用户名: 密码: 验证码:
沁水盆地南部煤层气直井产能的地质与工程协同控制及预测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以沁水盆地南部樊庄区块煤储层地质特征、煤层气直井开发工程数据为依据,分析了樊庄区块煤层气直井产能的地质和工程影响因素,研究了它们对煤层气直井产能的协同控制作用,探索了煤层气直井产能的地质与工程协同控制机理。按照“实验—分析—理论—应用”的研究思路及“地质描述(地质模型)—物理模型—数学模型—数值模型—计算机模型—模型应用”的数值模拟方法,建立了沁水盆地南部高阶煤储层典型开发地质—工程模型、基于压裂强化改造的典型煤储层物理模型、煤储层与煤层气生产动态过程数学模型、求解数值模型和计算机模型,开发了自主知识产权的煤层气生产数值模拟软件,并实现了数值模拟软件的工程应用。本次研究取得了以下主要成果。
     (1)揭示了沁水盆地南部煤层气直井产能的地质与工程协同控制作用及其机理
     地下水流体势和煤储层渗透率控制了煤储层排水降压效果,是生产监测区煤层气直井产能的关键地质影响因素;抽采制度和水力压裂是煤层气直井产能的关键工程控制因素,抽采制度控制煤储层排水降压效果,而水力压裂能够改善煤储层渗透率、扩大供气面积。此外,临储压力比、煤储层含气性、煤体结构、煤储层埋深、煤储层构造特征、井网布置和井网加密、钻井工艺、固井工艺等对研究区煤层气直井产能均有一定影响。
     富气煤岩体、生产煤储层孔裂隙系统、煤层气开发工程和煤层气产出过程之间的相互作用关系构成了沁水盆地南部煤层气直井产能的地质与工程协同控制机理的内涵。煤层气产出过程是由煤层气吸附/解吸、扩散、渗流组成的连续性过程,受控于富气煤岩体、生产煤储层孔裂隙系统和煤层气开发工程,并通过原始煤储层系统平衡的破坏反作用于三者。研究区煤层气直井产能的地质与工程协同控制过程则表达了产能的原位地质类型、开发地质类型、地质与工程协同控制类型及其决定的开发技术模式四者之间的匹配关系。原位地质类型、开发地质类型与煤层气开发工程的优化匹配关系,决定了沁水盆地南部煤层气直井产能的地质与工程协同控制类型,不同产能控制类型的煤层气井具有不同的开发技术模式和工程选择。
     (2)建立了基于地质与工程协同控制的煤层气直井产能预测系列模型
     沁水盆地南部高阶煤储层典型开发地质—工程模型包括原生地质模型、压裂强化改造的煤储层地质模型以及排采动态地质模型。原生地质模型和压裂强化改造的煤储层地质模型描述了生产煤储层孔裂隙系统的宏观结构、微观结构发育特征,结构关系特征以及生产流体的运移模式。研究区3#煤储层宏观裂隙不发育,不利于煤储层渗透性,压裂裂缝成为流体流向井筒的主要介质形态,并造成流体流动形态和流动级别的改变;显微裂隙、超显微裂是沟通不同级别孔、裂隙系统的重要桥梁,对流体流动形态的转变和流动级别的划分至关重要。煤储层渗透率的动态变化模型包括恢复型动态变化模型和持续下降动态变化模型。高收缩率煤储层或前期排采制度较为平缓的煤储层,属于恢复型动态变化模型;低收缩率煤储层或前期排采较为迅速的煤储层,属于持续下降型动态变化模型。压裂裂缝渗透率的动态变化仅有渗透率下降阶段,属于持续下降型动态变化模型。
     基于典型开发地质—工程模型,由Warren-Root物理模型改进所建立的以压裂强化改造为依据的典型煤储层物理模型,能更好的对发育压裂裂缝的高阶煤储层渗流机理作出解释。根据改进的Warren-Root物理模型建立的沁水盆地南部煤储层与煤层气生产动态过程数学模型,考虑了重力、粘滞力、Klinkenberg效应等的影响,并将压裂裂缝作为一种单独的介质形态加以描述,更符合煤层气开发的实际。由煤储层与生产动态过程数学模型的离散化,建立了求解数值模型和计算机模型,实现了煤层气直井产能的预测过程。
     (3)开发了基于基础模型的高可靠性“煤层气生产数值模拟软件”
     依据协同控制模型和协同控制过程模型,开发了自主知识产权的“煤层气生产数值模拟软件”,实现了单井或井网排采煤层气井产能预测与历史拟合分析、单井或井网排采煤层气井压降漏斗演化、煤储层参数反演等功能。沁水盆地南部樊庄区块3#煤储层实例井验证结果表明,该软件计算结果可靠,误差较小,能够满足煤层气井产能预测与历史拟合的需求,具有较高可靠性,同时证实了基于地质与工程协同控制机理的煤层气产能预测方法的高可行性。
In the paper, geologic and engineering factors for the deliverability of CBM (coalbed methane) straight wells in Fanzhuang Block are discussed on the basis of geologicfeatures and development engineering data of CBM wells in Southern Qinshui Basin.Further, cooperative control actions of geology and engineering for the deliverabilityof CBM straight wells are studied, and cooperative control mechanisms are elaborated.Typical geology-engineering model for CBM development of Southern Qinshui Basin,typical physical model of post-fracturing coal reservoir, mathematical model for coalreservoir and dynamical CBM production process, solution numerical model andcomputer model are established following the research thought as “experiment toanalysis to theory to application” and numerical simulation method as “geologicdescription (geologic model) to physical model to mathematical model to numericalmodel to computer model to model application”. Then, CBM production numericalsimulation software with proprietary intellectual property rights is developed forengineering application. The main research achievements are concluded as follows.
     (1) Cooperative control actions and mechanisms of geology and engineering forthe deliverability of CBM straight wells in Southern Qinshui Basin are explored
     Ground water fluid potential and permeability are key geologic factors of thedeliverability of CBM straight wells in research area that they control drainage anddepressurization effect of coal reservoir. Production system and hydraulic fracturingare key engineering factors of the deliverability of CBM wells. Production systeminfluences drainage and depressurization effect of coal reservoir and hydraulicfracturing improves coal permeability and enlarges gas supply area. In addition, ratioof critical desorption pressure to reservoir pressure, gas content, coal structure, coalbed burial depth, regional structure, pattern arrangement and well pattern thickening,drilling technology and cementing technology are also geologic or engineering factorsinfluenced the deliverability of CBM straight wells in research area.
     The relations of interaction among coal-rock mass with rich gas, pore-fracturesystem of procreative coal reservoir, CBM development projects and CBM outputprocess are geologic and engineering control mechanisms for the deliverability ofCBM wells in Southern Qinshui Basin. CBM output process is a continuous processthat constituted by adsorption/desorption, diffusion and infiltrating fluid of CBM.CBM output process is controlled by coal-rock mass with rich gas, pore-fracture system of procreative coal reservoir and CBM development projects, and reacts up onthem by the disruption of system balance of initial coal reservoir. The cooperativecontrol process of geology and engineering factors shows as matching relationshipamong in situ geology types, exploitation geology types, Optimization matching typesof CBM well productivity and CBM well development modes. Optimal matchingrelations between exploitation geology types and CBM development projects decidecooperative control types of geology and engineering for the deliverability of CBMstraight wells. Different Control types of the deliverability of CBM straight wells havedifferent exploration models and engineering choices.
     (2) Productivity prediction models for CBM straight wells are established on thebasis of cooperative control of geology and engineering
     Typical geology-engineering model for CBM development of high-rank coalreservoir consists of initial geologic model of coal reservoir, geologic model ofpost-fracturing coal reservoir and geologic model of dynamical CBM well production.The initial geologic model and geologic model of post-fracturing coal reservoirdescribe development characteristics of macrostructure and microstructure, structuralrelationships and production fluid flow model of pore-fracture system of procreativecoal reservoir. Development degree of cleats of No.3coal bed in research area is notnotable that hydraulic fracture becomes the most important medium for fluid flow andchanges the flow pattern and demarcation of flow stage which are very different frominitial high-rank coal. Ultramicroscopic fissure, micro-fissure are importantpassageways connecting pores, pore and fracture, fracture and fracture, and veryimportant to transition of flow pattern and demarcation of flow stage in high-rank coal.Dynamic change model of coal bed permeability includes restorative dynamic changemodel and descending dynamic change model of coal bed permeability. Coal bedreservoir with high shrinkage or gently production system belongs to restorativedynamic change model and coal bed reservoir with low shrinkage or rapid productionsystem belongs to descending dynamic change model. Dynamic change of fracturingfracture permeability only has one phase in descending dynamic change model offracturing fracture permeability which is just a decline phase of permeability.
     On the basis of typical geology-engineering model for CBM development ofSouthern Qinshui Basin, typical physical model of post-fracturing coal reservoir isestablished by the modification of Warren-Root physical model. The typical physicalmodel can give a comprehensive interpretation of seepage mechanism in post fracturing high-rank coal reservoir. Based on the modified Warren-Root model,mathematical model for coal reservoir and dynamical CBM production process isestablished. Mathematical model is composed mainly of seepage flow differentialequations, auxiliary equations, initial conditions and boundary conditions. Gravity,viscous force and Klinkenberg effect are considered in mathematical model.Hydraulic fracture is treated as an individual medium in mathematical model thatmore in accordance with the reality of CBM development. By the discretization ofmathematical model for coal reservoir and dynamical CBM production,corresponding numerical model and computer model are established which meansforecasting process of the deliverability of CBM straight wells are achieved.
     (3)“CBM production numerical simulation software” with high reliability isdeveloped according to the foundation models
     “CBM production numerical simulation software” with proprietary intellectualproperty rights is developed on the basis of cooperative control model and controlprocess model. The software can be used for forecasting and matching deliverabilityof CBM straight well, demonstrating depressurization cone and achieving inversion ofcoal bed reservoir parameters. According to the results of instance verification ofCBM well in Southern Qinshui Bain, computation results of the software are reliableand calculation errors are slight.“CBM production numerical simulation software”has high reliability and can satisfy the needs of prediction and matching fordeliverability of CBM straight wells, which can prove that productivity predictionmethod of CBM wells that based on the cooperative control mechanisms of geologyand engineering factors has high availability.
引文
[1]傅雪海,秦勇,韦重韬.煤层气地质学[M].第一版.徐州:中国矿业大学出版社,2007.
    [2] Li J, Liu F, Wang H, et al. Desorption characteristics of coalbed methane reservoirs andaffecting factors[J]. Petroleum Exploration and Development,2008,35(1):52-58.
    [3]李娜.煤层气分支井产能及优化技术[D].中国石油大学,2010.
    [4]刘登峰.煤层气井压裂施工资料反演岩石力学参数及压后产能预测研究[D].西南石油大学,2006.
    [5]罗山强,郎兆新.影响煤层气井产能因素的初步研究[J].断块油气田,1997,4(1):42-47.
    [6]张冬丽.煤层气定向羽状水平井开采数值模拟方法研究[D].中国科学院研究生院(渗流流体力学研究所),2004.
    [7]张亚蒲.煤层气数值模拟技术应用研究[D].中国科学院研究生院(渗流流体力学研究所),2006.
    [8] Zou M, Wei C, Pan H, et al. Productivity of coalbed methane wells in southern of QinshuiBasin[J]. Mining Science and Technology (China),2010,20(5):765-769,777.
    [9] Yao Y, Liu D, Tang D, et al. Preliminary evaluation of the coalbed methane productionpotential and its geological controls in the Weibei Coalfield, Southeastern Ordos Basin,China[J]. International Journal of Coal Geology,2009,78(1):1-15.
    [10]陈江,吕建伟,郭东鑫,等.煤层气产能影响因素及开发技术研究[J].资源与产业,2011,13(1):108-113.
    [11]何伟钢,叶建平.煤层气井排采历史地质分析[J].高校地质学报,2003,9(3):385-389.
    [12]刘人和,刘飞,周文,等.沁水盆地煤岩储层单井产能影响因素[J].天然气工业,2008,28(7):30-33.
    [13]马东民,殷屈娟.影响韩城地区煤层气产出的主要因素[J].西安科技学院学报,2002,22(2):162-165.
    [14]秦建义,周俊,陈兆山.阜新盆地刘家区煤层气井产能的主要影响因素[J].辽宁工程技术大学学报:自然科学版,2008,27(A01):28-30.
    [15]王勃,孙粉锦,李贵中,等.基于模糊物元的煤层气高产富集区预测——以沁水盆地为例[J].天然气工业,2010,30(11):22-25.
    [16]钟玲文.煤的吸附性能及影响因素[J].地球科学:中国地质大学学报,2004,29(3):327-332.
    [17]张晓东,秦勇,桑树勋.煤储层吸附特征研究现状及展望[J].中国煤田地质,2005,17(1):16-21.
    [18]张先敏,同登科.分形理论在煤层气非平衡吸附模型中的应用[J].计算力学学报,2008,25(3):407-410.
    [19]张遂安,霍永忠,叶建平,等.煤层气的置换解吸实验及机理探索[J].科学通报,2005,50(B10):143-146.
    [20]蔚远江,汪永华,杨起,等.准噶尔盆地低煤阶煤储集层吸附特征及煤层气开发潜力[J].石油勘探与开发,2008,35(4):410-416.
    [21]马京长,王勃,刘飞,等.高煤阶煤的吸附特征分析[J].天然气技术,2008,2(6):31-34.
    [22]马东民.煤层气吸附解吸机理研究[D].西安科技大学,2008.
    [23]降文萍,崔永君,钟玲文,等.煤中水分对煤吸附甲烷影响机理的理论研究[J].天然气地球科学,2007,18(4):576-579,583.
    [24]傅雪海,秦勇,叶建平,等.中国部分煤储层解吸特性及甲烷采收率[J].煤田地质与勘探,2000,28(2):19-21.
    [25]崔永君,张庆玲,杨锡禄.不同煤的吸附性能及等量吸附热的变化规律[J].天然气工业,2003,23(4):130-131.
    [26]陈振宏,王一兵,宋岩,等.不同煤阶煤层气吸附、解吸特征差异对比[J].天然气工业,2008,28(3):30-32.
    [27]张建国,雷光伦,张艳玉.油气层渗流力学[M].第一版.东营:中国石油大学出版社,2003.
    [28]袁熙恩.工程流体力学[M].北京:石油工业出版社,2004.
    [29]葛家理.现代油藏渗流力学原理[M].北京:石油工业出版社,2003.
    [30]葛家里,同登科.复杂渗流系统的非线性流体力学[M].第一版.东营:石油大学出版社,1998.
    [31]倪小明,苏现波,张小东.煤层气开发地质学[M].北京:化学工业出版社,2009.
    [32]孟召平,田永东,李国富.煤层气开发地质学理论与方法[M].第一版.北京:科学出版社,2010.
    [33] Karacan C. Evaluation of the relative importance of coalbed reservoir parameters forprediction of methane inflow rates during mining of longwall development entries[J].Computers&Geosciences,2008,34(9):1093-1114.
    [34] Karacan C, Okandan E. Fracture/cleat analysis of coals from Zonguldak Basin(northwestern Turkey) relative to the potential of coalbed methane production[J]. InternationalJournal of Coal Geology,2000,44(2):109-125.
    [35] Karacan C, Diamond W P, Schatzel S J. Numerical analysis of the influence of in-seamhorizontal methane drainage boreholes on longwall face emission rates[J]. InternationalJournal of Coal Geology,2007,72(1):15-32.
    [36] Gamson P D, Beamish B B, Johnson D P. Coal microstructure and micropermeability andtheir effects on natural gas recovery[J]. Fuel,1993,72(1):87-99.
    [37] Markowski A K. Coalbed methane resource potential and current prospects inPennsylvania[J]. International Journal of Coal Geology,1998,38(1-2):137-159.
    [38] Ross D J K, Marc Bustin R. Impact of mass balance calculations on adsorption capacities inmicroporous shale gas reservoirs[J]. Fuel,2007,86(17-18):2696-2706.
    [39] Gan H, Nandi S P, Walker Jr P L. Nature of the porosity in American coals[J]. Fuel,1972,51(4):272-277.
    [40] Gregg S J, Sing K S W, Salzberg H W. Adsorption surface area and porosity[J]. Journal ofThe Electrochemical Society,1967,114:279C.
    [41]桑树勋,朱炎铭,张时音,等.煤吸附气体的固气作用机理(Ⅰ)--煤孔隙结构与固气作用[J].天然气工业,2005,25(1):13-15.
    [42]聂百胜,马文芳.煤层甲烷在煤孔隙中扩散的微观机理[J].煤田地质与勘探,2000,28(6):20-22.
    [43]陈富勇,琚宜文,李小诗,等.构造煤中煤层气扩散-渗流特征及其机理[J].地学前缘,2010,17(1):195-201.
    [44]张小东,刘炎昊,桑树勋,等.高煤级煤储层条件下的气体扩散机制[J].中国矿业大学学报,2011,40(1):43-48.
    [45]孔祥言.高等渗流力学[M].第二版.合肥:中国科学技术大学出版社,2010.
    [46]魏凯丰,姚传荣,吕克桥.天然气气体粘度和雷诺数计算[J].哈尔滨理工大学学报,2006,11(3):65-67.
    [47]魏凯丰,宋少英,张作群.天然气混合气体粘度和雷诺数计算研究[J].计量学报,2008,29(3):248-250.
    [48]秦积舜,李爱芬.油层物理学[M].东营:中国石油大学出版社,2005.
    [49] Pan Z, Connell L D, Camilleri M, et al. Effects of matrix moisture on gas diffusion and flowin coal[J]. Fuel,2010,89(11):3207-3217.
    [50]姚艳斌,刘大锰,汤达祯,等.华北地区煤层气储集与产出性能[J].石油勘探与开发,2007,34(6):664-668.
    [51] Huang H, Sang S, Fang L, et al. Optimum location of surface wells for remote pressure reliefcoalbed methane drainage in mining areas[J]. Mining Science and Technology (China),2010,20(2):230-237.
    [52] Su X, Feng Y, Chen J, et al. The characteristics and origins of cleat in coal from WesternNorth China[J]. International Journal of Coal Geology,2001,47(1):51-62.
    [53] Su X, Lin X, Liu S, et al. Geology of coalbed methane reservoirs in the Southeast QinshuiBasin of China[J]. International Journal of Coal Geology,2005,62(4):197-210.
    [54] Su X, Zhang L, Zhang R. The abnormal pressure regime of the Pennsylvanian No.8coalbedmethane reservoir in Liulin-Wupu District, Eastern Ordos Basin, China[J]. InternationalJournal of Coal Geology,2003,53(4):227-239.
    [55]司淑平,李文峰,等.煤层气井产能影响因素分析及对策[J].断块油气田,2001,8(5):50-53.
    [56]宋文宁.吴堡地区煤层气开发评价[J].天然气工业,2000,20(6):72-76.
    [57]王秀茹.刘家区煤层气产能主控地质因素分析[J].中国煤层气,2007,4(2):26-29.
    [58] Potential for the development of UK coalbed methane[J]. Fuel and Energy Abstracts,1995,36(3):188.
    [59] Wu Y, Liu J, Elsworth D, et al. Development of anisotropic permeability during coalbedmethane production[J]. Journal of Natural Gas Science and Engineering,2010,2(4):197-210.
    [60]倪小明,陈鹏,朱明阳.煤层气垂直井产能主控地质因素分析[J].煤炭科学技术,2010,38(7):109-113.
    [61]田永东.沁水盆地南部煤储层参数及其对煤层气井产能的控制[D].中国矿业大学(北京),2009.
    [62]魏韦.沁水盆地煤层气井产能预测研究[D].中国石油大学,2010.
    [63]傅雪海,秦勇,姜波,等.高煤级煤储层煤层气产能"瓶颈"问题研究[J].地质论评,2004,50(5):507-513.
    [64]张先敏.煤层气储层数值模拟及开采方式研究[D].中国石油大学,2007.
    [65]张先敏,同登科.考虑基质收缩影响的煤层气流动模型及应用[J].中国科学:E辑,2008,38(5):790-796.
    [66]张先敏,同登科,孙宝全.考虑基质收缩效应的致密煤储层数值模拟[J].应用基础与工程科学学报,2009,17(5):690-696.
    [67]张先敏.复杂介质煤层气运移模型及数值模拟研究[D].中国石油大学,2010.
    [68] Langenberg C W, Beaton A, Berhane H. Regional evaluation of the coalbed-methanepotential of the Foothills/Mountains of Alberta, Canada[J]. International Journal of CoalGeology,2006,65(1-2):114-128.
    [69] Beaton A, Langenberg W, Pana C. Coalbed methane resources and reservoir characteristicsfrom the Alberta Plains, Canada[J]. International Journal of Coal Geology,2006,65(1-2):93-113.
    [70] Bodden W R, Ehrlich R. Permeability of coals and characteristics of desorption tests:Implications for coalbed methane production[J]. International Journal of Coal Geology,1998,35(1-4):333-347.
    [71] Bustin R M, Clarkson C R. Geological controls on coalbed methane reservoir capacity andgas content[J]. International Journal of Coal Geology,1998,38(1-2):3-26.
    [72] Gentzis T. Economic coalbed methane production in the Canadian Foothills: Solving thepuzzle[J]. International Journal of Coal Geology,2006,65(1-2):79-92.
    [73] Gentzis T, Schoderbek D, Pollock S. Evaluating the coalbed methane potential of the Gethingcoals in NE British Columbia, Canada: An example from the Highhat area, Peace Rivercoalfield[J]. International Journal of Coal Geology,2006,68(3-4):135-150.
    [74] Gentzis T, Goodarzi F, Cheung F K, et al. Coalbed methane producibility from the Mannvillecoals in Alberta, Canada: Acomparison of two areas[J]. International Journal of Coal Geology,2008,74(3-4):237-249.
    [75] Gentzis T, Bolen D. The use of numerical simulation in predicting coalbed methaneproducibility from the Gates coals, Alberta Inner Foothills, Canada: Comparison withMannville coal CBM production in the Alberta Syncline[J]. International Journal of CoalGeology,2008,74(3-4):215-236.
    [76] Gentzis T. Stability analysis of a horizontal coalbed methane well in the Rocky MountainFront Ranges of southeast British Columbia, Canada[J]. International Journal of Coal Geology,2009,77(3-4):328-337.
    [77] Harpalani S, Chen G. Estimation of changes in fracture porosity of coal with gas emission[J].Fuel,1995,74(10):1491-1498.
    [78] Nolde J E, Spears D. A preliminary assessment of in place coalbed methane resources in theVirginia portion of the central Appalachian Basin[J]. International Journal of Coal Geology,1998,38(1-2):115-136.
    [79]凯塞. W. R.,甘玉梅.控制煤层甲烷产能的地质及水文因素[J].天然气地球科学,1997,8(3):38-41.
    [80] Drobniak A, Mastalerz M, Rupp J, et al. Evaluation of coalbed gas potential of the SeelyvilleCoal Member, Indiana, USA[J]. International Journal of Coal Geology,2004,57(3-4):265-282.
    [81] Connell L D. Coupled flow and geomechanical processes during gas production from coalseams[J]. International Journal of Coal Geology,2009,79(1-2):18-28.
    [82] Connell L D, Sander R, Pan Z, et al. History matching of enhanced coal bed methanelaboratory core flood tests[J]. International Journal of Coal Geology,2011,87(2):128-138.
    [83] Hackley P C, Warwick P D, Breland Jr F C. Organic petrology and coalbed gas content,Wilcox Group (Paleocene-Eocene), northern Louisiana[J]. International Journal of CoalGeology,2007,71(1):54-71.
    [84] Landis E R, Rohrbacher T J, Barker C E, et al. Coalbed gas in the Mecsek Basin, Hungary[J].International Journal of Coal Geology,2003,54(1-2):41-55.
    [85] Harpalani S, Schraufnagel R A. Shrinkage of coal matrix with release of gas and its impacton permeability of coal[J]. Fuel,1990,69(5):551-556.
    [86] Harpalani S, Chen G. Influence of gas production induced volumetric strain on permeabilityof coal[J]. Geotechnical and Geological Engineering,1997(4).
    [87]杨秀春,接铭训,王国强.潘河煤层气试验区产能影响因素分析[J].天然气工业,2008,28(3):99-101.
    [88] Han J, Sang S, Cheng Z, et al. Exploitation technology of pressure relief coalbed methane invertical surface wells in the Huainan coal mining area[J]. Mining Science and Technology(China),2009,19(1):25-30.
    [89]闫泊计.浅析影响煤层气井产量的几个因素[J].山西焦煤科技,2010(10):31-33.
    [90]陶树,汤达祯,许浩,等.沁南煤层气井产能影响因素分析及开发建议[J].煤炭学报,2011,36(2):194-198.
    [91]张慧.煤孔隙的成因类型及其研究[J].煤炭学报,2001,26(1):40-44.
    [92]张慧,王晓刚,等.煤中显微裂隙的成因类型及其研究意义[J].岩石矿物学杂志,2002,21(3):278-284.
    [93]刘飞.山西沁水盆地煤岩储层特征及高产富集区评价[D].成都理工大学,2007.
    [94]孟庆春,左银卿,魏强,等.沁水煤层气田樊庄区块产能影响因素分析[J].中国煤层气,2010,7(6):10-14.
    [95] Yao Y, Liu D, Che Y, et al. Non-destructive characterization of coal samples from Chinausing microfocus X-ray computed tomography[J]. International Journal of Coal Geology,2009,80(2):113-123.
    [96] Sang S, Liu H, Li Y, et al. Geological controls over coal-bed methane well production insouthern Qinshui basin[J]. Procedia Earth and Planetary Science,2009,1(1):917-922.
    [97] Jiang B, Tian M, Zhang G, et al. Influencing parameters of flow-induced structuraldeformation for a circular tube[J]. Journal of Hydrodynamics,2009,21(4):520-525.
    [98] Jiang B, Qu Z, Wang G G X, et al. Effects of structural deformation on formation of coalbedmethane reservoirs in Huaibei coalfield, China[J]. International Journal of Coal Geology,2010,82(3-4):175-183.
    [99] Shen J, Qin Y, Fu X, et al. Application of structural curvature of coalbed floor on CBMdevelopment in the Zaoyuan block of the southern Qinshui Basin[J]. Mining Science andTechnology (China),2010,20(6):886-890.
    [100]李梦溪,刘庆昌,张建国,等.构造模式与煤层气井产能的关系——以晋城煤区为例[J].天然气工业,2010,30(11):10-13.
    [101]叶建平.潞安目标区煤层气赋存和生产的地质因素分析[J].煤田地质与勘探,2005,33(3):29-32.
    [102]刘人和,刘飞,周文,等.沁水盆地煤岩储层特征及有利区预测[J].油气地质与采收率,2008,15(4):16-19.
    [103] Wang B, Jiang B, Liu L, et al. Physical simulation of hydrodynamic conditions in high rankcoalbed methane reservoir formation[J]. Mining Science and Technology (China),2009,19(4):435-440.
    [104]叶建平,郭海林,武强,等.铁法盆地煤层气成藏模式及产能预测[J].中国矿业大学学报,2002,31(2):204-207.
    [105]陈春琳,叶贵均.试论煤储层气-水两相流系统[J].煤田地质与勘探,2003,31(5):23-26.
    [106] Levy J H, Day S J, Killingley J S. Methane capacities of Bowen Basin coals related to coalproperties[J]. Fuel,1997,76(9):813-819.
    [107] Gurba L W, Weber C R. Effects of igneous intrusions on coalbed methane potential,Gunnedah Basin, Australia[J]. International Journal of Coal Geology,2001,46(2-4):113-131.
    [108] Johnson R C, Flores R M. Developmental geology of coalbed methane from shallow to deepin Rocky Mountain basins and in Cook Inlet-Matanuska basin, Alaska, U.S.A. and Canada[J].International Journal of Coal Geology,1998,35(1-4):241-282.
    [109] Kinnon E C P, Golding S D, Boreham C J, et al. Stable isotope and water quality analysis ofcoal bed methane production waters and gases from the Bowen Basin, Australia[J].International Journal of Coal Geology,2010,82(3-4):219-231.
    [110] Lamarre R A. Hydrodynamic and stratigraphic controls for a large coalbed methaneaccumulation in Ferron coals of east-central Utah[J]. International Journal of Coal Geology,2003,56(1-2):97-110.
    [111] Pashin J C. Stratigraphy and structure of coalbed methane reservoirs in the United States: Anoverview[J]. International Journal of Coal Geology,1998,35(1-4):209-240.
    [112] Pashin J C. Hydrodynamics of coalbed methane reservoirs in the Black Warrior Basin: Keyto understanding reservoir performance and environmental issues[J]. Applied Geochemistry,2007,22(10):2257-2272.
    [113] Pashin J C. Chapter9-Coal as a Petroleum Source Rock and Reservoir Rock[J].2008:227-262.
    [114] Pashin J C, Groshong R H. Structural control of coalbed methane production in Alabama[J].International Journal of Coal Geology,1998,38(1-2):89-113.
    [115] Pashin J C, McIntyre M R. Temperature-pressure conditions in coalbed methane reservoirsof the Black Warrior basin: implications for carbon sequestration and enhanced coalbedmethane recovery[J]. International Journal of Coal Geology,2003,54(3-4):167-183.
    [116]孟召平,田永东,李国富.沁水盆地南部地应力场特征及其研究意义[J].煤炭学报,2010,35(6):975-981.
    [117]陈振宏,王一兵,孙平.煤粉产出对高煤阶煤层气井产能的影响及其控制[J].煤炭学报,2009,34(2):229-232.
    [118]陈振宏,陈艳鹏,杨焦生,等.高煤阶煤层气储层动态渗透率特征及其对煤层气产量的影响[J].石油学报,2010,31(6):966-969.
    [119]许广明,武强,张燕君.非平衡吸附模型在煤层气数值模拟中的应用[J].煤炭学报,2003,28(4):380-384.
    [120]李相臣,康毅力.煤层气储层破坏机理及其影响研究[J].中国煤层气,2008,5(1):35-37.
    [121]孙平,王一兵.沁南煤层气藏高渗区预测[J].天然气工业,2008,28(3):33-35.
    [122] Wen G, Liu W, Xu C, et al. Automated hydraulic correction technology for CBM horizontalwellbore[J]. International Journal of Coal Geology,2011,85(2):191-201.
    [123]李军军,桑树勋,李仰民,等.沁水盆地南部煤层气井增产的储层生产控制探讨[J].中国煤炭地质,2011,23(1):12-17.
    [124] Dongkun L, Wangtao C, Xiaodong W, et al. Analysis on economic benefits of coalbedmethane drilling technologies[J]. Petroleum Exploration and Development,2009,36(3):403-407.
    [125]张健,汪志明.物质平衡法在煤层气藏生产动态预测中的应用[J].煤田地质与勘探,2009,37(3):23-26.
    [126]孟伟东,王延斌,李玉魁,等.倾斜煤层中不同倾向多分支井产能预测模型[J].煤田地质与勘探,2008,36(3):27-30.
    [127]高鑫华,岳晓燕,吴东平,等.煤层气开采策略若干问题的探讨[J].天然气勘探与开发,1998(01):6-12.
    [128]付玉,郭肖,龙华.煤层气储层压裂水平井产能计算[J].西南石油学院学报,2003,25(3):44-46.
    [129]吴晓东,王国强,李安启,等.煤层气井产能预测研究[J].天然气工业,2004,24(8):82-84.
    [130]杜志敏,付玉,伍勇.低渗透煤层气产能影响因素评价[J].石油与天然气地质,2007,28(4):516-519.
    [131]薛莉莉.煤层气储层压裂数值模拟技术研究[D].中国石油大学,2009.
    [132]张亚蒲,张冬丽,杨正明,等.煤层气定向羽状水平井数值模拟技术应用[J].天然气工业,2006(12):115-117.
    [133]李金海,苏现波,林晓英,等.煤层气井排采速率与产能的关系[J].煤炭学报,2009,34(3):376-380.
    [134]李仰民,王立龙,刘国伟,等.煤层气井排采过程中的储层伤害机理研究[J].中国煤层气,2010,7(6):39-43.
    [135]赵群,王红岩,李景明,等.快速排采对低渗透煤层气井产能伤害的机理研究[J].山东科技大学学报:自然科学版,2008,27(3):27-31.
    [136]刘新福,綦耀光,李延祥,等.单相流煤层气井井底流压预测方法研究[J].中国矿业大学学报,2010,39(6):876-880.
    [137]刘新福,綦耀光,刘春花,等.气水两相煤层气井井底流压预测方法[J].石油学报,2010,31(6):998-1003.
    [138]朱鹏飞.寺河井田煤层气开采及利用研究[D].辽宁工程技术大学,2009.
    [139] Milici R C, Hatch J R, Pawlewicz M J. Coalbed methane resources of the Appalachian basin,eastern USA[J]. International Journal of Coal Geology,2010,82(3-4):160-174.
    [140] Keim S A, Luxbacher K D, Karmis M. A numerical study on optimization of multilateralhorizontal wellbore patterns for coalbed methane production in Southern Shanxi Province,China[J]. International Journal of Coal Geology,2011,In Press, Accepted Manuscript.
    [141] Palmer I. Coalbed methane completions: A world view[J]. International Journal of CoalGeology,2010,82(3-4):184-195.
    [142] Ziarani A S, Aguilera R, Clarkson C R. Investigating the effect of sorption time on coalbedmethane recovery through numerical simulation[J]. Fuel,In Press, Uncorrected Proof.
    [143] Vaziri H H, Wang X, Palmer I D, et al. Back analysis of coalbed strength properties fromfield measurements of wellbore cavitation and methane production[J]. International Journal ofRock Mechanics and Mining Sciences,1997,34(6):963-978.
    [144] Dutta P, Harpalani S, Prusty B. Modeling of CO2sorption on coal[J]. Fuel,2008,87(10-11):2023-2036.
    [145] Fitzgerald J E, Pan Z, Sudibandriyo M, et al. Adsorption of methane, nitrogen, carbondioxide and their mixtures on wet Tiffany coal[J]. Fuel,2005,84(18):2351-2363.
    [146] Gunter W D, Gentzis T, Rottenfusser B A, et al. Deep coalbed methane in Alberta, Canada:Afuel resource with the potential of zero greenhouse gas emissions[J]. Energy Conversion andManagement,1997,38(Supplement1):S217-S222.
    [147] Hamelinck C N, Faaij A P C, Turkenburg W C, et al. CO2enhanced coalbed methaneproduction in the Netherlands[J]. Energy,2002,27(7):647-674.
    [148] Macdonald D, Wong S, Gunter B, et al. Surface Facilities Computer Model: An EvaluationTool for Enhanced Coalbed Methane Recovery[M]//Gale J, Kaya Y. Greenhouse Gas ControlTechnologies-6th International Conference. Oxford: Pergamon,2003:575-580.
    [149] Cui X, Bustin R M, Dipple G. Selective transport of CO2, CH4, and N2in coals: insightsfrom modeling of experimental gas adsorption data[J]. Fuel,2004,83(3):293-303.
    [150] Durucan S, Shi J. Improving the CO2well injectivity and enhanced coalbed methaneproduction performance in coal seams[J]. International Journal of Coal Geology,2009,77(1-2):214-221.
    [151] Fang Z, Li X, Hu H. Gas mixture enhance coalbed methane recovery technology: Pilottests[J]. Energy Procedia,2011,4:2144-2149.
    [152] Wei Z, Zhang D. Coupled fluid-flow and geomechanics for triple-porosity/dual-permeabilitymodeling of coalbed methane recovery[J]. International Journal of Coal Geology,2010,47(8):1242-1253.
    [153] Wu Y, Liu J, Chen Z, et al. A dual poroelastic model for CO2-enhanced coalbed methanerecovery[J]. International Journal of Coal Geology,2011,In Press, Corrected Proof.
    [154] Yu H, Zhou L, Guo W, et al. Predictions of the adsorption equilibrium of methane/carbondioxide binary gas on coals using Langmuir and ideal adsorbed solution theory under feed gasconditions[J]. International Journal of Coal Geology,2008,73(2):115-129.
    [155] Yu H, Zhou G, Fan W, et al. Predicted CO2enhanced coalbed methane recovery and CO2sequestration in China[J]. International Journal of Coal Geology,2007,71(2-3):345-357.
    [156] Yu H, Yuan J, Guo W, et al. A preliminary laboratory experiment on coalbed methanedisplacement with carbon dioxide injection[J]. International Journal of Coal Geology,2008,73(2):156-166.
    [157]王晓锋,吕玉民,吴敏杰,等.注入CO_2提高煤层气井产能技术的作用机理[J].西安科技大学学报,2010,30(6):706-710.
    [158] Prusty B K. Sorption of methane and CO2for enhanced coalbed methane recovery andcarbon dioxide sequestration[J]. Journal of Natural Gas Chemistry,2008,17(1):29-38.
    [159] Ross H E, Hagin P, Zoback M D. CO2storage and enhanced coalbed methane recovery:Reservoir characterization and fluid flow simulations of the Big George coal, Powder RiverBasin, Wyoming, USA[J]. International Journal of Coal Geology,2009,3(6):773-786.
    [160] Ozdemir E. Modeling of coal bed methane (CBM) production and CO2sequestration in coalseams[J]. International Journal of Coal Geology,2009,77(1-2):145-152.
    [161] Ozdemir E, Morsi B I, Schroeder K. CO2adsorption capacity of argonne premium coals[J].Fuel,2004,83(7–8):1085-1094.
    [162] Shi J Q, Durucan S, Sinka I C. Key parameters controlling coalbed methane cavity wellperformance[J]. International Journal of Coal Geology,2002,49(1):19-31.
    [163]贾爱林.储层地质模型建立步骤[J].地学前缘,1995,2(4):221-225.
    [164]王利,蔡云飞.煤层气储层描述技术及其应用[J].天然气工业,1997,17(6):28-31.
    [165]裘怿楠,贾爱林.储层地质模型10年[J].石油学报,2000,21(4):101-104.
    [166]李青元,朱小弟.三维地质模型的数据模型研究[J].中国煤田地质,2000,12(3):57-61.
    [167]孙立春,高博禹.两类地质模型的网格系统构建与模型转换[J].中国海上油气,2007,19(6):381-386.
    [168]毛治国,胡望水,余海洋.油藏地质模型研究进展[J].特种油气藏,2007,14(4):6-12.
    [169]贾爱林.中国储层地质模型20年[J].石油学报,2011,32(1):181-188.
    [170]何吉祥.储层精细地质模型合粗化程度研究[D].西南石油大学,2011.
    [171] Warren J E, Root P J. The behavior of naturally fractured reservoirs[J]. Old SPE Journal,1963,3(3):245-255.
    [172] Warren J E. The Performance of Heterogeneous Reservoirs [C]. Fall Meeting of the Societyof Petroleum Engineers of AIME, October1964, Houston, Texas.
    [173] Gilman J, Kazemi H. Improvements in simulation of naturally fractured reservoirs[J]. OldSPE Journal,1983,23(4):695-707.
    [174] Gilman J R, Kazemi H. Improved Calculations for Viscous and Gravity Displacement inMatrix Blocks in Dual-Porosity Simulators (includes associated papers17851,17921,18017,18018,18939,19038,19361and20174)[J]. SPE Journal of Petroleum Technology,1988,40(1):60-70.
    [175]商永涛.煤层气渗流机理及产能评价研究[D].中国石油大学,2008.
    [176]杨川东,桑宇.物质平衡法在煤层气井产能预测中的应用[J].钻采工艺,2000,23(4):33-37.
    [177]付玉.煤层气储层数值模拟研究[D].西南石油学院,2004.
    [178]张先敏,同登科.沁水盆地产层组合对煤层气井产能的影响[J].煤炭学报,2007,32(3):272-275.
    [179]张先敏,同登科.顶板含水层对煤层气井网产能的影响[J].煤炭学报,2009,34(5):645-649.
    [180] Zhang X, Tong D, Xue L. Numerical Simulation of Gas-Water Leakage Flow in A TwoLayered Coalbed System[J]. Journal of Hydrodynamics,2009,21(5):692-698.
    [181]郭大浩.煤层气井数值模拟研究[D].成都理工大学,2004.
    [182]岳晓燕,谭世君,吴东平.煤层气数值模拟的地质模型与数学模型[J].天然气工业,1998,18(4).
    [183] King G R, Ertekin T M. A survey of mathematical models related to methane productionfrom coal seams,1989[C].
    [184] Paul G W, Sawyer W K, Dean R H. Validation of3D coalbed simulators,1990[C].
    [185] Sawyer W, Paul G, Schraufnagel R. Development And Application Of A3-D CoalbedSimulator,1990[C].
    [186] Kolesar J E, Ertekin T, Obut S T. The Unsteady-State Nature of Sorption and DiffusionPhenomena in the Micropore Structure of Coal: Part1? Theory and MathematicalFormulation[J]. SPE Formation Evaluation,1990,5(1):81-88.
    [187] Kolesar J E, Ertekin T, Obut S T. The Unsteady-State Nature of Sorption and DiffusionPhenomena in the Micropore Structure of Coal: Part2-Solution[J]. SPE Formation Evaluation,1990,5(1):89-97.
    [188] Young G B C. Computer modeling and simulation of coalbed methane resources[J].International Journal of Coal Geology,1998,35(1-4):369-379.
    [189] Young G, Paul G W, McElhiney J E, et al. A parametric analysis of fruitland coalbedmethane reservoir producibility,1992[C].
    [190] Schraufnagel RA. Coalbed methane production[J].1993,38:341-359.
    [191] Saulsberry J L, Lambert S W, Dobscha F X. Determining Production from Individual CoalGroups in Multi-Zone Wells with a Zone Isolation Packer: Hydrocarbons from coal: AAPGStudies in Geology,1991[C].
    [192] Saulsberry J L, Schafer P S, Schraufnagel R A. A guide to coalbed methane reservoirengineering[J].1996.
    [193] Clarkson C R, Marc Bustin R. Variation in micropore capacity and size distribution withcomposition in bituminous coal of the Western Canadian Sedimentary Basin: Implications forcoalbed methane potential[J]. Fuel,1996,75(13):1483-1498.
    [194] Clarkson C R, Bustin R M. The effect of pore structure and gas pressure upon the transportproperties of coal: a laboratory and modeling study.2. Adsorption rate modeling[J]. Fuel,1999,78(11):1345-1362.
    [195] Clarkson C R, Bustin R M. The effect of pore structure and gas pressure upon the transportproperties of coal: a laboratory and modeling study.1. Isotherms and pore volumedistributions[J]. Fuel,1999,78(11):1333-1344.
    [196]苏复义,蔡云飞.数值模拟技术在柳林煤层气试验区的应用[J].天然气工业,2004,24(5):95-96.
    [197]郭红玉,苏现波.煤储层启动压力梯度的实验测定及意义[J].天然气工业,2010,30(6):52-54.
    [198] Dawson G K W, Esterle J S. Controls on coal cleat spacing[J]. International Journal of CoalGeology,2010,82(3-4):213-218.
    [199]李传亮,杨永全.启动压力其实并不存在[J].西南石油大学学报,2008,30(3):167-170.
    [200]李传亮.启动压力梯度真的存在吗?[J].石油学报,2010,31(5):867-870.
    [201]张志刚.井下煤层气抽采产能预测模型研究[D].煤炭科学研究总院,2008.
    [202]汪志明,李晓益,张健.低渗透煤层气藏直井开采数值模拟研究[J].石油天然气学报,2009,31(3):144-147.
    [203] Aminian K, Ameri S. Predicting production performance of CBM reservoirs[J]. Journal ofNatural Gas Science and Engineering,2009,1(1-2):25-30.
    [204] Connell L D, Lu M, Pan Z. An analytical coal permeability model for tri-axial strain andstress conditions[J]. International Journal of Coal Geology,2010,84(2):103-114.
    [205]吴晓东,安永生,席长丰.煤层气羽状水平井数值模拟新方法[J].天然气工业,2007,27(7):76-78.
    [206]程晓云,毕雅梅.煤层气羽状多分支水平井生产预测研究[J].科技资讯,2009(35):48.
    [207] Syed A, Shi J, Durucan S. Permeability and injectivity improvement in CO2enhancedcoalbed methane recovery: Thermal stimulation of the near wellbore region[J]. EnergyProcedia,2011,4:2137-2143.
    [208] Sinayu, Gümrah F. Modeling of ECBM recovery from Amasra coalbed in ZonguldakBasin, Turkey[J]. International Journal of Coal Geology,2009,77(1-2):162-174.
    [209] Izadi G, Wang S, Elsworth D, et al. Permeability evolution of fluid-infiltrated coalcontaining discrete fractures[J]. International Journal of Coal Geology,2011,85(2):202-211.
    [210] Zarrouk S J, Moore T A. Preliminary reservoir model of enhanced coalbed methane (ECBM)in a subbituminous coal seam, Huntly Coalfield, New Zealand[J]. International Journal of CoalGeology,2009,77(1-2):153-161.
    [211]郑爱玲,王新海,刘德华.注气驱替煤层气数值模拟研究[J].石油钻探技术,2006,34(2):55-57.
    [212]刘少华,王新海.煤层气数值模拟信息系统的研究[J].石油天然气学报,2010,32(6):454-456.
    [213]李维国,黄炳家,同登科,等.数值计算方法[M].第一版.东营:中国石油大学出版社,2004.
    [214]陈月明.油藏数值模拟基础[M].第一版.东营:中国石油大学出版社,2009.
    [215]张先敏,同登科,胡爱梅.沁水盆地煤层气井网开采数值模拟[J].工程力学,2008,25(12):218-222.
    [216]孟艳军,汤达祯,许浩.煤层气产能潜力模糊数学评价研究——以河东煤田柳林矿区为例[J].中国煤炭地质,2010,22(6):17-20.
    [217]郭晨,秦勇,韦重韬.基于COMET3软件的煤储层数值模拟方法[J].中国煤炭地质,2011,23(1):18-20.
    [218]李延祥,马财林,李燕,等.数值模拟软件(COMET2.11)在大宁地区煤层气勘探中的应用[J].天然气工业,2004,24(5):100-103.
    [219]赵雯,朱炎铭,张晓莉,等.煤层气井历史拟合评述[J].中国煤层气,2010,7(3):20-22.
    [220]陈金刚,秦勇,傅雪海.高煤级煤储层渗透率在煤层气排采中的动态变化数值模拟[J].中国矿业大学学报,2006,35(1):49-53.
    [221]陈彩红,刘洪林,王宪花.煤层气田数值模拟技术及应用[J].天然气工业,2004,24(5):97-99.
    [222]冀涛,杨德义.沁水盆地煤层气地质条件评价[J].煤炭工程,2007(10):83-86.
    [223]邵龙义,肖正辉,何志平,等.晋东南沁水盆地石炭二叠纪含煤岩系古地理及聚煤作用研究[J].古地理学报,2006,8(1):43-52.
    [224]陈振宏,宋岩,秦胜飞.沁水盆地南部煤层气藏的地球化学特征[J].天然气地球科学,2007,18(4):561-564.
    [225] Hu G, Li J, Ma C, et al. Characteristics and Implications of the Carbon Isotope Fractionationof Desorbed Coalbed Methane in Qinshui Coalbed Methane Field, China[J]. Earth ScienceFrontiers,2007,14(6):267-272.
    [226]刘焕杰,秦勇,桑树勋.山西南部煤层气地质[M].徐州:中国矿业大学出版社,1998.
    [227]任海英.沁水煤田晋城矿区煤层的沉积环境与煤层气[J].煤矿现代化,2004(6):18-19.
    [228]梁国军,郑琳,等.晋城矿区含煤地层的沉积环境[J].焦作工学院学报,2002,21(2):94-97.
    [229]肖晖,任战利,崔军平.沁水盆地石炭-二叠系煤层气成藏期研究[J].中国地质,2007,34(3):490-496.
    [230]冀涛,杨德义.沁水盆地煤与煤层气地质条件[J].中国煤田地质,2007,19(5):28-30.
    [231]秦勇,桑树勋,刘焕杰,等.煤层气生成与煤层气富集Ⅱ.有效生气阶段生气量的估算[J].煤田地质与勘探,1998(02).
    [232]张建博,陶明信.煤层甲烷同位素在煤层气勘探中的地质意义—以沁水盆地为例[J].沉积学报,2000,18(4):611-614.
    [233]刘洪林,张建博,王红岩.中国煤层气形成的地质条件[J].天然气工业,2004,24(2):5-7.
    [234]魏书宏,韩少明.沁水煤田南部煤层气构造控气特征研究[J].煤田地质与勘探,2003,31(3):30-31.
    [235]赵孟军,宋岩,苏现波,等.沁水盆地煤层气藏演化的关键时期分析[J].科学通报,2005,50(B10):110-116.
    [236]林晓英,苏现波.沁水盆地南部煤层气成藏机理[J].天然气工业,2007,27(7):8-11.
    [237]石书灿,林晓英,李玉魁.沁水盆地南部煤层气藏特征[J].西南石油大学学报,2007,29(2):54-56.
    [238]赵孟军,宋岩,秦胜飞,等.成藏演化过程对煤层气地球化学特征的控制作用:第十届全国有机地球化学学术会议,中国无锡,2005[C].
    [239]赵孟军,宋岩,苏现波,等.煤层气聚气历史研究及其地质意义:第十届全国有机地球化学学术会议,中国无锡,2005[C].
    [240]叶建平,武强,叶贵钧,等.沁水盆地南部煤层气成藏动力学机制研究[J].地质论评,2002(3):319-323.
    [241]秦勇,姜波,王继尧,等.沁水盆地煤层气构造动力条件耦合控藏效应[J].地质学报,2008,82(10):1355-1362.
    [242]王红岩,张建博,刘洪林,等.沁水盆地南部煤层气藏水文地质特征[J].煤田地质与勘探,2001,29(5):33-36.
    [243]崔思华,彭秀丽,鲜保安,等.沁水煤层气田煤层气成藏条件分析[J].天然气工业,2004,24(5):14-16.
    [244]傅雪海,秦勇,王文峰,等.沁水盆地中-南部水文地质控气特征[J].中国煤田地质,2001,13(1):31-34.
    [245]冯文光.煤层气藏工程[M].第一版.北京:科学出版社,2009.
    [246]孙茂远,黄盛初,等.煤层气开发利用手册[M].第一版.北京:煤炭工业出版社,1998.
    [247]贺天才,秦勇.煤层气勘探与开发利用技术[M].第一版.徐州:中国矿业大学出版社,2008.
    [248]杨焦生,李安启.樊庄区块煤层气井开发动态分析及分类评价[J].天然气工业,2008,28(3):96-98.
    [249]刘世奇,桑树勋,李梦溪,等.樊庄区块煤层气井产能差异的关键地质影响因素及其控制机理[J].煤炭学报,2013,38(02):277-283.
    [250]李明宅.沁水盆地枣园井网区煤层气采出程度[J].石油学报,2005,26(1):91-95.
    [251]闫宝珍,王延斌,倪小明.地层条件下基于纳米级孔隙的煤层气扩散特征[J].煤炭学报,2008,33(6):657-660.
    [252]刘世奇,桑树勋,李梦溪,等.沁水盆地南部煤层气井网排采压降漏斗的控制因素[J].中国矿业大学学报,2012,41(06):943-950.
    [253] Cao Y, Davis A, Liu R, et al. The influence of tectonic deformation on some geochemicalproperties of coals--a possible indicator of outburst potential[J]. International Journal of CoalGeology,2003,53(2):69-79.
    [254] Bo W, Jingming L, Yi Z, et al. Geological characteristics of low rank coalbed methane,China[J]. Petroleum Exploration and Development,2009,36(1):30-34.
    [255] Frodsham K, Gayer R A. The impact of tectonic deformation upon coal seams in the SouthWales coalfield, UK[J]. International Journal of Coal Geology,1999,38(3-4):297-332.
    [256] Fu X, Qin Y, Wang G G X, et al. Evaluation of coal structure and permeability with the aidof geophysical logging technology[J]. Fuel,2009,88(11):2278-2285.
    [257]李贵中,王红岩,吴立新,等.煤层气向斜控气论[J].天然气工业,2005,25(1):26-28.
    [258]倪小明,王延斌,接铭训,等.晋城矿区西部地质构造与煤层气井网布置关系[J].煤炭学报,2007,32(2):146-149.
    [259]张俊虎,刘君.煤层气井网布置优化设计的探讨[J].科技情报开发与经济,2008,18(10):210-212.
    [260]王杰祥.油水井增产增注技术[M].第一版.东营:中国石油大学出版社,2006.
    [261]刘世奇,桑树勋,李仰民,等.沁水盆地南部煤层气井压裂失败原因分析[J].煤炭科学技术,2012,40(06):108-112.
    [262]宋景远.煤层气井压裂液和支撑剂[J].探矿工程(岩土钻掘工程),1996(06).
    [263]张亚蒲,杨正明,鲜保安.煤层气增产技术[J].特种油气藏,2006,13(1):95-98.
    [264]李勇明,王中武,郭建春,等.天然裂缝开启前后的煤层压裂液滤失计算[J].油气井测试,2006,15(1):8-9.
    [265]丛连铸,陈进富,李治平,等.煤层气压裂中压裂液吸附特性研究[J].煤田地质与勘探,2007,35(5):27-30.
    [266]姜光杰,孙明闯,付江伟.煤矿井下定向压裂增透消突成套技术研究及应用[J].中国煤炭,2009(11):10-14.
    [267]王玉海,王庆红,闫桂芳,等.煤层气井压裂效果评价方法[J].油气井测试,2010,19(5):44-47.
    [268]倪小明,苏现波,李玉魁.多煤层合层水力压裂关键技术研究[J].中国矿业大学学报,2010(5):728-732.
    [269]江振寅,刘世奇,桑树勋.煤层气井压裂卡钻事故原因与施工建议[J].能源技术与管理,2012(2):125-126.
    [270] Gupta A, Harrison I R. New aspects in the oxidative stabilization of PAN-based carbonfibers[J]. Carbon,1996,34(11):1427-1445.
    [271]姜汉桥,姚军,姜瑞忠.油藏工程原理与方法[M].第2版.东营:中国石油大学出版社,2006.
    [272]张琪.采油工程原理与设计[M].第1版.东营:中国石油大学出版社,2006.
    [273]陈正茂.油田开发中后期井网加密技术经济方法研究[D].西南石油学院西南石油大学油气田开发工程,2004.
    [274] Rodrigues C F, Lemos De Sousa M J. The measurement of coal porosity with differentgases[J]. International Journal of Coal Geology,2002,48(3–4):245-251.
    [275] Laxminarayana C, Crosdale P J. Role of coal type and rank on methane sorptioncharacteristics of Bowen Basin, Australia coals[J]. International Journal of Coal Geology,1999,40(4):309-325.
    [276] St. George J D, Barakat M A. The change in effective stress associated with shrinkage fromgas desorption in coal[J]. International Journal of Coal Geology,2001,45(2–3):105-113.
    [277] Busch A, Gensterblum Y, Krooss B M, et al. Methane and carbon dioxide adsorption–diffusion experiments on coal: upscaling and modeling[J]. International Journal of CoalGeology,2004,60(2–4):151-168.
    [278] Peng W, Xian-biao M, Jin-bin L, et al. Study of the borehole hydraulic fracturing and theprinciple of gas seepage in the coal seam[J]. Procedia Earth and Planetary Science,2009,1(1):1561-1573.
    [279]唐巨鹏,潘一山,李成全,等.固流耦合作用下煤层气解吸-渗流实验研究[J].中国矿业大学学报,2006(02):274-278.
    [280]陈振宏,贾承造,宋岩,等.高煤阶与低煤阶煤层气藏物性差异及其成因[J].石油学报,2008,29(2):179-184.
    [281]叶欣,刘洪林,王勃,等.高低煤阶煤层气解吸机理差异性分析[J].天然气技术,2008,2(2):19-22.
    [282] Sang S, Xu H, Fang L, et al. Stress relief coalbed methane drainage by surface vertical wellsin China[J]. International Journal of Coal Geology,2010,82(3-4):196-203.
    [283]桑树勋,朱炎铭,张井,等.煤吸附气体的固气作用机理(Ⅱ)--煤吸附气体的物理过程与理论模型[J].天然气工业,2005,25(1):16-18,21.
    [284]傅雪海,彭金宁.铁法长焰煤储层煤层气三级渗流数值模拟[J].煤炭学报,2007,32(5):494-498.
    [285]傅雪海,秦勇,杨永国,等.甲烷在煤层水中溶解度的实验研究[J].天然气地球科学,2004,15(4):345-348.
    [286] Levine J R. Coalification: the evolution of coal as source rock and reservoir rock for oil andgas[J]. Hydrocarbons from coal: AAPG Studies in Geology,1993,38:39-77.
    [287] Levine J R. Model study of the influence of matrix shrinkage on absolute permeability ofcoal bed reservoirs[J]. Geological Society, London, Special Publications,1996,109(1):197-212.
    [288]傅雪海,秦勇.多相介质煤层气储层渗透率预测理论与方法[M].徐州:中国矿业大学出版社,2003.
    [289] Zhang X, Tong D. The coalbed methane transport model and its application in the presenceof matrix shrinkage[J]. Science in China(Series E:Technological Sciences),2008,51(07):968-974.
    [290] Poollen H K, Jargon J R. Steady-State and Unsteady-State Flow of Non~Newtonian FluidsThrough Porous Media[J]. Old SPE Journal,1969,9(1):80-88.
    [291]庞睿智,郭立稳,齐玉磊. CO气体在煤层中的扩散机理及模式[J].河北理工大学学报:自然科学版,2009(4):1-5.
    [292]石丽娜,杜庆军,同登科.煤层气窜流–扩散过程及其对开发效果的影响[J].西南石油大学学报(自然科学版),2011(03):137-140.
    [293]熊健,郭平,李凌峰.滑脱效应和启动压力梯度对低渗透气藏水平井产能的影响[J].大庆石油学院学报,2011,35(2):78-81.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700