用户名: 密码: 验证码:
破碎岩体水沙两相渗透特性试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
薄基岩浅埋煤层开采时,极易引发突水溃沙灾害,其中水沙两相流体在多孔介质含水层以及破碎采动岩体中的渗流特性是研究的热点和难点问题。本文综合运用室内测试、理论分析、数值计算等手段,对破碎岩体水沙两相渗透特性进行了研究,取得了如下研究成果:
     (1)研制了水沙两相专用渗透仪、轴向位移加载控制系统、水压控制系统和数据采集系统构成的破碎岩体水沙两相渗流试验系统,实现了破碎岩体水沙两相渗流的渗透特性测定。
     (2)测试了孔隙度、破碎岩样粒径、沙粒粒径、含沙率、岩性等因素对沙粒流失规律以及渗透特性参数的影响,得到了试验系统中压力梯度、沙粒流失量随时间的变化规律,以及水沙两相非Darcy流β因子、加速度系数ca、流度I随体积分数Y_2的变化规律。测试了不同沙粒粒径下水沙混合物的视粘度μa,研究了视粘度μa随剪切速率γ的变化规律,确定了破碎岩体水沙两相渗流属于幂律型非Newton体类型。
     (3)提出了分析水沙两相非Darcy流特性参数的方法,依据破碎岩体水沙两相渗流试验测得渗透压差、渗流速度,得到了破碎岩体水沙两相渗流特性参数。
     (4)依据测试得到的沙粒体积分数、水相渗流速度、沙相渗流速度、孔隙水压和孔隙度等参量,建立了破碎岩体水沙两相渗流的参变非线性动力学模型。
     (5)提出了破碎岩体水沙两相渗流动力系统响应的分析方法,开发分析软件,仿真分析了破碎岩体水沙两相渗透特性参数变化规律,得到了孔隙度、渗透压差、试样粒径、沙粒粒径等影响因素对试样沙粒流失的影响规律。
     研究成果可为薄基岩浅埋煤层突水溃沙机理研究提供重要参考。
High potential risk of water-sand inrush disasterexists in mining shallow buried coalseam under thin bedrock.Two phase water-sand flow in porous aquifers and crushedmining induced rock mass is a hot spot and difficult topic of the researches. Thisdissertation studied the two phase water-sand flow (TPWSF) characteristics in crushedrock mass by using comprehensive methods of laboratory test, theoretical analysis andnumerical simulation, and the achievements are as follows:
     (1) A TPWSF in crushed rock mass testing system were developed which comprisesa two phase water-sand permeability testing device, axial displacement loading andcontrolling system, pore pressure controlling system and data recording system, so thetests of permeability of TPWSF in crushed rock mass could be realized.
     (2) Influenceof factors such as porosity, crushed rock grain diameter, sand graindiameter, sand content and lithologyto sand grains erosionand permeability parameterswere tested, and relationships of pressure gradient, sand erosion quantity and time, factor of two phase water-sand non-Darcy flow, acceleration coefficient ca, fluidity Iand volumetric content Y_2, were obtained. Values of apparent viscosity aunderdifferent sand grain diameters were tested, variation of awith shearing rate werestudied, and proved that TPWSF in crushed rock mass is a type of power lawednon-Newton flow.
     (3) Brought forth a method for analyzing two phase water-sand non-Darcy flowparameters, and the parameters were derived by using osmotic pressure difference andflowing rate from the tests.
     (4) According to sand volumetric content, water flowing rate, sand flowing rate, prepressure and porosity from tests, the parametric non-linear dynamical model for TPWSFin crushed rock mass were established.
     (5) Proposed the method of analyzing systematical response of TPWSF in crushedrock massanddeveloped the analysis software. Variation regularities of parameters ofTPWSF in crushed rock mass were simulated, and influence regularities of porosity,osmotic pressure, rock grain diameter and sand grain diameter to sand erosion wereeduced.
     These achievements are significant references of mechanism research of water-sandinrush in mining shallow buried coal seam under thin bedrock.
引文
[1] Booth, Colin John: A numerical model of groundwater flow associated with an undergroundcoal mine in the Appalachian plateau, PENNSYLVANIA[D]. PENNSYLVANIA STATEUNIVERSITY,1984.
    [2] Bumb, Amra Chand: Unsteady Flow of Methane and Water in Coalbeds[D].Laramie:University of Wyoming,1987.
    [3] Sidle R C.,Kamil I.,Sharma A.,et al.:Stream response to subsidence from underground coalmining in central Utah[J],ENVIRONMENTAL GEOLOGY,2000,39(3-4):279-291.
    [4] zipper C.,Balfour W.,Roth R.,et al.:Domestic water supply impacts by underground coalminning in Virginia,USA[J],ENVIRONMENTAL GEOLOGY,1997,29(1-2):84-93.
    [5] Arn, Thomas:Numerical recording of flow in fractured rock[D]. SWITzERLAND:EIDGENOESSISCHE TECHNISCHE HOCHSCHULE zUERICH,1989.
    [6] Fraser W W.:Environmental Management at Namew Lake[J].CIM Bulletin,1991,84(949):27-32.
    [7] Wunsch, David Robert: Ground-water Geochemistry and its Relationship to the Flow Systemat the Unmined Site in the Eastern Kentucky Coal Field[D]. Lexington: UNIVERSITY OFKENTUCKY,1992.
    [8] Booth C J.,Spande E D., Pattee C T., et al.: Positive and negative impacts of longwall minesubsidence on a sandstone aquifer[J].ENVIRONMENTAL GEOLOGY,1998,34(2):223-233.
    [9] Booth C J., Bertsch L P.: Groundwater geochemistry in shallow aquifers above longwall minesin ILLinois,USA[J].HYDROGEOLOGY JOURNAL,1999,7(6):561-575.
    [10] Booth C J.: Groundwater as an environmental constraint of longwall coal mining[J],ENVIRONMENTAL GEOLOGY,2006,49(6):796-803.
    [11] Booth C J., Curtiss A M., Demaris P J., et al.: Anomalous increase in piezometric levels inadvance of longwall mining subsidence[J],ENVIRONMENTAL&ENGINEERINGGEOSCIENCE,1999,5(4):407-417.
    [12] PESSARAN:ORIGIN OF MINE WATER[D].UNITED KINGDOM: NIVERSITY OFNOTTINGHAM,1988.
    [13] Karaman A., Carpenter P J., Booth C J.:Type-curve analysis of water-level changes induced bya longwall mine[J], ENVIRONMENTAL GEOLOGY,2001,40(7):897-901.
    [14] Karaman A., Akhiev S S., Carpenter P J., et al.: A new method of analysis of water-levelresponse to a moving boundary of a longwall mine[J].WATER RESOURCES RESEARCH,1999,35(4):1001-1010.
    [15] Kim J M., Parizek R R., Elsworth D, et al.: Evaluation of fully-coupled strata deformation andgroundwater flow in response to longwall mining[J],INTERNATIONAL JOURNAL OFROCK MECHANICS AND MINING SCIENCES,1997,34(8):1187-1199.
    [16] Walker J S.: Case study of the effects of longwall mining induced subsidence on shallowground water sources in the Northern Appalachian coalfield[R].United States, Bureau ofMines,1988.
    [17] Aldous P J.: GROUND-WATER MOVEMENT IN ABANDONED COAL MINEDAQUIFERS USING FLUORESCENT DYES TRACING[J], Ground Water,1988,26(2):172-178.
    [18] Matetic, Rudy J., Trevits, Michael A., Swinehart, Thomas:Case study of longwall mining andnear-suface hydrological response[C]. American Mining Congress Coal Convention. CoalMining Technology, Economics and Policy. Pittsburgh:American Mining Congress SciencePress,1991:445-472.
    [19] CHOUBEY V D.:HYDROGEOLOGICAL AND ENVIRONMENTAL–IMPACT OFCOAL-MINING, JHARIA COALFIFLD, INDIA[J], ENVIRONMENTAL GEOLOGY ANDWATER SCIENCES,1991,17(3):185-194.
    [20] Liu J., Elsworth D., Matetic R J.: Evaluation of the post-mining groundwater regine followinglongwall mining[J].HYDROLOGICAL PROCESSES,1997,11(15):1945-1961.
    [21] ELSWORTH D., LIU J.: TOPOGRAPHIC INFLUENCE OF LONGWALL MINING ONGROUNDWATER SUPPLIES[J], GROUND WATER,1995,5(4):33(5):786-793.
    [22]许延春,王伯生,尤舜武.近松散含水层溃沙机理及判据研究[J].西安科技大学学报,2012(1):63-69.
    [23]张敏江,张丽萍,姜秀萍等.弱胶结砂层突涌机理及预测研究[J].金属矿山,2002(10):48-50.
    [24]梁燕,谭周地.弱胶结砂层突水、涌砂模拟试验研究[J].西安公路交通大学学报,1996,16(1):19-22.
    [25]汤爱平,董莹,谭周地等.振动作用下矿井突水涌砂机理的研究[J].地震工程与工程振动,1999,19(2):132-135.
    [26]张杰,侯忠杰,马砺.浅埋煤层老顶岩块回转过程中溃沙分析[J].西安科技大学学报,2006,26(2):158-160.
    [27]隋旺华,董青红.近松散层开采孔隙水压力变化及其对水砂突涌的前兆意义[J].岩石力学与工程学报,2008,27(9):1908-1916.
    [28]隋旺华,蔡光桃,董青红.近松散层采煤覆岩采动裂缝水砂突涌临界水力坡度试验[J].岩石力学与工程学报,2007,26(10):2084-2091.
    [29]杨伟峰.薄基岩采动破断及其诱发水砂混合流运移特征[D].徐州:中国矿业大学,2009.
    [30]许延春.含粘砂土流动性试验[J].煤炭学报,2008,33(5):496-499.
    [31]张玉军,康永华,刘秀娥.松散砂岩含水层下煤矿开采溃砂预测[J].煤炭学报,2006,31(4):429-432.
    [32]王世东,沈显华,牟平.韩家湾煤矿浅埋煤层富水区下溃砂突水性预测[J].煤炭科学技术,2009,37(1):92-95.
    [33]隋旺华,董青红,蔡光桃等.采掘溃砂机理及预防[M].北京:地质工程出版社,2008.
    [34]蔡光桃,武伟.采煤冒裂带上上覆松散层渗透变形机理与试验研究[J].煤炭安全,2008,39(10):11-14.
    [35]伍永平,卢明师.浅埋采场溃砂发生条件分析[J].矿山压力与顶板管理,2004,20(3):57-58.
    [36]范立民.神木矿区矿井疏降水工程施工方法.水文地质工程,1994,(5):56-57.
    [37]魏秉亮.神府矿区突水溃沙地质灾害研究.中国煤田地质,1996,(8):28-30.
    [38]王经明等.毛乌素沙漠东缘煤炭开采引起土地沙化的机理及其对策.世纪之交煤炭地质学术论文集.西安:西安地图出版社,1998.
    [39]段中会等.神府矿区首采高产高效工作面疏降水方法.中国煤田地质,1996,8(2):31-33.
    [40]段中会.榆神府矿区煤矿水害及其防治研究.中国煤田地质,1998,10(9)增刊:60-61.
    [41]杨鹏等.神府东胜矿区浅埋煤层涌水溃沙灾害研究,煤炭科学技术,2002,30(1):65-69.
    [42]刘卫群,缪协兴,余为,等.破碎岩石气体渗透性的试验测定方法[J].实验力学,2006,21(3):399-402.
    [43] Legrand, J. Revisited analysis of pressure drop in flow through crushed rocks [J].Journal ofHydraulic Engineering,2002,128,(11):1027-1031.
    [44] Kogure, Keiji. Experimantal Study on Permeability of crushed rock. Memoirs of the DefenseAcademy, Japan,1976,16(4):149-154.
    [45] Engelhardt I, Finsterle S. Thermal-hydraulic experiments with bentonite/crushed rock mixtureand estimation of effective parameters by inverse modeling. Applied Clay Science,2003,23(n1-4):111-120.
    [46] Pradip Kumar, G.N., Venkataraman, P. Non-Darcy converging flow through coarse granularmedia [J]. Journal of the Institution of Engineers (India): Civil Engineering Division,1995,76:6-11.
    [47] zoback, Mark D., Byerlee, James D. Note on the deformational behavior and permeability ofcrushed granite. International Journal of Rock Mechanics and Mining Sciences&Geomechanics Abstracts,1976,13(10):291-294.
    [48] Wang M L, Miao S K, Maji A K, et al..Effect of water on the consolidation of crushed rock salt.Proceeding of Engineering Mechanics,1992:531-534.
    [49] McCorquodale, John A., Hannoura, Abdel-Alim A., Nasser,M. Sam. Hydraulic Conductivity ofRockfill[J]. Journal of Hydraulic Research,1978,16,(2):123-137.
    [50] Leps, T.M.. Flow through rockfill in “Embankment Dam Engineering”, John Wiley&Sons,Inc., N.Y.,1973.
    [51] Wikens, J.K.. Flow of water through rockfill and its application to the design of dams, Proc,2nd Aust.-N.z.Conference on SMFE,1956.
    [52] Wikens, J.K.. The Stability of overtopped rockfill dams, Proc,4th Aust.-N.z.Conference onSMFE,1956.
    [53] Parkin, A.K.. Trollope, D.H.&Lawson, J.D.. Rockfill structure subject to water flow, Journalof SMFD, ASCE, Vol.92,No,SM6,1966.
    [54]缪协兴,刘卫群,陈占清.采动岩体渗流理论[M].北京:科学出版社,2004.
    [55]马占国.采空区破碎岩体中水渗流特性研究[D].徐州:中国矿业大学,2003.
    [56]刘玉庆,李玉寿,孙明贵.岩石散体渗透试验新方法[J].矿山压力与顶板管理,2002,(4):108-110.
    [57]孙明贵,李天珍,黄先伍,等.破碎岩石非Darcy流的渗透特性试验研究[J].安徽理工大学学报:自然科学版,2003,23(2):11-13.
    [58]黄先伍,唐平,缪协兴,等.破碎砂岩渗透特性与孔隙率关系的试验研究[J].岩土力学,2005,26(9):1385-1388.
    [59]李顺才,缪协兴,陈占清.破碎岩体非达西渗流的非线性动力学分析[J].煤炭学报,2005,30(5):557-561.
    [60]李顺才,缪协兴,陈占清,等.承压破碎岩石非Darcy渗流的渗透特性试验研究[J].工程力学,2008,25(4):85-92.
    [61]李顺才,陈占清,缪协兴,等.破碎岩体流固耦合渗流的分岔[J].煤炭学报,2008,33(7):754-759.
    [62]李顺才,陈占清,缪协兴,等.破碎岩体中气体渗流的非线性动力学研究[J].岩石力学与工程学报,2007,26(7):1372-1380.
    [63]姚邦华.破碎岩体变质量流固耦合动力学理论及应用研究[D].徐州:中国矿业大学,2012.
    [64] D.斯蒂芬森.堆石工程水力计算[M],北京:海洋出版社,1984.
    [65]王卓甫.堆石渗流研究述评[J].水利水运科学研究,1990,4:445-452.
    [66] Forchheimer, P.H., Wasserbewegung Durch Boden, z.Ver.dt. Ing.,1901.
    [67]郭庆国.粗粒土的工程特性及应用[M].郑州:黄河水利出版社,1999.
    [68] Johnson, H.A.. Flow through Rockfill Dams, Proc. ASCE, J. Soil Mech. Found. Eng. Div.97(SM2), Feb.1971.
    [69] Winlkens, J.K., Flow of Water through Rockfill and its Application to the Design of Dams,Proc.2nd Aust.–N.z. Conference on SMFE,1956.
    [70] Ergun,S.. Fluid flow through packed columns[J].Chemical Engrg. Progress,1952,48(2):89.
    [71] Gent,M.R.A.van. Formulae to describe porous flow[C].Communications on Hydr. and Geotech.Engrg., ISSN0169-6548No.922, Delft Univ. of Technol. And MAST-G6S Rep., Project1,Delft University of Technology, Delft, The Netherlands.
    [72] Winlkens, J.K., The Stability of Overtopped Rockfill Dams, Proc.4th Aust.–N.z. Conferenceon SMFE,1963.
    [73] Parkin, A.K., Trollope, D.H.&Lawson, J.D., Rockfill structure subject to water flow, Journalof SMFD, ASCE, Vol.92,No.SM6,1966.
    [74] Leps, T.M., Flow through Rockfill, in “Embankment Dam Engineering”, John Wiley&Sons,Inc., N.Y.,1973.
    [75]胡去劣.过水堆石体渗流及其模型相似[J].岩土工程学报,1993,15(6):47-51.
    [76]邱贤德,阎宗岭,姚本军,等.堆石体渗透特性的试验研究[J].四川大学学报(工程科学版),2003,35(2):6-9.
    [77]邱贤德,阎宗岭,刘立,等.堆石体粒径特征对其渗透特性的影响[J].岩土力学2004,25(6):950-954.
    [78]雷树业,包素锦,王维城,等.松散介质孔隙率渗透率的测定[J].工程热物理学报,1992,13(4):408-411.
    [79]雷树业,贾兰庆,郑贯宇,等.砂土的突破压力与渗透率实验[J].工程热物理学报,1998,19(4):80-82.
    [80]雷树业,王利群,贾兰庆,等.颗粒床孔隙率与渗透率的关系[J].清华大学学报(自然科学版),1998,38(5):76-79.
    [81] Marsal R J. Large-scale testing of rockfill materials[J].Journal of Soils Mechanics andFoundation Division, American Society of Civil Enginees,1967,93(2):27-43.
    [82] Marsal R J. Mechanical Properties of rockfil embankment dam engineering[M].CasagrandeVolume, New York:Wiley,1973,109-200.
    [83] Hardin. Crushing of soil particles[J].Journal of geotechnical engineering, American Society ofCivil Engineers,1985,111(10):1177-1192.
    [84]柏树田,崔亦昊.堆石的力学性质[J].水力发电学报,1997,(3):21-30.
    [85]郭庆国.关于粗粒土抗剪强度特性的试验研究[J].水利学报,1987,(5):59-66.
    [86]周晓光.堆石在高应力及实际应力路径条件下的强度与变形特性研究[R].北京:中国水利水电科学研究院,1998,65-81.
    [87]郭熙灵,胡辉,包承刚.堆石料颗粒破碎对剪胀性及抗剪强度的影响[J].岩土工程学报,1997,19(3):83-88.
    [88] Tangren, R.F., Dodge, C.H.&Seifert, H.S., Compressibility effects in two-phase flow[J].I. Appl.Phys.,1949,(20):637-645.
    [89] Corey AT, The interrelation between gas and oil relative permeabilities[J].Prod. Mon.,1954,(31):533-546.
    [90] Saffman P.G., Taylor S.G., The penetration of fluid into a porous medium or Hele-Shaw cellcontaining a more viscous liquid, Proc. Roy. Soc. A., London Ser[M],A.245,312-329,1958.
    [91] Snow D.T., Anisotropic permeability of fractured media[J].Water Resource Research,1969,5(6):1273-1289.
    [92] Wallis, G.B., One dimensional two-phase flow[M].McGraw-Hill, New York,1969.
    [93] Richard W.Johnson, The handbook of fluid Dynamics[M].CRC press, Springer,1983.
    [94] Yih, C.S., Dynamics of non-homogeneous fluids[M]. MacMillan, New York,1965.
    [95] Ishii,M., Thermo-Fluid Dynamics Theory of Two-Phase Flow[M].Eyrolles,Paris,1975.
    [96] Pai,S.I., Two-Phase Flow[M].Vieweg-verlag,Braunschweig,1977.
    [97]柏实义.二相流动[M].北京:国防工业出版社,1985.
    [98]刘蔚宁.渗流力学基础[M].北京:石油工业出版社,1985.
    [99]刘大有.关于二相流、多相流、多流体模型和非牛顿流等概念的探讨[J].力学进展,1994,24(1):66-73.
    [100]郭平,李士伦,杜志敏等,低渗透油藏注气提高采收率评价[J].西南石油学院学报,2004,24(5):46-50.
    [101]孙卫,曲志浩,李劲峰,安塞特低渗透油田见水后的水驱油机理及开发效果分析[J].石油实验地质,1999,21(3):256-260.
    [102]王光谦,胡春宏.泥沙研究进展[M].北京:中国水利水电出版社,2006.
    [103]钱宁,万兆惠.泥沙运动力学[M].北京:科学出版社,1983.
    [104]王兴奎,邵学军,王光谦,等.河流动力学[M].北京:科学出版社,2004.
    [105]黄才安.水流泥沙运动基本规律[M].北京:海洋出版社,2004.
    [106]倪晋仁,王光谦,张红武.固液两相流基本理论及其最新应用[M].北京:科学出版社,1991.
    [107]刘小兵.固液两相流动及在涡轮机械中的数值模拟[M].北京:中国水利电力出版社,1996.
    [108]曹志先.水沙两相流立面二维数学模型及数值方法研究[D].武汉:武汉水利电力学院,1991.
    [109]曹志先,魏良琰,谢鉴衡.明渠挟沙水流的两相流模式[J].水利学报,1995,(4):1-12.
    [110]周新民,赵文谦,李嘉.利用相间滑移考虑固相泥沙沉降效应[J].水动力学研究与进展A辑,2004,19(5):593-597.
    [111] Wu W, zhan Y. The governing equations and constitutive relations of diffusion model forwater/sediment two-phase flow. The94’ Chinese Conference on Hydrodynamics. OceanPublish,1994.
    [112]刘士和,赵世来,罗秋实.基于两相流理论的低浓度挟沙水流运动数值模拟: Ⅰ-数学模型[J].武汉大学学报(工学版),2007,40(4):1-4.
    [113]刘士和,赵世来,罗秋实.基于两相流理论的低浓度挟沙水流运动数值模拟: Ⅱ-数学模型的求解与验证[J].武汉大学学报(工学版),2007,40(4):5-8.
    [114] Laux H, Ytrehus T. Computer simulation and experiments on two-phase flow in an inclinedsedimentation vessel[J]. Powder Technology,1997,94(1):35-49.
    [115] Massoudi M M, Phuoc T X. The effect of slip boundary condition on the flow of granularmaterials: a continuum approach[J].International Journal of Non-Linear Mechanics,2000,35(4):745-761.
    [116] Ookawara S, Street D, Ogawa K. Numerical study on development of particle concentrationprofiles in a curved microchannel[J].Chemical Engineering Science,2006,61(11):3714-3724.
    [117] Shirvanian P A, Calo J M, Hradil G. Numerical simulation of fluid-particle hydrodynamics in arectangular spouted vessel[J].International Journal of Multiphase Flow,2006,32(6):739-753.
    [118] Wang G Q, Ni J R. The kinetic theory for dilute solid-liquid two-phase flow[J].Int. J.Multiphase Flow,1991,17(2):273-281.
    [119] Wang G Q, Ni J R. Kinetic theory for particle concentration distribution in two-phaseflows[J].Journal of Engineering Mechanics,1990,116(12):2738-2748.
    [120] Ni J R, Wang G Q, Borthwick A G L. The kinetic theory for vertical profile of paticleconcentration in dilute and dense solid-liquid flows[J].Journal of Hydraulic Engineering,2000,126(12):893-903.
    [121]傅旭东,王光谦.低浓度固液两相流理论分析与管流数值计算[J].中国科学:E辑,2001,31(6):556-565.
    [122]夏建新,倪晋仁.水沙流中颗粒脉动特性[J].水利学报,2003,(3):7-13.
    [123]彭维明.水轮机转轮中轴对称固液两相流计算[J].水电发电学报,1994,(1):44-52.
    [124]李嘉,赵文谦.计算泥沙颗粒在沉沙池中运动的新方法[J].水利学报,1994,(11):31-36.
    [125]李顺才.破碎岩体非Darcy渗流的非线性动力学研究[D].徐州:中国矿业大学,2006.
    [126]白海波.奥陶系顶部岩层渗流力学特性及作为隔水关键层应用研究[D].徐州:中国矿业大学,2008.
    [127]徐士良.Fortran常用算法程序集(第二版)[M].北京:清华大学出版社,1995.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700