLFPSOC1和RLFPSOC2)。两类算法分别在种群进化初期和后期引入混沌的遍历性特点,从而提高的算法的收敛速度和精度。通过经典函数来测试RLFPSO算法及RLFPSOC1和RLFPSOC2算法的性能,并和其它几种方法进行比较,结果表明RLFPSO算法优化经典连续函数的结果明显优于PSO算法;两种RLFPSOC算法的优化性能均较RLFPSO算法有了较大提升。最后,将基于RLFPSO和RLFPSOC的神经网络模型用于甲醇合成塔转化率的软测量建模,并与PSO-NN、 CenPSO-NN进行了比较。比较结果表明,基于RLFPSOC1-NN和RLFPSOC2-NN的甲醇合成转化率预测模型较其它几种方法具有更好的预测能力,能够较准确地估计甲醇合成塔的质量转化率。
     (4)传统的粒子群算法存在较容易陷入局部极小点等缺陷。为改善算法性能,提出了一种新的粒子群优化算法——历史最优共享的粒子群优化算法(VSHBPSO)。 VSHBPSO算法的基本思想是粒子的更新不仅学习当前全局最优位置,而且向之前实验中搜索的全局历史最优位置学习。采用典型测试函数对VSHBPSO及其扩展形式VRSHBPSO、AVRSHBPSO进行仿真研究,并与标准PSO进行比较。仿真表明,基于历史最优共享的粒子群优化算法及其扩展算法对于低维、高维函数的优化问题均具有较好的适用性和有效性。同时。ARVSHPSO算法在3种改进PSO算法中的优化性能最好。将基于ARVSHPSO-NN的模型用于合成氨塔出口氨含量的估计,建立了相应的软测量模型。实验结果验证了其算法的可行性和有效性,可用于指导实际的生产过程。
     (5)针对实际的物料集配问题,提出了一种新的物料分组托盘建模方式,并计算了物料集配问题的复杂度,提出了一种新的离散型粒子群优化算法。在离散PSO算法中,子代个体向个体历史最优、全局历史最优以及前次的全局最优个体学习,从而有效提高了算法性能。离散型PSO算法采用适用于托盘分组集配问题的0-1编码方式,并提出了几种个体互相学习的更新策略。为了验证算法解决物料集配问题的有效性,选取两个不同维数的实际问题进行模拟测试,找出了最优的集配方案。测试结果表明,相比于其它几种方法,提出的离散型PSO算法具有更好的寻优性能,可嵌入物流管理信息系统,对物料进行自动分组集配,实现制造业的快速物料集配。
Chemical industry is very significant in the national economy, which has respect to our daily life as well as other industries even national security. Nowadays, the complication of the chemical processes results in the inefficiency of the traditional optimization methods. Due to this, intelligent modeling and optimization methods begin to attract more and more attention. In this dissertation, for the complex coal chemical processes, such as ammonia synthesis, Texaco gasification, and methanol synthesis, the neural network (NN) based intelligent modeling and particle swarm optimization (PSO) methods are investigated, and the proposed novel methods are applied to soft sensor modeling in these processes. Furthermore, an intelligent technique is proposed to pallet grouping problem. The main results in this dissertation can be summarized as follows:
     (1)The features of popular intelligent optimization algorithms are discussed as well as the principle of the particle swarm optimization and soft senor modeling. The development and improvement of PSO are underlined. Moreover, the processes of ammonia synthesis and methonal industy are reviewed, and then the material feeding especially the pallet grouping problem is outlined. Finally, the application of intelligent optimization algorithm in these areas is introduced.
     (2)In order to overcome the premature convergence of PSO algorithm, a self-government particles swarm optimization (SGPSO) is proposed. In the SGPSO, the update of particle position not only depends on the particle personal best position currently and the swarm global best position found so far, but also is related to the local best information found in the previous experiments, thus greatly improving the optimization capability. The simulation results in the benchmark function tests indicate that the proposed SGPSO and RSGPSO algorithms are superior to the standard algorithm for convergence speed and acurracy. The SGPSO and RSGPSO are integrated with BP neural network, and SGPSO-NN based soft sensor model for gasifier temperature is established. The results of the model show that the soft sensor based on SGPSO-NN model provides small testing error and has good generalization capability, which is very suitable for measurement of gasifier temperature in the real-world application.
     (3)The learning factors directly influence the optimizatioin capability of PSO, thus two random tuning rules of learning factors, i.e. radical tuning and conservative tuning, are presented. Based on the rules, the random learning factor particle swarm optimization (RLFPSO) is proposed. In order to further improve the performance of RLFPSO and reduce the risk of being trapped to local optima, two random learning facto particle swarm optimization algorithms with chaos (RLFPSOC1and RLFPSOC2) are proposed. In the two improved algorithms, the ergodicity of chaos is introduced at the prophase and anaphase of evolution, respectively. The performance of RLFPSO, RLFPSOC1and RLFPSOC2is tested by benchmark functions, and then compared with other methods. The test results reveal that RLFPSO outperforms PSO, and two RLFPSOC algorithms have further improvements on the basis of RLFPSO. Finally, RLFPSO and RLFPSOC based neural networks are used for soft-sensing the methanol conversion rate, and compared with PSO-NN and CenPSO-NN. The comparison results indicate that the prediction models of methanol conversion rate based on RLFPSOC1-NN and RLFPSOC2-NN have better prediction capability than other methods, and can provide accurate estimation of the methanol conversion rate.
     (4) The traditional PSO algorithm has the drawback of falling into local minima easily. In order to improve the performance, a novel PSO algorithm——Velocity Share Historical Best Particle Swarm Optimization (VSHBPSO) is proposed. The basic idea of VSHBPSO is that the particle is attracted by the global historical best position searched in the former experiment as well as the current global best particle. The simulation studies on VSHBPSO and two variants VRSHBPSO, AVRSHBPSO are executed, and are compared with PSO. The simulation states that VSHBPSO and two variants are applicable and effective for both the low and high dimensional optimization problems. Meawhile, AVRSHBPSO performs best among the algorithms. The AVRSHBPSO-NN soft sensing model is applied to estimation of the ammonia concentration at the converter outlet. The experiment results verify the reliability and effectiveness of the proposed model, which is capable of providing the instruction in the real-world production.
     (5) A new modeling method is presented to describe the pallet grouping problem, whose complexity is analyzed. a new learning algorithm, which is defined as Learning Algorithm Only from Excellent-Pbest, Gbest and Gpbest, for short LAOE~PGpG is developed to solve the pallet loading problem. A new encoding scheme namely0-1encoding is adopted in LAOE~PGpG, and several Inter-learning schemes are developed to update the individual. Two application cases with different dimensions are employed to verify the performance of the proposed algorithm, and the optimal pallet grouping is given. The results indicate that the proposed algorithm outperforms the compared methods, and can be integrated into the logistics management system for realizing the automatic collection and distribution.
引文
[1]陈国初.微粒群优化算法及其在软测量建模中的应用[D].华东理工大学,2005.
    [2]Bhattarjya B. K., Datta B. Optimal management of coastal aquifers using linked simulation optimization approach[J]. Water Resources Management.2005,19:295-320.
    [3]Holland J. H. Adaptation in natural and artificial systems [M]. Ann Arbor, University of Michigan Press,1975.
    (?)陈国良,王煦法,庄镇泉等.遗传算法及其应用[M].北京,人民邮电出版社,1996.
    [5]Potts C.J, Terr I.D. The development and evaluation of an improved genetic algorithm based on migration and artificial selection[J]. IEEE Transactions on Systems, Man, and Cybernetics,1994,24(1):73-86.
    [6]杨启文,蒋静坪,张国宏.遗传算法优化速度的改进[J].软件学报,2001,12(2):270-275.
    [7]钱志勤,滕弘飞,孙治国.人机交互的遗传算法及其在约束布局优化中的应用[J].计算机学报,2001,24(5):553-558.
    [8]虞蕾,赵红,赵宗涛.一种基于遗传算法的航迹优化方法[J].西北大学学报(自然科学版)2006,36(2):205-208,213.
    [9]Sunil C. Design and implementation of a genetic based algorithm for data mining[C]. Proceedings of the 26th International Conference on Very Large Databases. San Francisco:Morgan Kaufmann Publishers,2000,33-42.
    [10]Metropolis N, et al. Equations of state calculations by fast computing machines [J]. Chem Phys,1953,21:1087-1091.
    [11]Kirkpatrick S, Gelatt C.D., Vecchi M.P. Optimization by simulated annealing[J]. Science,1983,220:671-680.
    (?)高占远.改进的单纯形模拟退火算法[J].南阳师范学院学报.2007,6(3):30-32.
    [13]Tarek M. et al. A parallel simulated annealing algorithm with low communication over head [J]. IEEE Transactions on Parallel and Distributed Systems,1995,1:23-24.
    [14]胡山鹰,陈丙珍,何小荣等.非线性规划问题全局优化的模拟退火法[J].清华大学学报(自然科学版),1997,6:5-9.
    [15]Glover F.Tabu search:part Ⅰ [J]. ORSA Journal on Computing,1989,1(3):190-206.
    [16]张培倩等.现代优化算法在旅行商问题上的应用[J].科技信息,2011,9:12-13.
    [17]郑四发等.市区集送货问题的随机合理化禁忌算法[J].系统仿真学报.2010,22(7):1688-1692.
    [18]Jerne N.K.The immune system[J]. Scientific American,1973,229(1):52-60.
    [19]de Castro L.N, Von Zuben F. J. Learning and optimization using the clonal selection principle[J]. IEEE Transactions on Evolutionary Computation,2002,6(3):239-251.
    [20]Forrest S. Self-nonself discrimination in a computer[C]. IEEE Symposium on Research in Security and Privacy, Oakland, CA,1994,202-212.
    [21]Jerne N.K. Towards a network theory of the immune system[J]. Ann Immunol Inst Past, 1974,125(1/2):373-389.
    [22]Tang Z. et al. Multiple-valued immune network model and its simulations[C]. Proceedings of the 27th International Symposium on Multiple-Valued Logic, Antigonish, Canada,1997,233-238.
    [23]Bersinih V., Aarela F. Hints for adaptive problem solving leaned from immune network [M]. Berlin, Heidelberg:Springer-Verlag,1991:343-354.
    [24]Kim J., Bentley P. The artificial immune model for network intrusion detection[C]. Proceedings of 7th European Conference on Intelligent Techniques and Soft Computing, Aachen, Germany,1999.
    [25]Chun J.S. et al. Shape Optimization of Electromagnetic Devices Using Immune Algorithm[J]. IEEE Transactions on Magnetics,1997,33(2):1876-1879.
    [26]Tang Z. et al. A multiple valued immune network and its applications[J]. IEICE Transactions on Fundamentals,1999,82(6):1102-1108.
    (?)Timmis J. On Parameter Adjustment of Immune Inspired Machine Learning Algorithm AINE [D]. Canterbury:University Kent,2000.
    [28]Kumark K., Neidhoefer J. Immunized neurocontrol[J]. Experts Systems with Application,1997,13(3):201-214.
    [29]Timmis J., Neal M.A. Resource limited artificial immune system for data analysis[J]. Knowledge Based Systems,2001,14(3/4):121-130.
    [30]Dasgupta D., Forrest S. Tool breakage detection in milling operations using a negative-selection algorithm. Technical Report CS95-5, Department of Computer Science, University of New Mexico,1995.
    [31]李晓磊,邵之江,钱积新.一种基于动物自治体的寻优模式:鱼群算法[J].系统工程理论与实践,2002,22(11):32-38.
    [32]李晓磊,钱积新.基于分解协调的人工鱼群优化算法研究[J].电路与系统学报,2003,8(1):1-6.
    [33]张梅凤等.基于变异算子与模拟退火混合的人工鱼群优化算法[J].电子学报,2006,34(8):1381-1385.
    [34]Colorni A. et al. Distributed optimization by ant colonies[C]. Proceedings of European Conference on Artificial Life, Paris,1991,134-142.
    [35]马良,朱刚,宁爱兵.蚁群优化算法[M].北京:科学出版社,2008.
    (?)Cambardella L., Taillard E., Dorigo M. Ant colonies for the quadratic assignment problem[J]. Journal of the Operational Research Society,1999,50(2):167-176.
    [37]Maniezzo V., Colorni A. The ant system applied to the quadratic assignment problem[J]. IEEE Transactions on Knowledge and Data Engineering,1999,1(5):769-778.
    [38]Stutzle T. An ant approach for the flow shop problem[C]. Proceedings of the 6th European Congress on Intelligent Techniques and Soft Computing,1998,1560-1564.
    [39]Bui T., Nguyen T. An agent-based algorithm for generalized graph colorings[C]. Proceedings of the Genetic and Evolutionary Computation Conference, Seattle,2006, 19-26.
    [40]王颖,谢剑英.一种基于蚁群算法的多媒体网络多播路由算法[J].上海交通大学学报,2002,36(4):526-528.
    [41]林国辉,马正新,王勇前.基于蚂蚁算法的拥塞规避路由算法[J].清华大学学报,2003,43(1):1-4.
    [42]Oida K., Sekido M..An agent-based routing system for QoS guarantees[C]. Proceedings of IEEE Conference on Systems, Man and Cybernetics,1999,833-838.
    [43]金飞虎,洪炳熔,高庆吉.基于蚁群算法的自由飞行空间机器人路径规划[J].机器人,2002,24(6):526-529.
    [44]Niaki S.T.A., Ershadi M.J. A hybrid ant colony, Markov chain, and experimental design approach for statistically constrained economic design of MEWMA control charts[J]. Expert Systems with Applications,2012,39(3):3265-3275.
    [45]Gao F., Cui G., Liu H. Integration of genetic algorithm and cultural algorithms for constrained optimization[C]. Lecture Notes in Computer Science, Berlin, Springer-Verlag,2006,4234:817-825.
    [46]高丽丽,刘弘,李同喜.基于文化粒子群算法的约束优化问题求解[J].计算机工程,2008,34(5):179-181.
    [47]何玲丽等.基于文化粒子群算法的梯级水电站优化调度研究[J].水电能源科学,2009,27(1):165-168.
    [48]Han K. H, Kim J. H. Quantum-inspired evolution algorithms with a new termination criterion[J]. IEEE Transactions on Evolutionary Computation,2004,8(2):156-169.
    [49]唐德玉,蔡先发等.基于量子粒子群搜索策略的混合蛙跳算法[J].计算机工程与应用,2012,48(29):29-32.
    [50]李煜,马良.用量子蚁群算法求解大规模旅行商问题[J].上海理工大学学报,2012,34(4):354-358.
    [51]张建明,顾幸生.量子进化算法在柔性作业车间调度问题中的应用[J].华东理工大学学报(自然科学版),2012,8:482-486.
    [52]Arvind S. et al. Neighborhood re-structuring in particle swarm optimization[J]. LNAI, 2005,3809:776-785.
    [53]Veeramachaneni K. et al. Optimization using particle swarms with near neighbor interactions[J]. Lecture Notes in Computer Science,2003,2723:110-121.
    [54]van den Bergh F., Engelbrecht A. P. A study of particle swarm optimization particle trajectories[J]. Information Sciences,2006,176:937-971.
    [55]Chatterjee A., Siarry P. Nonlinear inertia weight variation for dynamic adaptation in particle swarm optimization[J]. Computers & Operations Research,2006,33:859-871.
    [56]Chen G., Yu J. Two sub-swarms particle swarm optimization algorithm[J]. Lecture Notes in Computer Science,2005,3612:515-524.
    [57]Chau K. River stage forecasting with particle swarm optimization[J]. Lecture Notes in Computer Science,2004,3029:1166-1173.
    [58]Kannana S. et al. Application of particle swarm optimization technique and its variants to generation expansion planning problem[J]. Electric Power Systems Research,2004, 70:203-210.
    [59]Chen G., Yu J. A hybrid global optimization algorithm based on particle swarm optimization and hill-climbing search and its engineering application[J]. DCDIS-Series B-applications & algorithms 1,2005:145-150.
    [60]Papageorgiou E. I. et al. Fuzzy cognitive maps learning through swarm intelligence [J]. Lecture Notes in Computer Science,2004,3070:344-349.
    [61]Du F. et al. Infrared image segmentation with 2-D maximum entropy method based on particle swarm optimization (PSO)[J]. Pattern Recognition Letters,2005,26:597-603.
    [62]Jeyakumar D. N., Jayabarathi T., Raghunathan T. Particle swarm optimization for various types of economic dispatch problems[J]. Electrical Power and Energy Systems, 2006,28:36-42.
    [63]Yin P. Particle swarm optimization for point pattern matching[J]. Journal of Visual Communication and Image Representation,2006,17(1):143-162.
    [64]Kennedy J., Eberhart R. C. Particle swarm optimization[C]. Proceedings of IEEE International Conference on Neural Networks, Piscataway, NJ:IEEE Service Center, 1995:194-1948.
    [65]Shi Y., Eberhart R.C. A modified particle swarm optimizer[C]. Proceedings of IEEE International Conference on Evolutionary Computation,1998:69-73.
    [66]R. C. Eberhart, Y. Shi. Particle swarm optimization:developments, applications and resources. Proc.2001 Congress on Evolutionary Computation. Seoul, South Korea, 2001:81-86
    [67]Eberhart R. C., Shi Y. Comparing inertia weights and constriction factors in particle swarm optimization[C]. Proceedings of the IEEE Conference on Evolutionary Computation,2000,1:84-88.
    [68]夏桂梅,曾建潮.基于锦标赛选择遗传算法的随机微粒群算法[J].计算机工程与应用,2007,43(4):51-53.
    [69]王芳,邱玉辉.一种引入轮盘赌选择算子的混合粒子群算法[J].西南师范大学学报(自然科学版),2006,31(3):94-97.
    [70]Higashi N., Iba H. Particle Swarm Optimization with Gaussian Mutation [C]. Proceedings of the 2003 IEEE Swarm Intelligence Symposium,2003,72-79.
    [71]赵志刚,常成.带变异算子的自适应粒子群优化算法[J].计算机工程与应用,2011,47(17):43-44.
    [72]付国江等.含速度变异算子的粒子群算法[J].华中科技大学学报,2005,33(8):83-85.
    [73]Peer E.S., van den Bergh F, Engelbrecht A.P. Using neighborhoods with the guaranteed convergence PSO [C]. Proceedings of the 2003 IEEE Swarm Intelligence Symposium, 2003,235-242.
    [74]Hu X., Eberhart R. Multi-objective optimization using dynamic neighborhood particle swarm optimization [C]. Proceedings of the IEEE Congress on Evolutionary Computation,2002,1677-1681.
    [75]夏小翔,曾建潮,高慧敏.基于元胞自动机的小生境微粒群算法[J].计算机工程与应用,2007,43(11):66-68.
    [76]商雨青,许伟,顾幸生.交叉前置式粒子群优化算法及其在催化裂化C3含量软测量中的应用[J].电子学报,2012,40(9):1885-1888.
    [77]van den Bergh F, Engelberecht A.P. Training product unit networks using cooperative particle swarm optimizer[C]. Proceedings of the third Genetic and Evolutionary Computation Conference, San Francisco, USA,2001,126-131.
    [78]薛明志等.正交微粒群算法[J].系统仿真学报,2005,17(12):2908-2911.
    [79]滕居特,陈国初,顾幸生.分段式微粒群优化算法[J].华东理工大学学报,2006,32(4):462-465.
    [80]胡建秀,曾建潮.二阶振荡微粒群算法[J].系统仿真学报,2007,19(5):997-999.
    [81]廖京,中群太.差分演化的微粒群算法[J].科学技术与工程,2007,7(8):1628-1630.
    [82]姜海明,谢康,王亚非.按概率突跳的改进微粒群优化算法[J].吉林大学学报,2007,37(1):141-145.
    [83]黄建江等.量子行为粒子群优化算法的布局问题研究[J].计算机应用,2006,26(12):3015-3018.
    [84]陈国初,俞金寿,郭伟.两群替代微粒群优化算法及其应用[J].华东理工大学学报,2005,31(6):787-790.
    [85]高鹰,谢胜利.免疫粒子群优化算法[J].计算机工程与应用,2004,6:4-6.
    [86]杨俊杰等.基于混沌搜索的粒子群优化算法[J].计算机工程与应用,2005,16:69-71.
    [87]张建军,王春芳.求解混合流水车间调度问题的改进型PSO算法[J].计算机工程与应用,2011,47(31):212-214.
    [88]袁亚杰.一种改进的人工蜂群算法[J].中国科技信息,2011,24:102-103.
    [89]吴建辉等.多子种群微粒群免疫算法及其在函数优化中应用[J].计算机研究与发展,2012,49(9):1883-1898.
    [90]Zhang C., Shao H., Li Y. Particle swarm optimization for evolving artificial neural network systems [C]. Proceedings of International Conference on System, Man and Cybernetics.2000,4:2487-2490.
    [91]Eberhart R, Hu X.H. Human tremor analysis using particle swarm optimization [C]. Proceedings of the 1999 Congress on Evolutionary Computation,1999,1927-1930.
    (?)李爱国,覃征.积单元神经网络预测噪声环境的混沌时间序列[J].西安科技学院学报,2003,23(3):295-297.
    [93]梁本亮,王增忠,孙富学.基于PSO的结构损伤检测应用研究[J].郑州大学学报,2006,38(4):93-97.
    [94]张坤,吴跃.PSO算法在通信基站分布规划中的应用[J].计算机与数字工程,2006,34(4):135-138.
    [95]韩璞等.粒子群优化的模糊控制器设计[J].动力工程,2005,25(5):663-667.
    [96]Parsopoulos K.E., Vrahatis M.N. Particle swarm optimization method in multiobjective problems[C]. Proceedings of the ACM Symp on Applied Computing,2002,603-607.
    [97]巩岁平,任军号,张宝磊.一种多目标优化问题的理想灰色粒子群算法[J].计算机应用研究,2010,27(12):4457-4460.
    (?)邸若海,高晓光.基于限制型粒子群优化的贝叶斯网络结构学习[J].系统工程与电子技术,2011,33(11):2423-2427.
    [99]唐贤伦等.混合粒子群优化算法优化前向神经网络结构和参数[J].计算机应用研究,2007,24(12):91-93.
    [100]田雨波,潘朋朋.混合粒子群算法优化神经网络的研究[J].微电子学与计算机,2011,28(6):156-159.
    [101]Clerc M. Discrete particle optimization illustrated by the traveling salesman problem. In New optimization techniques in engineering,2004.
    (?)傅家旗,叶春明,谢金华.混合量子算法及其在flow shop司题中的应用[J].计算机工程与应用,2008,44(20):48-50.
    [103]Sensarma P. S., Rahmani M, Carvalho A. A comprehensive method for optimal expansion planning using particle swarm optimization[C]. Power Engineering Society Winter Meeting,2002,1317-1322.
    [104]Boeringer D.W., Werner D.H. A comparison of particle swarm optimization and genetic algorithms for a phased array synthesis problem[C]. Antennas and Propagation Society International Symposium,2003,1:181-184.
    [105]王苗,段志善.基于粒子群优化算法的圆振动筛的优化设计[J].煤矿机械,2011,32(12):16-17.
    (?)杨丽萍.基于PSO的证券投资组合优化问题研究[J].统计与决策,2009,4:138-139.
    [107]Arachi, Fernando W. PSO based bit rate optimization for MPEG-1/2video coding[C]. Proceedings of International Conference on Image Processing,2005,2:329-332.
    [108]Gaing Z. A particle swarm optimization approach for optimal design of PID controller in AVR system[J]. IEEE Transactions on Energy Conversion,2004,19(2):384-391.
    [109]Kim T., Maruta I., Sugie T. Robust PID controller tuning based on the constrained particle swarm optimization[J]. Automatica,2008,44(4):1104-1110.
    [110]梁英,于海斌,曾鹏.应用PSO优化基于分簇的无线传感器网络路由协议.控制与决策,2006,21(4):453-461.
    [111]Marinakis Y., Marinaki M., Dounias G. Particle swarm optimization for pap-smear diagnosis[J]. Expert Systems with Application,2008,35(4):1645-1656.
    [112]Montalvo I. et al. Particle swarm optimization applied to the design of water supply systems[J]. Computers and Mathematics with Applications,2008,56(3):769-776.
    [113]Medeiros J., Schirru R. Identfication of nuclear power plant transients using the particle swarm optimization algorithm[J]. Annals of Nuclear Energy,2008,35(4):576-582.
    [114]瞿小宁.K均值聚类算法和商业银行客户分类中的应用[J].计算机仿真,2011,28(6):357-360.
    [115]沈广,陈允平,刘栋.改进离散粒子群算法在冷负荷启动的配电网馈线恢复中的应用[J].电网技术,2006,30(7):55-58.
    [116]韩恺,赵均,钱积新.电力系统机组组合问题的闭环粒子群算法[J].电力系统自动化,2009,31(1):129-132.
    [117]吴杰康.程鹏飞,赵莎莎.基于协调粒子群算法的含风电场电力系统最优潮流计算[J].现代电力,2011,28(6):87-91.
    [118]曾令全,罗富宝,丁金嫚.禁忌搜索-粒子群算法在无功优化中的应用[J].电网技术,2011,35(7):130-133.
    [119]赵菲等.基于WAMS的输电线路参数在线辨识的研究[J].电力科学与工程,2011,27(8):15-18.
    [120]吴杰,杨阳,卢志刚.应用粒子群算法的谐波状态估计量测点综合最优配置[J].电网技术,2011,34(9):115-120.
    [121]孙波,陈卫东,席裕庚.基于粒子群优化算法的移动机器人全局路径规划[J].控制与决策,2005,20(9):1052-1060.
    [122]郭坤卿,马永红,赵永臣.基于MPSO RBF的区域公路交通事故预测方法研究[J].兰州交通大学学报,2008,27(4):76-79.
    [123]陈国初,俞金寿.微粒群神经网络在常压塔汽油干点软测量建模中的应用[J].化工自动化及仪表,2005,3293:25-27.
    [124]Joseph B., Brosilow C.B. Inferential Control of Process:part Ⅰ. Steady state analysis and design[J]. AIChE,1978,24(3):485-492.
    [125]Brosilow C.B., Tong M. Inferential Control of Process:part Ⅱ. The structure and dynamics of Inferential Control system[J]. AIChE,1978,24(3):492-500.
    [126]Joseph B., Brosilow C.B. Inferential Control of Process:part III. Construction of optimal and suboptimal dynamic estimators[J]. AIChE,1978,24(3):500-509.
    [127]俞金寿,刘爱伦,张克进.软测量技术及其在石油化工中的应用[M].北京:化学工业出版社,2000.
    [128]Mcacvoy T.J. Contemplative stance for chemical process control[J]. Automatica,1992, 28(2):441-442.
    [129]Gu X., Sun D. A soft sensor model based on rough set theory and its application in estimation of oxygen concentration [J]. Lecture Notes in Computer Science,2005,3613: 1271-1276.
    [130]Luo J., Shao H. Developing soft sensors using hybrid soft computing methodology:a neurofuzzy system based on rough set theory and genetic algorithms[J]. Soft Computing, 2006,10:54-60.
    [131]Jordaan E. et al. Robust inferential sensors based on ensemble of predictors generated by genetic programming[J]. Lecture Notes in Computer Science,2004,3242:522-531.
    [132]Feil B. et al. Semi-mechanistic models for state-estimation-soft sensor for polymer melt index prediction[J]. Lecture Notes in Computer Science,2004,3070:1111-1117.
    [133]毛帅等.常压塔柴油凝点动态软测量模型的研究[J].控制工程,2005,12(4):342-345.
    [134]黄自元等.复杂系统的遗传-模糊建模方法[J].系统仿真学报,2003,15(9):1285-1287.
    [135]李柠,李少远,席裕庚.基于满意聚类的多模型建模方法.控制理论与应用.2003,20(5):783-787.
    [136]王锡淮,李少远,席裕庚.加热炉钢坯温度软测量模型研究[J].自动化学报,2004,30(6):928-932.
    [137]颜学峰.基于径基函数加权偏最小二乘回归的干点软测量[J].自动化学报,2007,33(2):194-196.
    (?)田奕,乔俊飞.基于遗传算法的BOD神经网络软测量[J].计算机技术与发展,2009,19(3):128-133.
    [139]Ge Zhiqiang, Song Zhihuan. A comparative study of just-in-time-learning based methods for online soft sensor modeling[J]. Chemometrics and Intelligent Laboratory Systems,2010,104:306-317.
    [140]Wu Yao, Luo Xionglin. A novel calibration approach of soft sensor based on multirate data fusion technology [J]. Journal of Process Control,2010,20:1252-1260.
    [141]Chen Youshyang, Cheng Chinghsue. A soft-computing based rough sets classifier for classifying IPO returns in the financial markets[J]. Applied Soft Computing,2012,12: 462-475.
    [142]Viejo Diego, Garcia-Rodriguez Jose, Cazorla Miguel. A study of a soft computing based method for 3D scenario reconstruction[J]. Applied Soft Computing,2012,12: 3158-3164.
    [143]Chen Kun et al. Adaptive local kernel-based learning for soft sensor modeling of nonlinear processes[J]. Chemical Engineering Research and Design,2011,89: 2117-2124.
    [144]Angulo Eusebio et al. An adaptive approach to enhanced traffic signal optimization by using soft-computing techniques[J]. Expert Systems with Applications,2011,38: 2235-2247.
    [145]Rajanb S. E, Priyadharsini S. S. An efficient soft-computing technique for extraction of EEG signal from tainted EEG signal[J]. Applied Soft Computing,2012,12:1131-1137.
    [146]Ding Jingguo et al. Application of temperature inference method based on soft sensor technique to plate production process[J]. JOURNAL OF Iron and Steel Research, International.2011,18(3):24-27
    [147]Sun Han et al. Comparative study on economic contribution rate of education of China and foreign countries based on soft computing method[J]. Applied Soft Computing, 2012,12:2106-2113.
    [148]Pani AK, et al. Development and comparison of neural network based soft sensors for online estimation of cement clinker quality. ISA Transactions (2012), in press.
    [149]Lamorski K. et al Using support vector machines to develop pedotransfer functions for water retention of soils in Poland[J]. Soil Science Society of America Journal,2008,72: 1243-1247.
    [150]Liukkonen Mika et al. Dynamic soft sensors for NOx emissions in a circulating fluidized bed boiler[J]. Applied Energy,2012,97:483-490.
    [151]陈渭泉.测量技术中的变量选择方法研究[D].浙江:浙江大学,2004.
    [152]刘瑞兰,陈渭泉,苏宏业.基于改进GA-LS算法的最优辅助变量选择及其在软测量建模中的应用[J].南京邮电大学学报(自然科学版),2006,26(1):76-80.
    [153]仲蔚.软测量与先进控制策略研究及其在石油化工过程中的应用[D].上海:华东理工大学,1999.
    [154]孙欣,王金春,何声亮.过程软测量[J].自动化仪表,1995,8:1-5.
    [155]罗健旭,邵惠鹤.软测量建模数据的过失误差侦破一种基于聚类分析的方法[J].仪器仪表学报,2005,26(3):238-241.
    [156]罗健旭,常青.软测量技术的数据预处理方法研究[J].控制工程,2006,13(4):298-300.
    [157]王卓,苑明哲,王宏.水泥熟料质量指标的软测量建模研究[J].化工自动化及仪表,2006,33(6):53-54.
    [158]杨慧中,钟豪,丁锋.基于多重小波变换的信号去噪及其在软测量中的应用[J].仪器仪表学报,2007,28(7):1245-1249.
    [159]Dybkjaer I. Ammonia:catalysis and manufacture, A. Nielsen, Editor. Springer:Berlin, 1995.
    [160]赵晏强等.中国合成氨工业CO2排放现状及点源分布特征分析[J].环境污染与防治,2011,33(10):101-105.
    [161]李士安,吕峰,张晓丽.合成氨废水生物脱氮处理工艺综述[J].环境工程,2009,27(S1):134-136.
    [162]于遵宏,朱炳长,沈才大.大型合成氨厂工艺过程分析[M].中国石化出版社,1993.
    [163]Kasiri N., Hosseini A. R. and Moghadam M. Dynamic simulation of an ammonia synthesis reactor [J]. Computer Aided Chemical Engineering.2003,14:695-700.
    [164]Mancusi E. Nonlinear analysis of an industrial ammonia reactor with heterogeneous model [J]. Computer Aided Chemical Engineering.2001,9:225-230.
    [165]Abashar M. E. E. Application of heat interchange systems to enhance the performance of ammonia reactors [J]. Chemical Engineering Journal.2000,78(1):69-79.
    [166]Babu B. V., Angira R. Optimal design of an auto-thermal ammonia synthesis reactor [J].Computers & Chemical Engineering.2005,29(5):1041-1045.
    [167]Sun L., Fan X. and Yao P. Study on multi-objective fuzzy optimization algorithm for chemical process [J]. Computer Aided Chemical Engineering.2003,15:1370-1375.
    [168]Penkuhn T. et al. Environmental integrated production planning for the ammonia synthesis [J]. European Journal of Operational Research.1997,97(2):327-336.
    [169]陈心路,赵霞,朱建宁.基于神经网络的精馏能耗模拟和优化[J].计算机技术与发展,2011,21(6):173-176.
    [170]王磊,黄道.基于改进的自组织映射网络的化工过程故障分类辨识[J].华东理工大学学报(自然科学版),2006,32(9):1109-1112.
    [171]王磊,黄道.化工故障诊断中基于遗传算法优化的SOM网络[J].计算机工程与应用,2006:188-190.
    [172]何黎明.我国物流业发展分析与政策建议[J].宏观经济管理,2012,3:26-29.
    [173]邓巧云等.新型纸积层板托盘的工艺技术和应用研究[J].包装工程,2010,31(11):39-41.
    [174]崔月升.我国物流托盘一贯化运输发展对策研究[J].科技创新导报,2011:27.
    [175]王亚晴,覃运梅.物流企业零担配送路线的优化方法[J].物流工程与管理,2012,34(1):126-127.
    (?)秦映波.神经网络算法在物流配送车辆优化调度中应用[J].计算机仿真,2012,29(1):301-304.
    [177]李国旗,张锦,刘思婧.城市应急物流设施选址的多目标规划模型[J].计算机工程与应用,2011,47(19):238-242.
    [178]Lim J.H. et al. An experimental and finite element analysis of the static deformation of natural fiber-reinforced composite beam[J]. Journal of Polymer Testing,2003,22(2): 169-177.
    [179]Ratnam M.M. et al. Study of three-dimensional deformation of a pallet using phase-shiff shadow moireand finite-element analysis[J]. Experimental Mechanics,2005, 45(1):9-17.
    [180]桑军等.基于CosmosWorks的整装整卸托盘纵梁的优化设计[J].起重运输机械,2008,6:39-42.
    [181]黄克瑾.精馏过程的模型化及仿真[D].浙江大学,1992.
    [182]丁云,于静江,周春晖.原油蒸馏塔的质量估计和优化管理[J].石油炼制与化工.1994,25(5):23-28.
    [183]陈兰星.基于RBF神经元网络聚酯工业软测量软件包的研究及开发[D].北京化工大学,2005.
    [184]俞佩菲.阿维菌素发酵过程中的软测量技术应用研究[D].浙江大学,2006.
    [185]刘颖.电站锅炉风粉浓度的软测量研究[D].东南大学,2006.
    [186]Zhou W., Li Z., Jiao L. Hidden space principal component analysis[J]. Lecuture Notes in Computer Science,2006,3918:801-805.
    [187]Nhat V.D.M., Lee S. Improvement on PCA and 2DPCA algorithms for face recognition[J]. Lecuture Notes in Computer Science,2005,3568:568-577.
    [188]Perez-Enciso M., Tenenhaus M1. Prediction of clinical outcome with microarray data:a partial least squares discriminant analysis (PLS-DA) approach. Humuman Genetics 2003,112(5-6):581-592.
    [189]Sun Q. et al. A novel feature fusion method based on partial least squares regression[J]. Lecuture Notes in Computer Science,2005,3686:268-277.
    [190]Chen Y. et al. GEMPLS:A new QSAR method combining generic evolutionary method and partial least squares[J]. Lecuture Notes in Computer Science,2005,3449:125-135.
    [191]Tham M.T. et al. Soft-sensor for process estimation and inferential control[J]. Journal of Process Control,1991,1(1):3-14.
    [192]Zhou L. et al. Modeling and control for nonlinear time-delay system via pattern recognition[J]. IEEE Transactions on Neural Networks,1992,3(6):991-997.
    [193]穆罕默德·阿塔,祝如松,蒋慰孙.间歇精馏塔塔板效率的在线模式识别[J].信息与控制,1993,22(1):47-49.
    [194]Rutkowska D. Knowledge acquisition and processing:new methods for neuro-fuzzy systems[J]. Lecuture Notes in Computer Science,2004,2932:62-81.
    [195]Kumar V., Schuhmacher M., Garcia M. Integrated fuzzy approach for system modeling and risk assessment[J]. Lecuture Notes in Computer Science,2006,3885:227-238.
    [196]Linkens D.A., Chen M.Y. Input selection and partition validation for fuzzy modeling using neural network[J]. Fuzzy Sets and Systems,1999,107(3):299-308.
    [197]Takagi T., Sugeno M. Fuzzy identification of systems and its applications to modeling andcontrol[J]. IEEE Transactions on Systems, Man and Cybernetics,1985,15(1): 116-132.
    [198]Liu R. et al. Fuzzy neural network model of 4-CBA Concentration for industrial purified terephthalic acid oxidation Process[J]. Chinese Journal of Chemical Engineering,2004,12(2):234-239.
    [199]Vapnik V.N.(张学工译).统计学习理论的本质[M].清华大学出版社,2000.
    [200]Sun Z. et al. Sequential support vector machine control of nonlinear systems by state feedback[J]. Lecuture Notes in Computer Science,2005,3498:7-14.
    [201]Nanni L., Lumini A. Support vector machines for HIV-1 protease cleavage site prediction[J]. Lecuture Notes in Computer Science,2005,3523:413-420.
    [202]Akutsu T. Computational and statistical methods in bioinformatics[J]. Lecuture Notes in Computer Science,2005,3430:11-33.
    (?)Greg M. Consider soft sensors[J]. Chemical Engineering,1997,93(7):66-70
    [204]Chen X., Gao F., Chen G. A soft-sensor development for melt-flow-length measurement during injection mold filling[J]. Materials Science and Engineering,2004, 384(1-2):245-254.
    [205]赵恒平,俞金寿.高维小波网络及其在丙烯腈收率预测中的应用[J].控制与决策,2005,20(3):353-355.
    [206]刘卓倩,顾幸生.基于智能集成优化的合成塔入口氨含量软测量[J].化工学报,2010,61(8):2052-2055.
    [207]Devogelaere D. et al. Application of feed forward neural network for soft sensor in the sugar industry[C]. IEEE Proceedings of the VII Brazilian Symposium on Neural Networks,2002,2-6.
    [208]Kennedy J., Mendes R. Population structure and particle swarm performance[C]. Proceedings of the 2002 Congress on Evolutionary Computation,2002,1671-1676.
    [209]Kennedy J. Stereotyping:improving particle swarm performance with cluster analysis[C]. Proceedings of the IEEE International Conference on Evolutionary Computation,2000,1507-1512.
    [210]Wei Xu, Xingsheng Gu. A hybrid particle swarm optimization approach with prior crossover differential evolution. Proceedings of the First ACM/SIGEVO Summit on Genetic and Evolutionary Computation, pp.671-678,2009, Shanghai, China.
    [211]Ratnaweera A., Halgamuge S. K. and Watson H. C. Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients [J]. IEEE Transactions on Evolutionary Computation.2004,8(3):240-255.
    [212]宋维端,肖任坚,房鼎业.甲醇工学[M].化学工业出版社.1999,
    [213]Shi Y., Ebethart R.C. Empirical study of Particle swarm optimization[C]. Proceedings of the World Multi-conference on Systemics, Cybernetics and Informatics, Orlando, 2000,1945-1950.
    [214]Lorenz E.N. The Essence of Chaos[M]. Washington:USA University of Washington Press,1993.
    [215]刘伟.基于粒子群算法自适应逆控制混沌同步研究[D].哈尔滨工程大学,2009.
    [216]Liu Y. et al. Center particle swarm optimization [J]. Neurocomputing,2007,70(4-6): 672-679.
    [217]宋维端,肖任坚,房鼎业.甲醇工学[M].化学工业出版社,1999.
    [218]高介祜等.现代造船工程[M].哈尔滨:哈尔滨工程大学出版社,1998.
    [219]Helman P. An algebra for search problems and their solutions[C]. Proceedings, of the Search in Artificial Intelligence,1988,28-90.
    [220]朱颢东,李红婵.基于双禁忌对象的并行禁忌搜索算法[J].计算机工程与应用,2011,47(29):31-33.
    [221]王岩,张薇.一种基于和声策略的禁忌搜索算法[J].吉林化工学报,2011,28(11):98-100.
    [222]孙建彬,邢立宁.基于遗传算法的武器系统组合优化方法[J].价值工程,2011,29:9-10.
    [223]刘立等.一种改进蚁群算法在配电网优化规划中的应用[J].科学技术与工程,2011,11(24):5801-5804.
    [224]郑宇军,薛锦云,凌海风.组合优化问题简约与算法推演[J].软件学报.2011,22(9):1985-1993.
    [225]Kennedy J, Eberhart R.C. Swarm intelligence[M]. San Mateo:Morgan Kaufmann, 2001.
    [226]Kennedy J., Eberhart R. C. A discrete binary version of the particle swarm algorithm[C]. Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, 1997,5:4104-4108.
    [227]Parsopoulos K.E., Vrahatis M. N. Recent approaches to global optimization problems through particle swarm optimization[J]. Natural Computing,2002,1(2/3):235-306.
    [228]Pan Q., Tasgetiren M.F., Liang Y. A discrete particle swarm optimization algorithm for the permutation flowshop sequecing problem with makespan criteria[C]. Proceedings of the Twenty-sixth SGAI International Conference on Innovative Techniques and Applications of Artificial Intelligence, Cambridge:Springer-Verlag,2006,19-31.
    [229]韩文民,吕秋.造船企业加强托盘管理研究[J].科学技术与工程,2009,9(19):5917-5920.
    [230]张志强.车间信息化管理的数据库建设[J].广东造船,2006,2:42-45.
    [231]马红燕.浅谈舾装件集配中心管理[J].江苏船舶,2004,1:29-31.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700