用户名: 密码: 验证码:
黄土高原子午岭植物群落物种多样性的时空格局与过程
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的与意义:物种多样性的时空格局一直是群落生态学的研究热点,尤其是针对目前人工林物种多样性恢复功能的普遍争议,本研究以群落构建过程为主线,以三个功能群(草本层、灌木层和乔木层)为研究单位,探讨自然群落和人工群落中物种多样性在时间(演替梯度)和空间尺度上的多尺度格局,确定环境筛选(生态位理论)和扩散限制(中性理论)对物种多样性格局的相对贡献,比较人工油松群落和天然辽东栎群落在物种多样性格局以及群落构建过程中的差异,旨在阐明黄土高原群落的构建过程及其机制,评价人工油松林对物种多样性的恢复效果,探索有效指导人工林和天然次生林恢复演替的理论依据。对于物种丰富度较低的黄土高原森林生态系统的群落构建机制研究,不仅可以促进该地区的植被建设和人工林多样性恢复,同时也是揭示物种共存及群落生物多样性维持机制的必需研究内容之一。更重要的是,黄土高原存有我国独特的植被类型,生物多样性较低,群落结构相对简单,加速该地区退化生态系统的恢复与重建,无论对于改善区域生态环境还是对于整个西北地区生态系统生产力的提高均具有极其重大的意义。
     研究地点:子午岭林区,位于黄土高原中部
     研究方法:采用空间代替时间的方法,确定演替时间尺度上的物种多样性的变化;将p多样性进一步分解为物种更替和内嵌两种成分,阐明群落演替过程;采用物种多样性的加性分配方法,建立物种多样性与空间尺度间的关系;通过构建基于个体随机的零假说模型,揭示物种多样性的非随机格局;采用典范变异分解和Mantel检验两种互补的方法,通过分离环境因子/距离(度量环境筛选)和空间因子/距离(间接度量扩散限制)对群落物种组成/距离的相对贡献,确定环境筛选和扩散限制在该区植物群落构建中的相对重要性;通过非度量多维标度(NMDS)以及多响应置换过程(MRPP),揭示人工林与天然林间的物种组成差异;采用典范变异分解的方法,连结物种组成变异与空间和环境间的关系,揭示扩散限制和生境筛选在群落构建中的相对重要性;采用典范冗余分析和Mantel检验方法,连结人工林和天然林两个林型间的物种组成差异与两个林型间的环境差异和空间距离,寻求导致两个林型间物种差异的直接原因。
     研究结果:(1)黄土高原植物群落的不同层次在演替梯度上表现了不同的α多样性格局:随演替进展,草本层物种丰富度、均匀度及Shannon多样性均逐渐降低(P<0.05);灌木层的物种丰富度与Shannon多样性呈现相似的“J”形增长趋势,而均匀度在各演替阶段间的差异均不显著(P>0.05);乔木层物种丰富度、均匀度以及Shannon多样性差异均不显著(P>0.05);群落总体物种丰富度在演替梯度上呈现了明显的单峰变化趋势,与中期物种丰富度假说一致,生境异质性可能是决定群落演替过程中α多样性变化的主要因素。
     (2)与α多样性一样,不同的层次的β多样性在演替梯度上也呈现了不同的变化规律:草本层物种呈现明显的单峰变化趋势,即随演替进展,β多样性逐渐增加,在灌丛演替到白桦群落阶段时达最大值,之后p多样性逐渐减小。灌木层β多样性随演替进展逐渐减小,而乔木层p多样性随演替进展逐渐增大。黄土高原群落演替过程中的B多样性变化由物种内嵌和物种更替两种过程共同完成,二者的相对贡献依赖于演替阶段和具有不同物种性状的群落层次,但以物种更替为主导过程。
     (3)不同群落类型间的物种组成差异显著,空间和环境因子共同解释了草本、灌木、乔木三层29%-65%的物种组成变异(P<0.01)。但是,二者的贡献变异于群落的不同层次,乔木层和灌木层主要以空间因子为主导;而在草本层中,空间和环境因子具有相似的贡献率。草本、灌木、乔木三层的物种非相似性距离与环境距离和地理距离都显著相关(P<0.05),草本层具有较大的环境距离相关系数,而灌木层和乔木层具有较大的地理距离相关系数。
     (4)辽东栎(Quercus wutaishanica)林物种多样性在多有尺度上均呈现了显著的非随机格局(P<0.05)。物种丰富度随尺度的增加而增加,其中样地尺度上的p多样性贡献最大。而Shannon多样性呈现了物种丰富度截然相反的格局,其最大贡献来自于小样方尺度上的α多样性。尽管各层具有相似物种多样性分配格局,但是不同的尺度由不同的生态过程所主导。草本层由β多样性主导,灌木层和乔木层呈现了相似的α和B多样性大小。相反地,Shannon多样性格局一直由α多样性主导。结果表明,大尺度决定物种丰富度格局,稀有种的分布对该格局有较强的影响作用,而小尺度决定Shannon多样性格局,这主要由常见种的分布决定。
     (5)在人工油松(Pinus tabulaeformis)群落中,大尺度(样地尺度)决定物种丰富度格局,物种丰富度随尺度的增加而增加,在样地尺度上的p多样性贡献最大;Shannon多样性指数呈现了与丰富度截然相反的格局,小尺度(小样方尺度)决定Shannon多样性格局,其最大贡献来自于小样方尺度上的a多样性。扩散限制和环境筛选都是人工油松林群落构建的重要过程,二者相互作用,共同决定了其林下的多样性格局。
     (6)经过50年的自然恢复演替,人工油松林已经显著地改善了林下群落的物种组成,因此人工油松林不能被认为是“绿色荒漠”,特别是当考虑了空间尺度效应后。人工油松林和天然辽东栋林的物种多样性具有相似的多尺度格局,都表现为随尺度的增加,物种多样性逐渐增加。大尺度上的p多样性都是两种林型物种多样性重要支撑成分,而样地尺度是进行物种多样性保护的较适宜尺度。但是要有效的恢复人工油松林,我们应该加强小尺度上的物种共存,即小样方和样方尺度上的α多样性。只有同时具有较高的a多样性和p多样性,人工林的物种多样性才能得到真正的有效恢复。研究表明,综合环境特化和扩散限制在群落构建研究中的重要性,即使在生境严酷的黄土高原也不例外。对于每层物种而言,环境特化和扩散限制具有相似的效应大小,但是二者的效应大小依赖于具有不同性状的不同层次。
     结论与启示:(1)p多样性及其成分在群落构建中的重要性。群落的构建过程实际上就是物种多样性的动态变化过程,而p多样性连结了群落格局与过程能很好地反映群落动态,特别是将β多样性进一步分解,可以洞察群落构建的内在机制。同时,p多样性也是黄土高原人工群落和天然群落总物种多样性的重要支持成分,是应该优先考虑的物种多样性的保护成分。
     (2)物种的更替是该区群落演替、群落构建的重要过程。因此,要有效恢复群落中的物种多样性,降低物种间的竞争强度(特别是局域尺度上),是物种多样性恢复的有效途径。如前所述,保持生境间的斑块状分布是一种有效途径,即延迟种间竞争的排除过程。另外,该区较严酷的生境条件也是该区物种更替强度较大的重要原因。因此,改善生境的资源数量及质量以及生境的异质性都将是指导该区无论是人工林还是天然林恢复实践的重要依据。
     (3)扩散限制和环境筛选相互作用,共同影响着黄土高原森林群落的构建过程。本研究的结果并没有否定环境筛选在黄土高原群落构建中的重要性,而是更加强调了扩散限制在该区的主导性。因此,在黄土高原森林群落的恢复重建中,应该同时考虑环境异质性和地理空间的差异性。
     (4)空间尺度在人工林物种多样性恢复评价中的重要性。仅在一个尺度上进行评价可能会低估或者高估人工林的物种多样性功能。当引入空间尺度后,人工林并不是“绿色荒漠”,其具有较强的物种多样性恢复潜力,如何加强和引导人工林的恢复是今后很长一段时间需要重点研究的科学论题。同时恢复较高的α和p多样性是我们恢复实践的终极目标。人工油松林的恢复实践应该加强a多样性的恢复,例如改善林下环境、增加林下异质性等都可能是有效的办法。
     (5)生境的破碎化以及植被的斑块状分布对黄土高原物种多样性的重要性。一般认为,生境的破碎化限制了群落间物种的扩散以及改变了有效生境的数量和大小,对物种的共存和物种多样性的维持都是十分不利的。但是本研究的结果与我们的预期相反,该区的生境破碎化以及斑块状分布反而有益于该区物种的共存,至少对于该区的植物种来说是有益的。由于该区较严酷的生境条件,生境间的不连续性有效的阻止了群落间物种的扩散,从而有效地延缓了物种间的竞争排斥,至少在较大的尺度上使更多的物种得以共存。
Aims Plantations are established for a variety of reasons including wood production, soil and water conservation, and carbon sequestration. However, their implications for species diversity are considerably debated. To assess restoration effect of species diversity in plantations, we characterized and compared species diversity between plantations and natural forests at multiple scales, including sucessional time scales; quantifying the relative contributions of space and the environments on community composition to demonstrate different structuring processes. At last, the program intends to answer the following research questions:what governs community assembly and the maintenance of biodiversity? Plantations should be considered as 'green deserts'or valuable habitats for indigenous species? How to strengthen the restorational functions of plantations? Importantly, we address the long-term recovery of the plantations while taking into account the multiple spatial scales, compared with old growth forests as a baseline, providing a comprehensive understanding to recover in plantation forests. Meanwhile, it will be endued with practical significance for vegetation restoration on the Loess Plateau.
     Location Ziwu Mountains, in the middle of the Loess Plateau, northwestern China
     Methods Using the method of'substituting temporal changes with spatial difference', alpha and beta diversity patterns along a successional gradient were investigated in the Ziwu Mountain of Loess Plateau, northwestern China. The patterns of two beta diversity components (i.e. nestedness component and species replacement component) were also studied using additive partitioning. Species diversity patterns of Liaodong oak (Quercus wutaishanica) forests and Chinese pine (Pinus tabulaeformis) plantations were analyzed by additive partitioning across three spatial scales (subplot, plot and site scales). We examined how community assembly was affected by environmental filtering and dispersal limitation using canonical variation partitioning and Mantel tests, i.e. partition the variation of community composition/dissimilarity distance between environmental and spatial factors/distance. We repeated the analysis for three species groups (herb, shrub and tree layers) that differ in traits of likely importance for environmental filtering and dispersal limitation.
     Results (1) Herb layer species richness, evenness and species diversity decreased gradually during community succession (P<0.05); Shrub layer species diversity and richness showed a J-shaped trend, while evenness did not change significantly (P>0.05); Tree layer species richness, evenness and species diversity did not change significantly (P>0.05); There was a significant hump-shaped pattern in species richness along the temporal gradient, which agrees with the intermediate species-richness hypothesis.
     (2) There was a significant hump-shaped pattern in beta diversity of herb layer (P<0.05) during the process of community succession. Beta diversity of shrub layer decreased gradually over the successional stages, while that in tree layer increased gradually. Both species replacement and nestedness component had significant effects on beta diversity, and varied throughout the successional stages and among different layers. Overall, replacement component had significant dominant effects on beta diversity at all stages and layers. For conservation purposes, we suggest devoting efforts to a large number of different sites, but not necessarily the ones with richest diversity.
     (3) All forest types were simultaneously governed by environmental control and spatial processes; together, these processes explain29%to65%of the species composition variation (P<0.01). However, the effects of these two processes were varied among species groups; shrub layer and tree layer species were dominated by spatial process while there was similar importance between two processes for herb layer. Mantel and partial Mantel tests showed significant correlations between community dissimilarity and environmental dissimilarity/geographical distance (P<0.05). Herb layer showed high correlation with environmental dissimilarity while shrub and tree layer displayed high correlations with geographical distance.
     (4) Species diversity in Liaodong oak (Quercus wutaishanica) forests displayed significant non-random patterns at all scales. Species richness increased with increasing spatial scales, and β richness at site scale contributed the most. While Shannon diversity varied across scales and the greatest contribution to y diversity was from a at the finest scale (i.e., subplot scale). Species richness pattern in forest floor was beta-dominated across scales while for canopy layer and understory layer showed a similar importance between α and β components. By contrast, Shannon diversity patterns in all three layers were alpha-dominated. In conclusion, larger scales (plot and site scales) drive overall species richness patterns. While finer scale (subplot scale) determine Shannon diversity patterns. Habitat specialization explains a larger proportion of the variation in species composition between plots than does dispersal limitation; together, these processes explain28%to60%of the variation. The significant environmental variables differed among different layers and mainly functioned as spatially structured habitat. The effects of between habitat specialization and dispersal limitation were also varied among species groups, and both processes were stronger for the herb layer than for the shrub layer and canopy layer species.
     (5) Species diversity of both herb and shrub layers in the Chinese pine plantations (Pinus tabulaeformis) displayed significant non-random patterns at all scales. Species richness increased with the spatial scales, and beta richness at the site scale contributed the most. While Shannon diversity displayed a distinct opposite trend as compared with species richness patterns, and the greatest contribution to y diversity was from a at the finest scale (i.e., subplot scale). The spatial distribution of diversity in Chinese pine plantations was simultaneously driven by environmental filter and dispersal limitation. However, the relative contributions of these two processes varied with different layers. The herb layer was dominated by spatial process (spatial structured environmental factors and purely spatial variables), while the shrub layer dominated by environmental filter, including spatial structured environmental factors and purely environmental factors. In the herb layer, altitude, slope position, soil organic matter, and soil available potassium were significant environmental factors; in the shrub layer, altitude, slope aspect, soil available nitrogen, available potassium and available phosphorus were the significantly contributing environmental variables. In conclusion, larger scales drive overall species richness patterns while finer scales determine Shannon diversity patterns, which may be explained by distribution patterns of the common and rare species. These results suggest that the pine plantation alters plant species composition considerably after long-term succession and should not be considered as'green deserts'. High beta diversity at the site scale demonstrates the importance of this scale in preserving biodiversity. However, different protection measures should be applied to species in different layers with different species traits.
     (6) Overall, these two forest types showed significant different species compositions at the subplot and plot scales, but displayed similar accumulation of species diversity across spatial scales. The contribution of species diversity components increased with the spatial scales, and both types displayed lower alpha diversity at the subplot scale but higher beta diversity at the plot and site scales. Alpha diversity was not significantly different between these two forests at all three scales. By contrast, the pine plantations displayed significant higher beta diversity than old-growth forests at finer scales (i.e. subplot and plot scales). The diversity of both two forest types were simultaneously governed by environmental control and spatial processes, but dominated by spatial processes, with the exception of a greater contribution of each component in the pine plantations. The litter depth and altitude were two significant environmental factors that differed species composition between the two forests.
     Main conclusions (1) The importance of beta diversity. As mentioned above, beta diversity is the most important component to support total species diversity, no matter old-growth forests or plantations, especially at larger scales. In addition, beta diversity links ecological patterns with ecological processes. Assigning the different beta diversity patterns to their respective biological phenomena is essential for analyzing the causality of the processes underlying biodiversity. Thus, the differentiation of the spatial turnover and nestedness components of beta diversity is crucial for our understanding of central biogeographic, ecological and conservation issues.
     (2) Overall, replacement component had significant dominant effects on beta diversity at all stages and layers, which may be caused by the harsh environments in this area. Thus, reducing the intensity of interspecific competition is the most important task at present to effectively restore species diversity, especially at local scales (such as the subplot and plot scales in present study). Therefore, improving the quality and quantity of availability resource, and even habitats heterogeneity may be an important approach. In addition, as mentioned above, keep the spatial discontinuity of habitats may be also one of effective ways.
     (3) The assembly of plant communities in the Loess Plateau appears to be simultaneously driven by environmental filtering and dispersal limitation. This case study shows the importance of the dispersal limitation in understanding the forests assembly in the Loess Plateau. Consequently, it is important that management planning for restorations of natural vegetations take into account both habitat heterogeneity and geographical differences.
     (4) Our study did reveal a significant role of spatial scales in assessing biodiversity restoration function of plantations. Although beta diversity is a key component supporting total biodiversity in the both forest types, higher contribution beta diversity in pine plantations at finer scales (at the subplot and plot scales) suggested that beta diversity was more important than that in the old-growth forests to support total species diversity. These results support the argument that pine plantations alter plant species composition considerably and should not be considered as'green deserts'. However, to effectively restore species diversity, pine plantations should also be managed for enhancing high levels of species co-existence at the local scale (i.e. alpha diversity at the subplot and plot scales in the present case); a pattern that characterizes by not only the higher beta diversity but also higher alpha diversity may be our final restoration goals.
     (5) Our results also indicate that the spatial discontinuity of habitats acts in concert with stark environmental gradients to dictate species coexistence and diversity for both forest types. Although habitat fragmentation is often associated with a loss in biodiversity, studies indicate that fragmentation per se, as opposed to habitat loss, may actually have positive effects on biodiversity. Similarly, in our study system, natural fragmentation of the landscape promoted beta diversity at the regional scale (between sites), which probably enhances regional coexistence and diversity beyond what would be expected in contiguous habitats.
引文
[1]Adler, P.B., HilleRisLambers, J., Levine, J.M.2006. A niche for neutrality [J]. Ecology Letters,10 (2):95-104.
    [2]Albouy, C., Guilhaumon, F., Araujo, M.B., Mouillot, D., Leprieur, F.2012. Combining projected changes in species richness and composition reveals climate change impacts on coastal Mediterranean fish assemblages [J]. Global Change Biology,18 (10):2995-3003.
    [3]Andersen, K.M., Turner, B.L., Dalling, J.W.2010. Soil-based habitat partitioning in understorey palms in lower montane tropical forests [J]. Journal of Biogeography, 37 (2):278-292.
    [4]Anderson, M.J., Crist, T.O., Chase, J.M., Vellend, M., Inouye, B.D., Freestone, A.L., Sanders, N.J., Cornell, H.V., Comita, L.S., Davies, K.F.2011. Navigating the multiple meanings of β diversity:a roadmap for the practicing ecologist [J]. Ecology Letters,14 (1):19-28.
    [5]Anderson, M.J., Ellingsen, K.E., McArdle, B.H.2006. Multivariate dispersion as a measure of beta diversity [J]. Ecology Letters,9 (6):683-693.
    [6]Arias-Gonzalez, J.E., Legendre, P., Rodriguez-Zaragoza, F.A.2008. Scaling up beta diversity on Caribbean coral reefs [J]. Journal of Experimental Marine Biology and Ecology,366 (1):28-36.
    [7]Arita, H.T., Rodriguez, P.2002. Geographic range, turnover rate and the scaling of species diversity [J]. Ecography,25 (5):541-550.
    [8]Aubin, I., Messier, C., Bouchard, A.2008. Can plantations develop understory biological and physical attributes of naturally regenerated forests? [J]. Biological Conservation,141 (10):2461-2476.
    [9]Baniya, C.B., Solh(?)y, T., Vetaas, O.R.2009. Temporal changes in species diversity and composition in abandoned fields in a trans-Himalayan landscape, Nepal [J]. Plant Ecology,201 (2):383-399.
    [10]Barlow, J., Gardner, T.A., Ferreira, L.V., Peres, C.A.2007. Litter fall and decomposition in primary, secondary and plantation forests in the Brazilian Amazon [J]. Forest Ecology and Management,247 (1):91-97.
    [11]Barton, P.S., Cunningham, S.A., Manning, A.D., Gibb, H., Lindenmayer, D.B., Didham, R.K.2013. The spatial scaling of beta diversity [J]. Global Ecology and Biogeography,22 (6):639-647.
    [12]Baselga, A.2010. Partitioning the turnover and nestedness components of beta diversity [J]. Global Ecology and Biogeography,19 (1):134-143.
    [13]Bazzaz, F.1975. Plant species diversity in old-field successional ecosystems in southern Illinois [J]. Ecology,56 (2):485-488.
    [14]Bazzaz, F.A.,1996. Plants in changing environments:linking physiological, population, and community ecology [M]. Cambridge University Press.
    [15]Beck, J., Holloway, J.D., Khen, C.V., Kitching, I.J.2012. Diversity partitioning confirms the importance of beta components in tropical rainforest Lepidoptera [J]. The American Naturalist,180 (3):E64-E74.
    [16]Bierzychudek, P.1982. Life histories and demography of shade-tolerant temperate forest herbs:a review [J]. New Phytologist,90 (4):757-776.
    [17]Borcard, D., Legendre, P.2002. All-scale spatial analysis of ecological data by means of principal coordinates of neighbour matrices [J]. Ecological Modelling, 153(1):51-68.
    [18]Borcard, D., Legendre, P.2004. SpaceMaker 2 user's guide. [J]. Departement de Sciences Biologiques, Universite Montreal, Montreal, Quebec, Canada.
    [19]Borcard, D., Legendre, P., Drapeau, P.1992. Partialling out the spatial component of ecological variation [J]. Ecology,73 (3):1045-1055.
    [20]Bremer, L.L., Farley, K.A.2010. Does plantation forestry restore biodiversity or create green deserts? A synthesis of the effects of land-use transitions on plant species richness [J]. Biodiversity and Conservation,19 (14):3893-3915.
    [21]Brockerhoff, E., Ecroyd, C., Langer, E.2001. Biodiversity in New Zealand plantation forests:policy trends, incentives, and the state of our knowledge [J]. New Zealand Journal of Forestry,46:31-37.
    [22]Brockerhoff, E.G., Ecroyd, C.E., Leckie, A.C., Kimberley, M.O.2003. Diversity and succession of adventive and indigenous vascular understorey plants in Pinus radiata plantation forests in New Zealand [J]. Forest Ecology and Management. 185 (3):307-326.
    [23]Brockerhoff, E.G., Jactel, H., Parrotta, J.A., Quine, C.P., Sayer, J.2008. Plantation forests and biodiversity:oxymoron or opportunity? [J]. Biodiversity and Conservation,17 (5):925-951.
    [24]Brooker, R.W., Callaway, R.M., Cavieres, L.A., Kikvidze, Z., Lortie, C.J., Michalet, R., Pugnaire, F.I., Valiente-Banuet, A., Whitham, T.G. 2009. Don't diss integration: a comment on Ricklefs's disintegrating communities [J]. The American Naturalist, 174 (6):919-927.
    [25]Brown, J.H., Mehlman, D.W., Stevens, G.C.1995. Spatial variation in abundance [J]. Ecology,76 (7):2028-2043.
    [26]Brudvig, L.A., Mabry, C.M., Mottl, L.M.2011. Dispersal, not understory light competition, limits restoration of Iowa woodland understory herbs [J]. Restoration Ecology,19 (101):24-31.
    [27]Bruna, E.M.2002. Effects of forest fragmentation on Heliconia acuminata seedling recruitment in central Amazonia [J]. Oecologia,132 (2):235-243.
    [28]Camargo, J.L.C., Ferraz, I.D.K., Imakawa, A.M.2002. Rehabilitation of degraded areas of central Amazonia using direct sowing of forest tree seeds [J]. Restoration Ecology,10 (4):636-644.
    [29]Cardinale, B.J., Srivastava, D.S., Duffy, J.E., Wright, J.P., Downing, A.L., Sankaran, M., Jouseau, C.2006. Effects of biodiversity on the functioning of trophic groups and ecosystems [J]. Nature,443 (7114):989-992.
    [30]Carnus, J.M., Parrotta, J., Brockerhoff, E., Arbez, M., Jactel, H., Kremer, A., Lamb, D., OHara, K., Walters, B.2006. Planted forests and biodiversity [J]. Journal of Forestry,104 (2):65-77.
    [31]Chandy, S., Gibson, D.J., Robertson, P.A.2006. Additive partitioning of diversity across hierarchical spatial scales in a forested landscape [J]. Journal of Applied Ecology,43 (4):792-801.
    [32]Chao, A.1987. Estimating the population size for capture-recapture data with unequal catchability [J]. Biometrics,43 (4):783-791.
    [33]Chase, J.M.2007. Drought mediates the importance of stochastic community assembly [J]. Proceedings of the National Academy of Sciences of the United States of America,104(44):17430-17434.
    [34]Chase, J.M.2010. Stochastic community assembly causes higher biodiversity in more productive environments [J]. Science,328 (5984):1388-1391.
    [35]Christensen, N.L., Peet, R.K.1984. Convergence during secondary forest succession [J]. The Journal of Ecology,72 (1):25-36.
    [36]Clarke, A., Nally, R.M., Bond, N.R., Lake, P.2010. Conserving macroinvertebrate diversity in headwater streams:the importance of knowing the relative contributions of a and β diversity [J]. Diversity and Distributions,16 (5):725-736.
    [37]Clements, F.E.1936. Nature and structure of the climax [J]. Journal of Ecology,24 (1):252-284.
    [38]Cody, M.,1986. Diversity, rarity, and conservation in mediterranean-climate regions. In:Soule, M.E. (Ed.), Conservation Biology [M]. Sinaner Associates, Sunderland, Mass, USA, pp.122-152.
    [39]Cole, R.J., Holl, K.D., Zahawi, R.A.2010. Seed rain under tree islands planted to restore degraded lands in a tropical agricultural landscape [J]. Ecological Applications,20 (5):1255-1269.
    [40]Collins, R.J., Carson, W.P.2004. The effects of environment and life stage on Quercus abundance in the eastern deciduous forest, USA:are sapling densities most responsive to environmental gradients? [J]. Forest Ecology and Management, 201 (2):241-258.
    [41]Corbin, J.D., Holl, K.D.2012. Applied nucleation as a forest restoration strategy [J]. Forest Ecology and Management,265:37-46.
    [42]Cornell, H.V., Karlson, R.H., Hughes, T.P.2007. Scale-dependent variation in coral community similarity across sites, islands, and island groups [J]. Ecology,88 (7): 1707-1715.
    [43]Cornell, H.V., Lawton, J.H.1992. Species interactions, local and regional processes, and limits to the richness of ecological communities:a theoretical perspective [J]. Journal of Animal Ecology,61 (1):1-12.
    [44]Crist, T.O., Veech, J.A., Gering, J.C., Summerville, K.S.2003. Partitioning species diversity across landscapes and regions:a hierarchical analysis of α, β, and γ diversity [J]. American Naturalist,162 (6):734-743.
    [45]Cusack, D., Montagnini, F.2004. The role of native species plantations in recovery of understory woody diversity in degraded pasturelands of Costa Rica [J]. Forest Ecology and Management,188 (1):1-15.
    [46]da Silva, J.M.C., Tabarelli, M.2000. Tree species impoverishment and the future flora of the Atlantic forest of northeast Brazil [J]. Nature,404 (6773):72-74.
    [47]Denslow, J.S., Guzman, G.2000. Variation in stand structure, light and seedling abundance across a tropical moist forest chronosequence, Panama [J]. Journal of Vegetation Science,11 (2):201-212.
    [48]Dray, S.,2005. Packfor:forward selection with multivariate Y by permutation under reducel model. Laboratoire Biometrie et Biologie Evolutive, Lyon. In.
    [49]Dray, S., Legendre, P., Peres-Neto, P.R.2006. Spatial modelling:a comprehensive framework for principal coordinate analysis of neighbour matrices (PCNM) [J]. Ecological Modelling,196 (3):483-493.
    [50]Duan, R., Wang, C., Wang, X., Zhu, Z., Guo, H.2009. Differences in plant species diversity between conifer (Pinus tabulaeformis) plantations and natural forests in middle of the Loess plateau [J]. Russian Journal of Ecology,40 (7):501-509.
    [51]Duivenvoorden, J., Svenning, J., Wright, S.2002. Beta diversity in tropical forests [J]. Science,295 (5555):636-637.
    [52]Dungan, J.L., Perry, J., Dale, M., Legendre, P., Citron-Pousty, S., Fortin, M.-J., Jakomulska, A., Miriti, M., Rosenberg, M.2002. A balanced view of scale in spatial statistical analysis [J]. Ecography,25 (5):626-640.
    [53]Egler, F.E.1954. Vegetation science concepts Ⅰ. Initial floristic composition, a factor in old-field vegetation development [J]. Vegetatio,4 (6):412-417.
    [54]Ewald, J.2003. The calcareous riddle:Why are there so many calciphilous species in the Central European flora? [J]. Folia Geobotanica,38 (4):357-366.
    [55]FAO,2006. Global forest resources assessment 2005:progress towards sustainable forest management [M]. Food and Agriculture Organization, Rome.
    [56]Finegan, B.1996. Pattern and process in neotropical secondary rain forests:the first 100 years of succession [J]. Trends in Ecology & Evolution,11 (3):119-124.
    [57]Fleishman, E., Betrus, C.J., Blair, R.B.2003. Effects of spatial scale and taxonomic group on partitioning of butterfly and bird diversity in the Great Basin, USA [J]. Landscape Ecology,18 (7):675-685.
    [58]Flenner, I., Sahlen, G.2008. Dragonfly community re-organisation in boreal forest lakes:rapid species turnover driven by climate change? [J]. Insect Conservation and Diversity,1 (3):169-179.
    [59]Flinn, K.M., Gouhier, T.C., Lechowicz, M.J., Waterway, M.J.2010. The role of dispersal in shaping plant community composition of wetlands within an old-growth forest [J]. Journal of Ecology,98 (6):1292-1299.
    [60]Florence, R.G.1986. Cultural problems of Eucalyptus as exotics [J]. Commonwealth Forestry Review,65 (2):141-163.
    [61]Fralish, J.S., Crooks, F.B., Chambers, J.L., Harty, F.M.1991. Comparison of presettlement, second-growth and old-growth forest on six site types in the Illinois Shawnee Hills [J]. American Midland Naturalist,125 (2):294-309.
    [62]Freestone, A.L., Inouye, B.D.2006. Dispersal limitation and environmental heterogeneity shape scale-dependent diversity patterns in plant communities [J]. Ecology,87 (10):2425-2432.
    [63]Fridley, J.D., Peet, R.K., Van der Maarel, E., Willems, J.H.2006. Integration of local and regional species-area relationships from space-time species accumulation [J]. The American Naturalist,168 (2):133-143.
    [64]Fridley, J.D., Peet, R.K., Wentworth, T.R., White, P.S.2005. Connecting fine-and broad-scale species-area relationships of southeastern US flora [J]. Ecology,86 (5): 1172-1177.
    [65]Gaston, K., Evans, K., Lennon, J.,2007. The scaling of spatial turnover:pruning the thicket. In, Scaling biodiversity, pp.181-222.
    [66]Gering, J.C., Crist, T.O., Veech, J.A.2003. Additive partitioning of species diversity across multiple spatial scales:implications for regional conservation of biodiversity [J]. Conservation Biology,17 (2):488-499.
    [67]Gilbert, B., Lechowicz, M.J.2004. Neutrality, niches, and dispersal in a temperate forest understory [J]. Proceedings of the National Academy of Sciences of the United States of America,101 (20):7651-7656.
    [68]Goldman, R.L., Pejchar Goldstein, L., Daily, GC.2008. Assessing the conservation value of a human-dominated island landscape:plant diversity in Hawaii [J]. Biodiversity and Conservation,17(7):1765-1781.
    [69]Gonzalez-Megias, A., Menendez, R., Roy, D., Brereton, T., Thomas, C.D.2008. Changes in the composition of British butterfly assemblages over two decades [J]. Global Change Biology,14 (7):1464-1474.
    [70]Gravel, D., Canham, C.D., Beaudet, M., Messier, C 2006. Reconciling niche and neutrality:the continuum hypothesis [J]. Ecology Letters,9 (4):399-409.
    [71]Gray, A.N., Spies, T.A.1997. Microsite controls on tree seedling establishment in conifer forest canopy gaps [J]. Ecology,78 (8):2458-2473.
    [72]Grubb, P.J.1977. The maintenance of species-richness in plant communities:the importance of the regeneration niche [J]. Biological Reviews,52 (1):107-145.
    [73]Guo, H., Wang, X., Zhu, Z., Wang, S., Guo, J.2011. Seed and microsite limitation for seedling recruitment of Quercus wutaishanica on Mt. Ziwuling, Loess Plateau, China [J]. New Forests,41 (1):127-137.
    [74]Herault, B.2007. Reconciling niche and neutrality through the Emergent Group approach [J]. Perspectives in Plant Ecology, Evolution and Systematics,9 (2): 71-78.
    [75]Halpern, C.B., Spies, T.A.1995. Plant species diversity in natural and managed forests of the Pacific Northwest [J]. Ecological Applications,5 (4):913-934.
    [76]Harms, K.E., Condit, R., Hubbell, S.P., Foster, R.B.2001. Habitat associations of trees and shrubs in a 50-ha neotropical forest plot [J]. Journal of Ecology,89 (6): 947-959.
    [77]Harte, J., Smith, A.B., Storch, D.2009. Biodiversity scales from plots to biomes with a universal species-area curve [J]. Ecology Letters,12 (8):789-797.
    [78]Hartley, M.J.2002. Rationale and methods for conserving biodiversity in plantation forests [J]. Forest Ecology and Management,155 (1):81-95.
    [79]Heaney, L.R.2007. Is a new paradigm emerging for oceanic island biogeography? [J]. Journal of Biogeography,34 (5):753-757.
    [80]Hewitt, G.M.1999. Post-glacial re-colonization of European biota [J]. Biological Journal of the Linnean Society,68 (1-2):87-112.
    [81]Honnay, O., Bossuyt, B., Verheyen, K., Butaye, J., Jacquemyn, H., Hermy, M.2002. Ecological perspectives for the restoration of plant communities in European temperate forests [J]. Biodiversity and Conservation,11 (2):213-242.
    [82]Horn, H.S.1974. The ecology of secondary succession [J]. Annual Review of Ecology and Systematics,5:25-37.
    [83]Hubbell, S.P.,2001. The unified neutral theory of biodiversity and biogeography [M]. Princeton University Press.
    [84]Hurtt, G.C., Pacala, S.W.1995. The consequences of recruitment limitation: reconciling chance, history and competitive differences between plants [J]. Journal of Theoretical Biology,176 (1):1-12.
    [85]Huston, M.A.1999. Local processes and regional patterns:appropriate scales for understanding variation in the diversity of plants and animals [J]. Oikos,86 (3): 393-401.
    [86]Hutchinson, G.E.1959. Homage to Santa Rosalia or why are there so many kinds of animals? [J]. The American Naturalist,93 (870):145-159.
    [87]Igarashi, T., Kiyono, Y.2008. The potential of hinoki (Chamaecyparis obtusa [Sieb. et Zucc.] Endlicher) plantation forests for the restoration of the original plant community in Japan [J]. Forest Ecology and Management,255 (1):183-192.
    [88]Jiang, Y, Kang, M., Gao, Q., He, L., Xiong, M., Jia, Z., Jin, Z.2003. Impact of land use on plant biodiversity and measures for biodiversity conservation in the Loess Plateau in China-a case study in a hilly-gully region of the Northern Loess Plateau [J]. Biodiversity and Conservation,12 (10):2121-2133.
    [89]Jones, M.M., Tuomisto, H., Borcard, D., Legendre, P., Clark, D.B., Olivas, P.C. 2008. Explaining variation in tropical plant community composition:influence of environmental and spatial data quality [J]. Oecologia,155 (3):593-604.
    [90]Jones, M.M., Tuomisto, H., Clark, D.B., Olivas, P.2005. Effects of mesoscale environmental heterogeneity and dispersal limitation on floristic variation in rain forest ferns [J]. Journal of Ecology,94 (1):181-195.
    [91]Josefson, A.2009. Additive partitioning of estuarine benthic macroinvertebrate diversity across multiple spatial scales [J]. Marine Ecology Progress Series,396: 283-292.
    [92]Jurasinski, G, Retzer, V., Beierkuhnlein, C.2009. Inventory, differentiation, and proportional diversity:a consistent terminology for quantifying species diversity [J]. Oecologia,159 (1):15-26.
    [93]Kapos, V., Wandelli, E., Camargo, J., Ganade, G.1997. Edge-related changes in environment and plant responses due to forest fragmentation in central Amazonia [J]. Tropical forest remnants:ecology, management, and conservation of fragmented communities University of Chicago Press, Chicago,101:33-44.
    [94]Karst, J., Gilbert, B., Lechowicz, M.J.2005. Fern community assembly:the roles of chance and the environment at local and intermediate scales [J]. Ecology,86 (9): 2473-2486.
    [95]King, A.W.1991. Translating models across scales in the landscape [J]. Ecological Studies,82:479-517.
    [96]Korhonen, J.J., Soininen, J., Hillebrand, H.2010. A quantitative analysis of temporal turnover in aquatic species assemblages across ecosystems [J]. Ecology, 91 (2):508-517.
    [97]Kraft, N.J., Comita, L.S., Chase, J.M., Sanders, N.J., Swenson, N.G., Crist, T.O., Stegen, J.C., Vellend, M., Boyle, B., Anderson, M.J.2011. Disentangling the drivers of β diversity along latitudinal and elevational gradients [J]. Science,333 (6050):1755-1758.
    [98]Kraft, N.J., Valencia, R., Ackerly, D.D.2008. Functional traits and niche-based tree community assembly in an Amazonian forest [J]. Science,322 (5901):580-582.
    [99]Kristiansen, T., Svenning, J.-C., Eiserhardt, W.L., Pedersen, D., Brix, H., Munch Kristiansen, S., Knadel, M., Grandez, C., Balslev, H.2012. Environment versus dispersal in the assembly of western Amazonian palm communities [J]. Journal of Biogeography,39 (7):1318-1332.
    [100]Krummel, J., Gardner, R., Sugihara, G., O'neill, R., Coleman, P.1987. Landscape patterns in a disturbed environment [J]. Oikos,48 (3):321-324.
    [101]Laliberte, E., Paquette, A., Legendre, P., Bouchard, A.2009. Assessing the scale-specific importance of niches and other spatial processes on beta diversity:a case study from a temperate forest [J]. Oecologia,159 (2):377-388.
    [102]Lamb, D., Erskine, P.D., Parrotta, J.A.2005. Restoration of degraded tropical forest landscapes [J]. Science,310 (5754):1628-1632.
    [103]Lande, R.1996. Statistics and partitioning of species diversity, and similarity among multiple communities [J]. Oikos,76:5-13.
    [104]Latham, R.E., Ricklefs, R.E.1993. Global patterns of tree species richness in moist forests:energy-diversity theory does not account for variation in species richness [J]. Oikos,67:325-333.
    [105]Laurance, W.F., Ferreira, L.V., Rankin-de Merona, J.M., Laurance, S.G 1998. Rain forest fragmentation and the dynamics of Amazonian tree communities [J]. Ecology,79 (6):2032-2040.
    [106]Lavorel, S., Gamier, E.2002. Predicting changes in community composition and ecosystem functioning from plant traits:revisiting the Holy Grail [J]. Functional Ecology,16 (5):545-556.
    [107]Legendre, P.2007. β-多样性的研究:应用多元回归和典范分析研究生态方差的分解[J].植物生态学报,31(5):976-981.
    [108]Legendre, P., Borcard, D., Peres-Neto, P.R.2005. Analyzing beta diversity: partitioning the spatial variation of community composition data [J]. Ecological Monographs,75 (4):435-450.
    [109]Legendre, P., Gallagher, E.D.2001. Ecologically meaningful transformations for ordination of species data [J]. Oecologia,129 (2):271-280.
    [110]Legendre, P., Legendre, L.,1998. Numerical Ecology (2nd English ed.) Elsevier.
    [111]Legendre, P., Mi, X., Ren, H., Ma, K., Yu, M., Sun, I.F., He, F.2009. Partitioning beta diversity in a subtropical broad-leaved forest of China [J]. Ecology,90 (3): 663-674.
    [112]Leibold, M.A., McPeek, M.A.2006. Coexistence of the niche and neutral perspectives in community ecology [J]. Ecology,87 (6):1399-1410.
    [113]Lemenih, M., Gidyelew, T., Teketay, D.2004. Effects of canopy cover and understory environment of tree plantations on richness, density and size of colonizing woody species in southern Ethiopia [J]. Forest Ecology and Management,194(1):1-10.
    [114]Lennon, J.J., Koleff, P., Greenwood, J., Gaston, K.J.2001. The geographical structure of British bird distributions:diversity, spatial turnover and scale [J]. Journal of Animal Ecology,70 (6):966-979.
    [115]Lessard, J.-P., Belmaker, J., Myers, J.A., Chase, J.M., Rahbek, C.2012. Inferring local ecological processes amid species pool influences [J]. Trends in Ecology & Evolution.
    [116]Liang, J., Wang, X.-A., Yu, Z.-D., Dong, Z.-M., Wang, J.-C.2010. Effects of vegetation succession on soil fertility within farming-plantation ecotone in Ziwuling Mountains of the Loess Plateau in China [J]. Agricultural Sciences in China,9 (10):1481-1491.
    [117]Linares-Palomino, R., Kessler, M.2008. The role of dispersal ability, climate and spatial separation in shaping biogeographical patterns of phylogenetically distant plant groups in seasonally dry Andean forests of Bolivia [J]. Journal of Biogeography,36 (2):280-290.
    [118]Lindenmayer, D., Hobbs, R.2004. Fauna conservation in Australian plantation forests-a review [J]. Biological Conservation,119 (2):151-168.
    [119]Lindo, Z., Winchester, N.N.2009. Spatial and environmental factors contributing to patterns in arboreal and terrestrial oribatid mite diversity across spatial scales [J]. Oecologia,160 (4):817-825.
    [120]Lira-Noriega, A., Soberon, J., Navarro-Siguenza, A.G., Nakazawa, Y, Peterson, A.T.2007. Scale dependency of diversity components estimated from primary biodiversity data and distribution maps [J]. Diversity and Distributions,13 (2): 185-195.
    [121]Liu, Q.-F., Kang, M.-Y, Wang, H., Liu, Q.-R.2005. Effects of environmental factors on species richness patterns of herb layer in Eastern Zhongtiao Mountain [J]. Journal of Forestry Research,16 (3):175-180.
    [122]Loreau, M.2000. Are communities saturated? On the relationship between α, β and y diversity [J]. Ecology Letters,3 (2):73-76.
    [123]Loucks, O.L.1970. Evolution of diversity, efficiency, and community stability [J]. American Zoologist,10 (1):17-25.
    [124]MacArthur, R.H., Wilson, E.O.,1967. The theory of island biogeography [M]. Princeton University Press.
    [125]Magnuson, J.J.1990. Long-term ecological research and the invisible present [J]. Bioscience,40 (7):495-501.
    [126]Makino, S., Goto, H., Hasegawa, M., Okabe, K., Tanaka, H., Inoue, T., Okochi, I. 2007. Degradation of longicorn beetle (Coleoptera, Cerambycidae, Disteniidae) fauna caused by conversion from broad-leaved to man-made conifer stands of Cryptomeria japonica (Taxodiaceae) in central Japan [J]. Ecological Research,22 (3):372-381.
    [127]Manly, B.F.,2007. Randomization, bootstrap and Monte Carlo methods in biology [M]. Chapman & Hall.
    [128]Margalef, R.1963. On certain unifying principles in ecology [J]. The American Naturalist,97 (897):357-374.
    [129]Margalef, R.,1968. Perspectives in ecological theory [M]. University of Chicago press Chicago.
    [130]Marini, L., Bertolli, A., Bona, E., Federici, G., Martini, F., Prosser, F., Bommarco, R.2012. Beta-diversity patterns elucidate mechanisms of alien plant invasion in mountains [J]. Global Ecology and Biogeography,22 (4):450-460.
    [131]Martin, L.M., Moloney, K.A., Wilsey, B.J.2005. An assessment of grassland restoration success using species diversity components [J]. Journal of Applied Ecology,42 (2):327-336.
    [132]Matthews, S., O'Connor, R., Plantinga, A.J.2002. Quantifying the impacts on biodiversity of policies for carbon sequestration in forests [J]. Ecological Economics,40(1):71-87.
    [133]McCarthy, B.C.,2003. The herbaceous layer of eastern old-growth deciduous forests. In, The herbaceous layer in forests of Eastern North America, pp. 163-176.
    [134]McDonnell, M.J.1986. Old field vegetation height and the dispersal pattern of bird-disseminated woody plants [J]. Bulletin of the Torrey Botanical Club,113 (1): 6-11.
    [135]McKinney, M.L.2006. Urbanization as a major cause of biotic homogenization [J]. Biological Conservation,127 (3):247-260.
    [136]Melo, A.S., Schneck, F., Hepp, L.U., Simoes, N.R., Siqueira, T., Bini, L.M.2011. Focusing on variation:methods and applications of the concept of beta diversity in aquatic ecosystems [J]. Acta Limnologica Brasiliensia,23 (3):318-331.
    [137]Muller, C.H.1969. Allelopathy as a factor in ecological process [J]. Plant Ecology. 18 (1):348-357.
    [138]Myers, J.A., Harms, K.E.2011. Seed arrival and ecological filters interact to assemble high-diversity plant communities [J]. Ecology,92 (3):676-686.
    [139]Nagaike, T.2002. Differences in plant species diversity between conifer (Larix kaempferi) plantations and broad-leaved (Quercus crispula) secondary forests in central Japan [J]. Forest Ecology and Management,168 (1/3):111-123.
    [140]Nakashizuka, T.2001. Species coexistence in temperate, mixed deciduous forests [J]. Trends in Ecology & Evolution,16 (4):205-210.
    [141]Nekola, J.C., White, P.S.1999. The distance decay of similarity in biogeography and ecology [J]. Journal of Biogeography,26 (4):867-878.
    [142]Ney-Nifle, M., Mangel, M.2000. Habitat Loss and Changes in the Species-Area Relationship [J]. Conservation Biology,14 (3):893-898.
    [143]Noda, T.2004. Spatial hierarchical approach in community ecology:a way beyond high context-dependency and low predictability in local phenomena [J]. Population Ecology,46 (2):105-117.
    [144]Odum, E.P.,1969. The strategy of ecosystem development.
    [145]Oksanen, J., Guillaume Blanchet, F., Kindt, R., Legendre, P., O'Hara, R., Simpson G., Solymos, P., Stevens, M., Wagner, H.,2011. vegan:community ecology package v.1.17-9. In.
    [146]Padilla, F.M., Pugnaire, F.I.2006. The role of nurse plants in the restoration of degraded environments [J]. Frontiers in Ecology and the Environment,4 (4): 196-202.
    [147]Parmentier, I., Malhi, Y., Senterre, B., Whittaker, R.J., Alonso, A., Balinga, M.P., Bakayoko, A., Bongers, F., Chatelain, C., Comiskey, J.A.2007. The odd man out? Might climate explain the lower tree a-diversity of African rain forests relative to Amazonian rain forests? [J]. Journal of Ecology,95 (5):1058-1071.
    [148]Paz, H., Mazer, S., Martinez-Ramos, M.2005. Comparative ecology of seed mass in Psychotria (Rubiaceae):within-and between-species effects of seed mass on early performance [J]. Functional Ecology,19 (4):707-718.
    [149]Pearl, R.,1977. The biology of population growth [M]. Ayer Company Pub.
    [150]Peet, R.K.1974. The measurement of species diversity [J]. Annual Review of Ecology and Systematics,5:285-307.
    [151]Peres-Neto, P.R., Legendre, P., Dray, S., Borcard, D.2006. Variation partitioning of species data matrices:estimation and comparison of fractions [J]. Ecology,87 (10):2614-2625.
    [152]Peterson, D.W., Reich, P.B.2008. Fire frequency and tree canopy structure influence plant species diversity in a forest-grassland ecotone [J]. Plant Ecology, 194(1):5-16.
    [153]Pywell, R.F., Bullock, J.M., Roy, D.B., Warman, L., Walker, K.J., Rothery, P. 2003. Plant traits as predictors of performance in ecological restoration [J]. Journal of Applied Ecology,40 (1):65-77.
    [154]Qian, H.2009. Global comparisons of beta diversity among mammals, birds, reptiles, and amphibians across spatial scales and taxonomic ranks [J]. Journal of Systematics and Evolution,47 (5):509-514.
    [155]Qian, H., Ricklefs, R.E.2006. The role of exotic species in homogenizing the North American flora [J]. Ecology Letters,9 (12):1293-1298.
    [156]Rahbek, C.2005. The role of spatial scale and the perception of large-scale species-richness patterns [J]. Ecology Letters,8 (2):224-239.
    [157]Reilly, M.J., Wimberly, M.C., Newell, C.L.2005. Wildfire effects on plant species richness at multiple spatial scales in forest communities of the southern Appalachians [J]. Journal of Ecology,94 (1):118-130.
    [158]Ren, H., Li, Z., Shen, W., Yu, Z., Peng, S., Liao, C., Ding, M., Wu, J.2007. Changes in biodiversity and ecosystem function during the restoration of a tropical forest in south China [J]. Science in China Series C:Life Sciences,50 (2): 277-284.
    [159]Ribeiro, D.B., Prado, P.I., Brown Jr, K.S., Freitas, A.V.2008. Additive partitioning of butterfly diversity in a fragmented landscape:importance of scale and implications for conservation [J]. Diversity and Distributions,14 (6): 961-968.
    [160]Ribera, I., Vogler, A.P.2003. Speciation of Iberian diving beetles in Pleistocene refugia (Coleoptera, Dytiscidae) [J]. Molecular Ecology,13 (1):179-193.
    [161]Ricklefs, R.E.2004. A comprehensive framework for global patterns in biodiversity [J]. Ecology Letters,7(1):1-15.
    [162]Ricklefs, R.E.2006. Evolutionary diversification and the origin of the diversity-environment relationship [J]. Ecology,87 (sp7):S3-S13.
    [163]Ricklefs, R.E., Latham, R.E.1992. Intercontinental correlation of geographical ranges suggests stasis in ecological traits of relict genera of temperate perennial herbs [J]. The American Naturalist,139 (6):1305-1321.
    [164]Robinson, G.R., Handel, S.N.2000. Directing spatial patterns of recruitment during an experimental urban woodland reclamation [J]. Ecological Applications, 10 (1):174-188.
    [165]Rodriguez-Zaragoza, F.A., Cupul-Magana, A.L., Galvan-Villa, C.M., Rios-Jara, E., Ortiz, M., Robles-Jarero, E.G., Lopez-Uriarte, E., Arias-Gonzalez, J.E.2011. Additive partitioning of reef fish diversity variation:a promising marine biodiversity management tool [J]. Biodiversity and Conservation,20 (8): 1655-1675.
    [166]Saar, L., Takkis, K., Partel, M., Helm, A.2012. Which plant traits predict species loss in calcareous grasslands with extinction debt? [J]. Diversity and Distributions. 18 (8):808-817.
    [167]Sarr, D.A., Hibbs, D.E., Huston, M.A.2005. A hierarchical perspective of plant diversity [J]. The quarterly review of biology,80 (2):187-212.
    [168]Shurin, J.B., Cottenie, K., Hillebrand, H.2009. Spatial autocorrelation and dispersal limitation in freshwater organisms [J]. Oecologia,159 (1):151-159.
    [169]Silvertown, J.2004. Plant coexistence and the niche [J]. Trends in Ecology & Evolution,19 (11):605-611.
    [170]Smith, T.W., Lundholm, J.T.2010. Variation partitioning as a tool to distinguish between niche and neutral processes [J]. Ecography,33 (4):648-655.
    [171]Stegen, J.C., Freestone, A.L., Crist, T.O., Anderson, M.J., Chase, J.M., Comita, L.S., Cornell, H.V., Davies, K.F., Harrison, S.P., Hurlbert, A.H.2013. Stochastic and deterministic drivers of spatial and temporal turnover in breeding bird communities [J]. Global Ecology and Biogeography,22 (2):202-212.
    [172]Stevens, M.H.H., Carson, W.P.2002. Resource quantity, not resource heterogeneity, maintains plant diversity [J]. Ecology Letters,5 (3):420-426.
    [173]Summerville, K.S., Boulware, M.J., Veech, J.A., Crist, T.O.2003. Spatial variation in species diversity and composition of forest Lepidoptera in eastern deciduous forests of North America [J]. Conservation Biology,17 (4):1045-1057.
    [174]Summerville, K.S., Conoan, C.J., Steichen, R.M.2006. Species traits as predictors of lepidopteran composition in restored and remnant tallgrass prairies [J]. Ecological Applications,16 (3):891-900.
    [175]Svenning, J.C., Skov, F.2007. Could the tree diversity pattern in Europe be generated by postglacial dispersal limitation? [J]. Ecology Letters,10 (6): 453-460.
    [176]Tessier, J.T.2007. Re-establishment of three dominant herbaceous understory species following fine-scale disturbance in a Catskill northern hardwood forest [J]. The Journal of the Torrey Botanical Society,134 (1):34-44.
    [177]Tilman, D.2004. Niche tradeoffs, neutrality, and community structure:a stochastic theory of resource competition, invasion, and community assembly [J]. Proceedings of the National Academy of Sciences of the United States of America, 101 (30):10854-10861.
    [178]Tuomisto, H., Ruokolainen, K.2006. Analyzing or explaining beta diversity? Understanding the targets of different methods of analysis [J]. Ecology,87 (11): 2697-2708.
    [179]Tuomisto, H., Ruokolainen, K., Yli-Halla, M.2003. Dispersal, environment, and floristic variation of western Amazonian forests [J]. Science,299 (5604):241-244.
    [180]Vandermeer, J.H.1972. Niche theory [J]. Annual Review of Ecology and Systematics,3:107-132.
    [181]Veech, J.A., Crist, T.O.,2007. PARTITION:software for hierarchical additive partitioning of species diversity (version 2.0). In.
    [182]Vellend, M.2010. Conceptual synthesis in community ecology [J]. The Quarterly Review of Biology,85 (2):183-206.
    [183]Verheyen, K., Fastenaekels, I., Vellend, M., De Keersmaeker, L., Hermy, M.2006. Landscape factors and regional differences in recovery rates of herb layer richness in Flanders (Belgium) [J]. Landscape Ecology,21 (7):1109-1118.
    [184]Volkov, I., Banavar, J.R., Hubbell, S.P., Maritan, A.2007. Patterns of relative species abundance in rainforests and coral reefs [J]. Nature,450 (7166):45-49.
    [185]Wang, G.-H.2006. Can the restoration of natural vegetation be accelerated on the Chinese Loess Plateau? A study of the response of the leaf carbon isotope ratio of dominant species to changing soil carbon and nitrogen levels [J]. Ecological Research,21 (2):188-196.
    [186]Wang, J., Ren, H., Yang, L., Li, D., Guo, Q.2009. Soil seed banks in four 22-year-old plantations in South China:Implications for restoration [J]. Forest Ecology and Management,258 (9):2000-2006.
    [187]Whigham, D.F.2004. Ecology of woodland herbs in temperate deciduous forests [J]. Annual Review of Ecology Evolution and Systematics,35:583-621.
    [188]Whittaker, R.H.1960. Vegetation of the Siskiyou mountains, Oregon and California [J]. Ecological Monographs,30 (3):279-338.
    [189]Whittaker, R.H.1972. Evolution and measurement of species diversity [J]. Taxon, 21 (2/3):213-251.
    [190]Whittaker, R.J., Willis, K.J., Field, R.2001. Scale and species richness:towards a general, hierarchical theory of species diversity [J]. Journal of Biogeography,28 (4):453-470.
    [191]Willig, M.R., Kaufman, D.M., Stevens, R.D.2003. Latitudinal gradients of biodiversity:pattern, process, scale, and synthesis [J]. Annual Review of Ecology, Evolution, and Systematics,34:273-309.
    [192]Wittebolle, L., Marzorati, M., Clement, L., Balloi, A., Daffonchio, D., Heylen, K., De Vos, P., Verstraete, W., Boon, N.2009. Initial community evenness favours functionality under selective stress [J]. Nature,458 (7238):623-626.
    [193]Wright, I.J., Reich, P.B., Westoby, M., Ackerly, D.D., Baruch, Z., Bongers, F., Cavender-Bares, J., Chapin, T., Cornelissen, J.H., Diemer, M.2004. The worldwide leaf economics spectrum [J]. Nature,428 (6985):821-827.
    [194]Wu, F., Yang, X.J., Yang, J.X.2010. Additive diversity partitioning as a guide to regional montane reserve design in Asia:an example from Yunnan Province, China [J]. Diversity and Distributions,16 (6):1022-1033.
    [195]Wu, J., Li, H.,2006. Concepts of scale and scaling. In, Scaling and uncertainty analysis in ecology [M]. Springer, pp.3-15.
    [196]Wyatt, J.L., Silman, M.R.2010. Centuries-old logging legacy on spatial and temporal patterns in understory herb communities [J]. Forest Ecology and Management,260 (1):116-124.
    [197]Zhang, J.T.2005. Succession analysis of plant communities in abandoned croplands in the eastern Loess Plateau of China [J]. Journal of Arid Environments, 63 (2):458-474.
    [198]Zobel, M.1992. Plant species coexistence:the role of historical, evolutionary and ecological factors [J]. Oikos:314-320.
    [199]安慧,上官周平.2007.黄土高原植被不同演替阶段优势种的光合生理特性[J].应用生态学报,18(6):1175-11801.
    [200]鲍士旦,2000.土壤农化分析(第三版)[M].北京:中国农业出版社.
    [201]陈圣宾,欧阳志云,徐卫华,肖燚.2010.Beta多样性研究进展[J].生物多样性,18(4):323-335.
    [202]程序.2001.西北黄土高原区农业与生态恶化及恢复重建的关系[J].中国农业科学,34(1):84-90.
    [203]范玮熠,王孝安,郭华.2006.黄土高原子午岭植物群落演替系列分析[J].生态学报,26(3):706-714.
    [204]方精云,王襄平,唐志尧.2009.局域和区域过程共同控制着群落的物种多样性:种库假说[J].生物多样性,17(6):605-612.
    [205]冯秋红,史作民,董莉莉.2008.植物功能性状对环境的响应及其应用[J].林业科学,44(4):125-131.
    [206]郭全邦,刘玉成,李旭光.1999.缙云山森林次生演替序列群落的物种多样性动态[J].应用生态学报,10(5):521-524.
    [207]何志斌,赵文智,常学向,常学礼.2004.荒漠植被植物种多样性对空间尺度的依赖[J].生态学报,24(6):1146-1149.
    [208]贺金生,陈伟烈.1997.陆地植物群落物种多样性的梯度变化特征[J].生态学报,17(1):91-99.
    [209]黄忠良,彭少麟,易俗.2001.影响季风常绿阔叶林幼苗定居的主要因素[J].热带亚热带植物学报,9(2):123-128.
    [210]李裕元,邵明安.2004.子午岭植被自然恢复过程中植物多样性的变化[J].生态学报,24(2):252-260.
    [211]林国俊,黄忠良,竺琳,欧阳学军.2010.鼎湖山森林群落β多样性[J].生态学报,30(18):4875-4880.
    [212]刘立品,1998.子午岭木本植物志[M].兰州大学出版社.
    [213]吕一河,傅伯杰.2001.生态学中的尺度及尺度转换方法[J].生态学报,21(12):2096-2105.
    [214]李宏伟,王孝安,郭华,王世雄,夏菲.2012.黄土高原子午岭不同森林群落叶功能性状[J].生态学杂志,31(3):544-550.
    [215]马克平.1993.试论生物多样性的概念[J].生物多样性,1(1):20-22.
    [216]马克平,刘灿然,刘玉明.1995.生物群落多样性的测度方法[J].生物多样性,3(1):38-43.
    [217]孟婷婷,倪健,王国宏.2007.植物功能性状与环境和生态系统功能[J].植物生态学报,31(1):150-165.
    [218]牛克昌,刘怿宁,沈泽吴,何芳良,方精云.2009.群落构建的中性理论和生态位理论[J].生物多样性,17(6):579-593.
    [219]彭闪江,黄忠良,彭少麟,欧阳学军,徐国良2004.植物天然更新过程中种 子和幼苗死亡的影响因素[J].广西植物,24(2):113-121.
    [220]任海,王俊.2007.试论人工林下乡土树种定居限制问题[J].应用生态学报,18(8):1855-1860.
    [221]宋会兴,苏智先,高贤明.2001.植被状况对乔木幼苗物种多样性的影响[J].热带亚热带植物学报,9(4):289-294.
    [222]孙晓霞,王孝安,郭华,田丽.2006.黄土高原马栏林区植物群落的多元分析与环境解释[J].西北植物学报,26(1):150-156.
    [223]唐志尧,乔秀娟,方精云.2009.生物群落的种—面积关系[J].生物多样性,17(6):549-559.
    [224]田丽,王孝安,郭华,朱志红.2007.黄土高原马栏林区优势种幼苗与其种群径级结构的演替研究[J].西北植物学报,26(12):2560-2566.
    [225]王光美,杨景成,姜闯道,赵洪涛,张志东.2009.生物同质化研究透视[J]_生物多样性,17(2):117-126.
    [226]王凯博,陈美玲,秦娟,刘勇,安慧,上官周平.2007.子午岭植被自然演替中植物多样性变化及其与土壤理化性质的关系[J].西北植物学报,27(10):2089-2096.
    [227]王梅,张文辉.2009.不同坡向人工油松林生长状况与林下物种多样性分析[J].西北植物学报,29(8):1678-1683.
    [228]王世雄,王孝安,李国庆,郭华,朱志红.2010.陕西子午岭植物群落演替过程中物种多样性变化与环境解释[J].生态学报,30(6):1638-1647.
    [229]魏丽萍,王孝安.2010.黄土高原柴松(Pinus tabulaeformis f. shekannesis)群落的植物物种多样性[J].生态学杂志,29(5):840-846.
    [230]温远光,刘世荣,陈放.2005.连栽对桉树人工林下物种多样性的影响[J].应用生态学报,16(9):1667-1671.
    [231]温远光,刘世荣,陈放,和太平,梁宏温,陈婷.2006.桉树工业人工林植物物种多样性及动态研究[J].北京林业大学学报,27(4):17-22.
    [232]邬建国.1996.生态学范式变迁综论[J].生态学报,16(5):449-460.
    [233]邬建国,2000.景观生态学:格局,过程,尺度与等级[M].高等教育出版社.
    [234]邬建国.2000.景观生态学-—概念与理论[J].生态学杂志,19(1):42-52.
    [235]吴统贵,吴明,萧江华.2008.杭州湾滩涂湿地植被群落演替与物种多样性动态[J].生态学杂志,27(8):1284-1289.
    [236]谢晋阳,陈灵芝.1994.暖温带落叶阔叶林的物种多样性特征[J].生态学报,14(4):337-344.
    [237]信忠保,许炯心,郑伟.2007.气候变化和人类活动对黄土高原植被覆盖变化的影响[J].中国科学:D辑,37(11):1504-1514.
    [238]岳明,崔延棠,王双峰.2003.陕北黄土高原森林群落物种多样性分析[J].水土保持通报,23(1):39-41.
    [239]臧润国,张志东.2010.热带森林植物功能群及其动态研究进展[J].生态学报,30(12):3289-3296.
    [240]张继义,赵哈林,张铜会,赵学勇.2004.科尔沁沙地植被恢复系列上群落演替与物种多样性的恢复动态[J].植物生态学报,28(1):86-92.
    [241]张金屯,柴宝峰,邱扬,陈廷贵.2000.晋西吕梁山严村流域撂荒地植物群落演替中的物种多样性变化[J].生物多样性,8(4):378-384.
    [242]张娜.2006.生态学中的尺度问题:内涵与分析方法[J].生态学报,26(7):2340-2355.
    [243]张育新,马克明,祁建,冯云,张洁瑜.2009.北京东灵山辽东栎林植物物种多样性的多尺度分析[J].生态学报,29(5):2179-2185.
    [244]赵平,彭少麟.2001.种,种的多样性及退化生态系统功能的恢复和维持研究[J].应用生态学报,12(1):132-136.
    [245]郑淑霞,上官周平.2006.黄土高原地区植物叶片养分组成的空间分布格局[J].自然科学进展,16(8):965-973.
    [246]朱璧如,张大勇.2011.基于过程的群落生态学理论框架[J].生物多样性,19(4):389-399.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700