用户名: 密码: 验证码:
复杂目标电磁散射算法与特性仿真研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目标雷达散射截面(RCS)的缩减在军事领域具有重要的意义,是雷达对抗中的关键技术之一。将具有雷达吸波特性的介质薄层涂覆于导体目标外表面,以削弱目标散射电磁波的能量,并使电磁波尽可能地朝着无关的方向散射,这已成为复杂目标电磁隐身技术所追求的目标。介质薄层涂覆导体目标电磁散射问题是计算电磁学领域具有实际应用价值的课题,在雷达目标探测、电波传播以及高频天线设计等领域有着广泛的应用,同时也成为雷达反隐身领域所关心的研究课题,在电子对抗中有着广阔的应用前景。通过阻抗边界条件(IBC)将介质薄层涂覆导体目标等效为无厚度阻抗面,采用表面阻抗并矢给出切向电场和磁场矢量之间的关系,无需考察物体内部场分布便可计算物体外部散射场,避开了介质与导体复合目标中格林函数的推导和计算等难点问题,可将未知量限制在整个涂覆导体的外表面,便于采用表面电磁场积分公式实现电磁散射特性的高效求解,从而简化复杂结构电磁散射问题的分析和数值求解过程。
     本文基于阻抗边界条件,研究了介质涂覆不同电尺寸目标电磁散射算法及特性仿真。针对电小尺寸目标,提出了无限长任意形状截面非均匀各向异性阻抗柱面和介质涂覆三维导电目标电磁散射的矩量法(MoM),对于矩量法精确积分计算目标表面所有三角形面元之间的相互作用而效率低的问题,采用矢量多层UV分解技术,减少迭代求解矩阵方程时的矩阵-向量积运算,减少计算机内存需求和计算时间,从而有效提高计算效率,拓宽其应用范围;针对电大尺寸目标,将其电磁散射贡献划分为占主要地位的面散射贡献和占次要地位的边缘绕射贡献。采用双次反弹的物理光学(PO)算法求解面散射贡献,并通过任意斜入射情况下任意劈角阻抗直劈的一致性几何绕射理论(UTD)解导出有限长阻抗直劈边缘的增量长度绕射系数(ILDC)或等效边缘流(EEC),从而以边缘波场修正物理光学场,得到介质涂覆电大尺寸三维导电目标电磁散射的高频预估;针对介质涂覆中等电尺寸目标,提出了矩量法-物理光学(MoM-PO)混合算法解决方案。此外,基于本文提出的各类电磁散射理论算法,进行了地/海环境中目标的电磁散射特性预估及雷达成像仿真研究,对目标特性理论研究和雷达系统改善提供理论指导与数据支撑。本文内容主要包括:
     1)研究了介质涂覆电小目标电磁散射的MoM算法建模。包括无限长任意形状截面非均匀各向异性阻抗柱面电磁散射的MoM算法,介质涂覆三维导电目标电磁散射的MoM算法,以及矢量多层UV分解技术加速的介质涂覆导电目标电磁散射的MoM算法。
     2)研究了介质涂覆电大目标电磁散射的高频算法建模。包括阻抗平面电磁散射的双次反弹物理光学算法,以及有限长阻抗直劈蜡边缘绕射的增量长度绕射系数算法
     3)研究了介质涂覆中等电尺寸目标电磁散射的MoM-PO混合算法建模。将散射体上的边、角等不连续区域划归MoM区,而把其它光滑、连续的区域划归PO区,对于曲率无明显变化的目标,则可以将散射贡献较大的少量区域划归MoM区,则空间散射电磁场可等效为MoM区和PO区电磁流的辐射场。
     4)研究了地/海环境中目标的高频电磁散射特性及雷达成像仿真。采用基于双次反弹的PO-EEC算法实现目标与地/海环境复合散射的一体化高精度电磁建模,仿真得到地/海环境中目标的单站RCS以及高分辨率距离像(HRRP)/二维聚束合成孔径雷达(SAR)成像特性。
As one of the key techniques in radar counterwork, the radar cross section (RCS) reduction is of great significance in military fields. Coating the outer surface of conducting target with radar absorbing thin-layer dielectric, can not only weaken the electromagnetic energy scattering from the target, but also redistribute the scattering electromagnetic waves to the uncaring direction, which has become a pursued goal in electromagnetic stealth field for complex target. The research on the electromagnetic scattering of conducting target coated with thin-layer dielectric, as a topic of great value in computational electromagnetics, has a wide range of applications in the fields of radar detection, electromagnetic wave propagation, as well as high-frequency antenna design, and become of great concern in the field of radar anti-stealth, which has broad application prospects in electronic countermeasures. Conducting object coated with thin-layer dielectric is equivalent to impedance surfaces with no thickness using impedance boundary condition, with the relationship between tangential electric field and magnetic field vectors given by a surface impedance dyadic. The external electromagnetic field scattered from the thin-layer dielectric coating object can be calculated with no need to investigate the distribution of the internal field, which can avoid some difficult problems such as the derivation and calculation of the Green's function for the composite target. Furthermore, the unknowns can be greatly limited to the outer surface of the coated conductor, and then surface electromagnetic fields integral formulas can be used to efficiently explore the electromagnetic scattering, thus simplifying the procedure of analysis and numerical solving for electromagnetic scattering from complex structures.
     The research on electromagnetic scattering algorithms and characteristics simulation for thin-layer dielectric coating object of different electrical size, based on the impedance boundary condition is performed in this paper. For the case of small electrical size, method of moments(MoM) is presented respectively for the electromagnetic scattering from two-dimensional anisotropic inhomogeneous impedance cylinder of arbitrary section shape and three-dimensional arbitrary conducting object coated with dielectric. Exact integration to calculate the interaction between surface triangular facets is needed in three-dimensional MoM solution, which may result in low efficiency. Multi-layer UV decomposition technique is adopted to reduce the computer memory requirements and computation time by reducing the complexity of the matrix-vector multiplication in iterative solution, in order to effectively improve the computational efficiency and broaden its range of application; For the case of large electrical size, the total electromagnetic scattering is divided into the dominant contribution of surface scattering and the secondary contribution of edge diffraction. The double-bounce physical optics (PO) algorithm is applied to obtain the surface scattering contribution. With the help of uniform geometrical theory of diffraction (UTD) solution by impedance wedge with arbitrary exterior wedge angle at arbitrary skew incidence, the incremental length diffraction coefficients (ILDC) or equivalent edge current (EEC) for finite edge can be derived, in order to improve the physical optics field with fringe wave contribution, to implement the high-frequency estimation of electromagnetic scattering from electrically large conducting object coated with dielectric; For the case of dielectric coating conducting target of medium electrical size, a MoM-PO hybrid method is presented for the electromagnetic scattering. In addition, the electromagnetic scattering and radar image of ground/maritime targets are performed based on the proposed various algorithms, which may provide theoretical guidance and database support, to improve the theoretical research for target characteristics and radar systems. The main content of this paper includes the following parts:
     1) The electromagnetic scattering from electrically small conducting object coated with dielectric is studied by the MoM algorithm, respectively for the scattering from two-dimensional anisotropic inhomogeneous impedance cylinder of arbitrary section shape and three-dimensional arbitrary conducting object coated with dielectric. Multi-layer UV decomposition technique is adopted to accelerate the MoM algorithm for conducting object coated with dielectric.
     2) The electromagnetic scattering from electrically large conducting object coated with dielectric is studied by the high frequency algorithm, including the double-bounce PO method for impedance surface, as well as the ILDC for finite impedance edge.
     3) The electromagnetic scattering from electrically medium conducting object coated with dielectric is studied by the MoM-PO hybrid method. The discontinuous, geometrically complicated parts or the part with a rapid change in curvature, such as edges or corners will be grouped into the MoM-region generally, while the left continuous, smooth parts will be grouped into the PO-region. Then the total scattering fields can be equivalent to the radiation of electric or magnetic current in the MoM-and the PO-region.
     4) The high frequency scattering characteristic and radar image of ground/maritime targets are studied. The electromagnetic simulation of composite scattering from targets and the land/sea environment are performed by the PO-EEC algorithm, in order to obtain the RCS, high resolution range profiles (HRRP) and2-D spotlight synthetic aperture radar (SAR) image.
引文
[1]D. S. Wang. Limits and validity of the impedance boundary condition on penetrable surfaces[J]. IEEE Transactions on Antennas and Propagation,1987,35(4):453-457.
    [2]T. B. A. Senior, J. L. Volakis. Approximate boundary conditions in electromagnetics[M]. London, U.K.: Institute Elect. Eng.,1995.
    [3]P. K. Huang, H. C. Yin. Equivalent currents on an anisotropic material backed by a metal surface and their relation[J].Journal of Systems Engineering and Electronics,2000,11(4):1-10.
    [4]郭辉萍,刘学观,股红成,黄培康.金属衬底多层吸波材料表面等效电磁流的研究[J].电波科学学报,2002,17(6):604-608.
    [5]赵惠玲,万国宾,万伟.高阶各向异性阻抗边界条件的导出[J].电波科学学报,2001,16(1):25-29.
    [6]赵惠玲,万伟,许家栋,万国宾.多层介质涂覆结构的高阶张量阻抗边界条件[J].电波科学学报,2002,17(4):354-357.
    [7]赵惠玲,万国宾,万伟,许家栋.各向异性介质涂覆曲面导体目标的散射[J].西北工业大学学报,2009,27(5):602-605.
    [8]J. C. Monzon. Three-dimensional field expansion in the most general rotationally symmetric anisotropic material:application to scattering by a sphere[J]. IEEE Transactions on Antennas and Propagation,1989,37(6):728-735.
    [9]F. Olyslager. Time-harmonic two-and three-dimensional Green's dyadics for general uniaxial bianisotropic media[J]. IEEE Transactions on Antennas and Propagation,1995,43(4):430-434.
    [10]M. Zhang, W. Hong. Scattering by a circular uniaxial bianisotropic cylinder[C]. Asia Pacific Microwave Conference,1997:93-96.
    [11]耿友林,吴信宝,官伯然.导体球涂覆各向异性铁氧体介质电磁散射的解析解[J].电子与信息学报,2006,28(9):1740-1743.
    [12]Y. L. Geng, C. W. Qiu, and N. Yuan. Exact solution to electromagnetic scattering by an impedance sphere coated with a uniaxial anisotropic layer[J]. IEEE Transactions on Antennas and Propagation, 2009,57(2):572-576.
    [13]王海龙,吴群,吴健,等.无耗异向介质以覆盖介质圆柱电磁特性的研究[J].电波科学学报,2007,22(6):906-912.
    [14]N. S. Tezel. Electromagnetic scattering from cylinder with generalized impedance boundary condition[J]. Microwave and Optical Technology Letters,2007,49(12):3090-3093.
    [15]李应乐,黄际英.电磁各向异性介质球的散射研究[J].电波科学报,2010,25(4):646-650.
    [16]毛仕春,吴振森,邢赞扬.二维各向异性椭圆柱的电磁散射[J].电子学报,2010,38(3):529-533.
    [17]R. D. Graglia, P. L. E. Uslenghi. Electromagnetic scattering from anisotropic materials, part I:general theory[J]. IEEE Transactions on Antennas and Propagation,1984,32(8):867-869.
    [18]R. D. Graglia, P. L. E. Uslenghi. Electromagnetic scattering from anisotropic materials, part II: computer code and numerical results in two dimensions[J]. IEEE Transactions on Antennas and Propagation,1987,35(2):225-232.
    [19]J. C. Monzon, N. J. Damaskos. Two-dimensional scattering by a homogeneous anisotropic rod[J]. IEEE Transactions on Antennas and Propagation,1986,34(10):1243-1249.
    [20]J. C. Monzon. Three-dimensional scattering by an infinite homogeneous anisotropic circular cylinder: a spectral approach[J]. IEEE Transactions on Antennas and Propagation,1987,35(6):670-682.
    [21]B. Beker, K. R. Umashankar, and A. Taflove. Numerical analysis and validation of the combined field surface integral equations for electromagnetic scattering by arbitrary shaped two-dimensional anisotropic objects[J]. IEEE Transactions on Antennas and Propagation,1989,37(12):1573-1581.
    [22]C. M. Rappaport, B. J. Mccartin. FDFD analysis of electromagnetic scattering in anisotropic media using unconstrained triangular meshes[J]. IEEE Transactions on Antennas and Propagation,1991, 39(3):345-349.
    [23]A. H. Chang, K. S. Yee, and J. Prodan. Comparison of different integra equation formulations for bodies of revolution with anisotropic surface impedance boundary conditions[J]. IEEE Transactions on Antennas and Propagation,1992,40(8):989-991.
    [24]S. Barkeshli, D. J. Radecki, and H. A. Sabbagh. On a linearized inverse scattering model for a three-dimensional flaw embedded in anisotropic advanced composite materials[J]. IEEE Transactions on Geoscience and Remote Sensing,1992,30(1):71-80.
    [25]J. Schneider, S. Hudson. A finite-difference time-domain method applied to anisotropic material[J]. IEEE Transactions on Antennas and Propagation,1993,41(7):994-999.
    [26]K. K. Mei, R. Pous, Z. Q. Chen, Y. W. Liu and M. D. Prouty. Measured equation of invariance:a new concept in field computations[J]. IEEE Transactions on Antennas and Propagation,1994, 42(3):320-328.
    [27]M. Kimmel, H. Singer. Numerical computation of anisotropic shielding materials based on the method of moments[C]. IEEE International Symposium on Electromagnetic Compatibility,1996:87-91.
    [28]L. Z. Zheng, G. Q. Zhu, and X. H. Liu. FDTD analysis of electromagnetic scattering from anisotropic targets[C]. International Symposium on Antennas, Propagation and EM Theory,2000:261-264.
    [29]郑宏兴.各向异性介质涂敷目标的电磁波散射分析与计算方法研究[D].西安电子科技大学博士学位论文,2002.
    [30]曾渊.阻抗边界条件理论与研究应用[D].西北工业大学硕士学位论文,2003.
    [31]G. Kobidze, B. Shanker. Integral equation based analysis of scattering from 3-D inhomogeneous anisotropic bodies[J]. IEEE Transactions on Antennas and Propagation,2004,52(10):2650-2658.
    [32]赵莹.基于阻抗边界条件的电场积分方程分析介质涂覆目标电磁散射[D].南京理工大学硕士学位论文,2010.
    [33]S. Chen, Y. Sato, M. Oodo, and M. Ando. Physical optics analysis of dipole-wave scattering from a finite strip array on a grounded dielectric slab, IEICE Transactions on Electronics,1996, E79-C(10):1350-1357.
    [34]W. B. Gordon. Far-field approximations to the kirchhoff-helmholtz representations of scattered fields[J]. IEEE Transactions on Antennas and Propagation,1975,23(5):590-592.
    [35]G. Pelosi, G. Manara, and M. Fallai. Physical optics expressions for the fields scattered from anisotropic impedance flat plates[J]. Microwave and Optical Technology Letters,1997,14(6):316-318.
    [36]赵维江,龚书喜,葛德彪.用物理光学方法计算面元模拟涂覆体的雷达截面[J].西安电子科技大学学报,1998,25(3):329-332.
    [37]殷红成,印国泰.各向异性材料涂覆导体目标的PO解[C].目标与环境特性九五技术成果论文集,2001:39-45.
    [38]N. S. Tezel. Electromagnetic scattering by anisotropic inhomogeneous impedance cylinder of arbitrary shape using physical optics[J]. IEEE Geoscience and Remote Sensing Letters,2008,5(4):663-667.
    [39]B. Noble. Methods Based on the Wiener-Hopf Technique[M]. London:Pergamon Press,1958.
    [40]G. D. Maliuzhinets. Excitation, reflection and emission of surface waves from a wedge with given face impedances[J]. Soviet Physics Doklady,1958,3(4):752-755.
    [41]O. M. Bucci, G. Fraceschetti. Electromagnetic scattering by half-plane with two face impedance[J]. Radio Science,1976, 11(1):49-59.
    [42]R. Tiberio, G. Pelosi, and G. Manara. A uniform GTD formulation for the diffraction by a wedge with impedance faces[J]. IEEE Transactions on Antennas and Propagation,1985,33(8):867-872.
    [43]G. Manara, P. Nepa, and G. Pelosi. Electromagnetic scattering by right angled anisotropic impedance wedge[J]. Electronic Letters,1996,32(13):1179-1180.
    [44]M. A. Lyalinov, N. Y. Zhu. Diffraction of a normally incident plane wave at a wedge with identical tensor impedance faces[J]. IEEE Transactions on Antennas and Propagation,1999,47(5):914-917.
    [45]H. C. Ly, R. G. Rojas and P. H. Pathak. EM plane wave diffraction by a planar junction of two thin material half-plancs-oblique incidence[J]. IEEE Transactions on Antennas and Propagation,1993,41 (4):429-441.
    [46]G. Manara, P. Nepa, and G. Pelosi. A UTD solution for the scattering by a wedge with anisotropic impedance faces:skew incidence case[J]. IEEE Transactions on Antennas and Propagation,1998, 46(4):579-587.
    [47]G. Manara, P. Nepa, G. Pelosi, and A. Vallecchi, An approximate solution for skew incident diffraction by an interior right-angled anisotropic impedance wedge[J]. Progress In Electromagnetics Research,2004,45:45-75.
    [48]G. Manara, P. Nepa. Electromagnetic diffraction of an obliquely incident plane wave by a right-angled anisotropic impedance wedge with a perfectly conducting face[J]. IEEE Transactions on Antennas and Propagation,2000,48(4):547-555.
    [49]G. Manara, P. Nepa, G. Pelosi, and A. Vallecchi. EM scattering from anisotropic impedance half-plane[J]. Electronics Letters,2000,36(6):505-506.
    [50]R. Tiberio, A. Polemi and A. Toccafondi. UTD-based formulation for the diffraction at the edge of a truncated dielectric screens:surface wave phenomenology[C], IEEE International Symposium on Antennas and Propagation,2005,4B:255-258.
    [51]J. M. L. Bernard. Diffraction by a metallic wedge covered with a dielectric material[J]. Wave Motion, 1987,9(6):543-561.
    [52]J. M. L. Bernard. Diffraction at skew incidence by an anisotropic impedance wedge in electromagnetism theory:A new class of canonical cases[J]. Journal of Physics A:Mathematics and General,1998,31(2):595-613.
    [53]J. M. L. Bernard. Diffraction by a curved impedance wedge of arbitrary angle[C], IEEE International Symposium on Antennas and Propagation,2001,2:204-207.
    [54]M. A. Lyalinov. On one approach to an electromagnetic diffraction problem in a wedge shaped region[J]. Journal of Physics A:Mathematics and General,1994,27(6):183-189.
    [55]M. A. Lyalinov, N. Y. Zhu. Diffraction of a skewly incident plane wave by an anisotropic impedance wedge-a class of exactly solvable cases[J]. Wave Motion,1999,30(3):275-288.
    [56]M. A. Lyalinov, A. H. Serbest, and T. Ikiz. Perturbation Method in the problem of diffraction of an obliquely incident electromagnetic plane wave by an impedance wedge and the diffraction coefficients[C]. International Seminar Day on Diffraction,2001:180-186.
    [57]F. Yuan, G. Q. Zhu. Electromagnetic diffraction at skew incidence by a wedge with anisotropic impedance faces[J]. Radio Science.2005,40(6):RS6014.
    [58]李骥,朱国强,胡卫东,等.利用AWE技术计算各向异性阻抗劈的绕射场[J].电波科学学报,2009,24(4):761-765.
    [59]李骥,余定峰,姚菁晶,等.斜入射下各向异性阻抗劈散射:表而波的绕射[J].系统工程与电子技术,2010,32(9):1850-1853.
    [60]J. Li, S. Y. He, D. F. Yu, et al. UTD solution for the diffraction by an anisotropic impedance wedge at arbitrary skew incidence:numerical matching method[J]. Optics Express.2011,19(24):23751-23769.
    [61]G. Pelosi, S. Maci, R. Tiberio, and A. Michaeli. Incremental length diffraction coefficients for an impedance wedge[J]. IEEE Transactions on Antennas and Propagation,1992,40(10):1201-1210.
    [62]H. H. Syed, J. L. Volakis. PTD formulation for scattering by three dimensional impedance structures[J]. IEEE Transactions on Antennas and Propagation,1996,44(7):983-988.
    [63]翟会清,李龙,梁昌洪.线而结构天线辐射的MoM-PO混合法分析[J].西安电子科技大学学报(自然科学版),2003,30(4):502-505.
    [64]M. Chen, X. W. Zhao, Y. Zhang, and C. H. Liang. Analysis of antenna around NURBS surface with iterative MoM-PO technique[J]. Journal of Electromagnetic Waves and Applications,2006, 20(12):1667-1680.
    [65]晏璎,张玉,赵勋旺,梁昌洪,等MOM-PO混合方法分析涂覆有介质涂层目标附近天线方向图[C].全国微波毫米波会议,2011.
    [66]华夷和,徐金平,牛臻弋FAFFA加速的PO-MM研究复杂金属载体上线天线电磁特性[J].电子学报,2003,31(12A):2045-2049.
    [67]阙肖峰,聂在平.导体平台上线天线问题的MoM-PO分析[J].电子科技大学学报,2007,36(5):862-865.
    [68]U. Jakobus. Extension of the MoM/PO hybrid technique to homogeneous dielectric bodies[C]. Proc. 14th Annu. Review of Progress in Applied Computational Electromagnetics,1998,II:920-927.
    [69]陈博韬,谢拥军,李晓峰,等.各向异性材料部分涂覆导体的散射特性研究[J].电波科学学报,2009,24(6):992-996.
    [70]朱国强,曹秦峰,杨河林.正弦粗糙面上方平板的电磁波散射[J].武汉大学学报(自然科学版),1996,42(5):661-668.
    [71]S. Y. He, F. S. Deng, H. T. Chen, et al. Range profile analysis of the 2-D target above a rough surface based on the electromagnetic numerical simulation[J]. IEEE Transactions on Antennas and Propagation,2009,57(10):3258-3263.
    [72]F. S. Deng, S. Y. He, H. T. Chen, et al. Numerical simulation of vector wave scattering from the target and rough surface composite model with 3-D multilevel UV method[J]. IEEE Transactions on Antennas and Propagation,2010,58(5):1625-1634.
    [73]李超,何思远,朱国强,等.二维介质粗糙面下方三维金属目标复合电磁散射的快速正演算法[J].地球物理学报,2012,55(11):3848-3853.
    [74]J. T. Johnson. A numerical study of scattering from an object above a rough surface[J]. IEEE Transactions on Antennas and Propagation,2002,50(10):1361-1367.
    [75]M. R. Pino, R. J. Burkholder and F. Obelleiro. Spectral acceleration of the generalized forward-backward method[J]. IEEE Transactions on Antennas and Propagation,2002,50(6):785-797.
    [76]P. Liu, Y. Q. Jin. Numerical simulation of bistatic scattering from a target at low altitude above rough sea surface under an EM-wave incidence at low grazing angle by using the finite element method[J]. IEEE Transactions on Antennas and Propagation,2004,52(5):1205-1210.
    [77]H. X. Ye, Y. Q. Jin. Fast iterative approach to difference scattering from the object above a rough surface[J]. IEEE Transactions on Geoscience and Remote Sensing,2006,44(1):108-115.
    [78]H. X. Ye, Y. Q. Jin. A hybrid analytic-numerical algorithm of scattering from an object above a rough surface[J]. IEEE Transactions on Geoscience and Remote Sensing,2007,45(5):1174-1180.
    [79]H. X. Ye, Y. Q. Jin. A hybrid KA-MoM algorithm for computation of scattering from a 3-D PEC target above a dielectric rough surface[J]. Radio Science,2008,43(3):56-70.
    [80]匡磊,金亚秋.三维随机粗糙面与目标复合电磁散射的FDTD方法[J].计算物理,2007,24(5):550-560.
    [81]B. Guan, J. F. Zhang, X. Y. Zhou, and T. J. Cui. Electromagnetic scattering from objects above a rough surface using the method of moments with half-space green's function[J]. IEEE Transactions on Geoscience and Remote Sensing,2009,47(10):3399-3405.
    [82]梁玉.粗糙面及其与目标复合电磁散射建模及快速计算研究[D].西安电子科技大学博士学位论文,2011.
    [83]杨伟.三维复杂粗糙海面电磁散射建模研究与特性分析[D].电子科技大学博士学位论文,2012.
    [84]R. Lin, A. Haavisto, and A. Arkkio. Analysis of eddy-current loss in end shield and frame of a large induction machine[J]. IEEE Transactions on Magnetics,2010,46(3):942-948.
    [85]S. M. Rao, D. R. Wilton, and A. W. Glisson. Electromagnetic scattering by surfaces of arbitrary shape[J]. IEEE Transactions on Antennas and Propagation,1982, AP-30(3),409-418.
    [86]J. A. Stratton. Electromagnetic theory[M]. New York:Macgraw-Hill,1941.
    [87]A. F. Peterson, S. L. Ray, and R. Mittra. Computational methods for electromagnetic[M]. New York: IEEE Press,1998.
    [88]I. V. Lindell, A. H. Sihvola. Realization of impedance boundary[J]. IEEE Transactions on Antennas and Propagation,2006,54(12):3669-3676.
    [89]G. Pelosi, G. Manara, and P. Nepa. Electromagnetic scattering by a wedge with anisotropic impedance faces[J]. IEEE Antennas Propagation Magazine,1998,40(6):29-35.
    [90]R. D. Graglia. On the numerical integration of the linear shape functions times the 3-D Green's function or its gradient on a plane triangle[J]. IEEE Transactions on Antennas and Propagation,1993, 41 (10):1448-1455.
    [91]盛新庆.计算电磁学要论[M].合肥:中国科学技术大学出版社,2008:23-29.
    [92]潘小敏,盛新庆.一种高性能并行多层快速多极子算法[J].电子学报,2010,38(3):580-584.
    [93]聂在平,胡俊,姚海英,等.用于复杂目标三维矢量散射分析的快速多极子方法[J].电子学报,1999,27(6):104-109.
    [94]P. Zwamborn, P. M. van den Berg. The three-dimensional weak form of the conjugate gradient FFT method for solving scattering problems[J]. IEEE Transactions on Microwave Theory and Techniques, 1992,40(9):1757-1766.
    [95]L. Tsang, Q. Li, P. Xu, et al. Wave scattering with the UV multilevel partitioning method: 2.Three-dimensional problem of nonpenetrable surface scattering[J]. Radio Science,2004,39(5): RS5011.
    [96]H. T. Chen, G. Q. Zhu. Using UV technique to accelerate the MM-PO method for three-dimensional radiation and scattering problem[J]. Microwave and Optical Technology Letters,2006,48(8): 1615-1618.
    [97]汪华,林海,鲍虎军.基于图形硬件的快速RCS估算[J].中国图象图形学报,2004,9(9):1101-1106.
    [98]赵维江,葛德彪.三面角反射器的高频电磁散射分析[J].电波科学学报,1998,13(3):301-303.
    [99]M. I. Herman, J. L. Volakis, T. B. A. Senior. Analytic expressions for a function occurring in diffraction theory[J]. IEEE Transactions on Antennas and Propagation,1987,35(9):1083-1086.
    [100]李骥.任意斜入射情况下任意劈角的各向异性阻抗劈的UTD解[D].武汉大学博士学位论文,2010.
    [101]A. Michaeli. Elimination of infinities in equivalent edge currents, part II:Physical optics components[J]. IEEE Transactions on Antennas and Propagation,1986,34(8):1034-1037.
    [102]U. Jakobus, F. M. Landstorfer. Improved PO-MM hybrid formulation for scattering from three-dimensional perfectly conducting bodies of arbitrary shape[J]. IEEE Transactions on Antennas and Propagation,1995,43(2):162-169.
    [103]D. F. Yu, S. Y. He, H. T. Chen, and G. Q. Zhu. Research on the electromagnetic scattering of 3D target coated with anisotropic medium using impedance boundary condition [J]. Microwave and Optical Technology Letters,2011,53(2):458-462.
    [104]K. Pak, L. Tsang, and C. H. Chan. Back scattering enhancement of electromagnetic waves from two-dimensional perfectly conducting random rough surfaces based on Monte-Carlo simulations[J]. Journal of the Optical Society of America A,1995,12(11):2491-2499.
    [105]J. V. Toporkov, G. S. Brown. Numerical simulations of scattering from time-varying, randomly rough surfaces[J]. IEEE Transactions on Geoscience and Remote Sensing,2000,38(4):1616-1625.
    [106]J. T. Johnson, R. J. Burkholder, J. V. Toporkov, et al. A numerical study of the retrieval of sea surface height profiles from low grazing angle radar data[J]. IEEE Transactions on Geoscience and Remote Sensing,2009,47(6):1641-1650.
    [107]Z. X. Li. Numerical simulation bistatic scattering from three-dimensional conducting rough surface with forward-backward method-based vector basic functions[J].IET Microwaves, Antennas and Propagation,2010,4(1):54-61.
    [108]T. Yelkenci. Imaging of rough surfaces having impedance boundary condition by the use of Newton iterative algorithm[J]. IEEE Geoscience and Remote Sensing Letters,2010,7(1):190-194.
    [109]孙进平,袁运能,王俊,等.CTZ在聚束SAR极坐标格式成像算法中的应用[J].系统工程与电子技术,2002,24(10):4-7.
    [110]匡磊.三维目标与随机粗糙下垫面复合电磁散射的FDTD方法研究[D].复旦大学博士学位论文,2007.
    [111]俞聿.随机波浪及其工程应用[M].大连:大连理工大学出版社,1992.
    [112]杨怀平,孙家广.基于海浪谱的波浪模拟[J].系统仿真学报,2002,14(9):1175-1178.
    [113]L. Xu, Y. C. Guo, and X. W. Shi. Radar images of ships on a rough half space interface[C]. International Conference on Radar,2006:1-4.
    [114]B. Kinsman. Wind waves[M]. New Jersey:Prentice-Hall Inc.,1965.
    [115]王爱明.海洋舰船尾迹合成孔径雷达成像仿真研究[D].中国科学院电子学研究所博士学位论文,2003.
    [116]邹焕新,匡纲要,郑键.合成孔径雷达舰船航迹成像模型及其数字仿真[J].计算机仿真,2003,20(9):109-111.
    [117]王彦杰,汪增富.复杂环境下的舰船航迹仿真[J].系统仿真学报,2006,18(11):3247-3249.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700