用户名: 密码: 验证码:
甘肃黑方台灌区黄土滑坡—泥流形成机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
灌溉诱发的突发性黄土滑坡-泥流是黄土灌区发育较多的一类地质灾害,对此类滑坡前期研究较少。本文对甘肃省永靖县盐锅峡镇西起方台,东至黑台,南以黄河北岸为界,北以磨石沟为界的黑台和方台两个台塬及其边坡一带进行野外勘查,共发现37个滑坡。依据运动学模型进行分类,其中快速错落式滑坡12个,滑坡-泥流15个,低速蠕动滑坡10个,统计结果表明该区以滑坡-泥流发育数量最多。
     进一步对各种类型滑坡的发生条件进行对比分析发现,黄土滑坡-泥流的发生具有其地形特点:一般发生在黄土冲沟的沟头,沟头为凹形坡,在自然状态下是稳定的,同时沟道狭窄,两测灌木和草本植被发育,并不具备泥流沟的特征,没有典型滑坡地貌。因此,在通常的地质灾害调查中,很难将这类地貌判定为潜在灾点,且滑坡点位于沟头,受灾点位于沟口或坡下,滑坡灾点不易被人发觉,滑坡方量虽然不大,但转化为泥流后,致灾范围显著扩大。
     对黑方台黑台西南端永靖电厂北面的斜坡上每1m采取的土样进行物理力学性能测试,得到了不同深度的含水率、液限、塑限、饱和含水率、孔隙比、塑性指数和颗粒组成,确定了该地区的上部地层主要由24m的Q3黄土、20m的Q2黄土及8m的冲积粉质粘土组成,发现了可转化为泥流的黄土结构疏松,孔隙比一般大于0.80,饱和含水率大于液限,下部的冲积粉质粘土为相对隔水层,由此得到了滑坡-泥流发生的物质条件和地下水条件。
     不同含水率和不同围压下的三轴剪切试验得到了黄土不同应力环境下的三种破坏模型,即劈裂破坏、剪切破坏和鼓胀破坏。在野外调查中发现:边坡坡顶的黄土多发生劈裂破坏,其含水率小,围压小;坡底的黄土多表现为蠕变破坏,土的围压与含水率都很大;处在中部的土有明显的破坏面,为剪切破坏,其围压与含水率介于上述两种情况中间。试验结果与实际相吻合,因此本次试验结果揭示了非饱和黄土的变形破坏特性。同时,对灌区三个土层的饱和原状样进行三轴试验,加孔隙反压致土样破坏的应力路径曲线表明:随着孔隙水压力增加,在p-q坐标上土样的应力路径从起始点向左移,即向破坏线方向移动,孔隙水压力增加致使应力点接近强度线时土样破坏。同时由试验得到了冲积粉质粘土、Q2黄土、Q3黄土的有效残余粘聚力、有效内摩擦角、总残余粘聚力和总残余内摩擦角,试验结果显示总应力值比有效应力低,可见滑坡-泥流的发生具有很大的可能性。
     室内渗透试验过程中由于土样经过了卸荷回弹,所测得的渗透系数并不是土体真实应力状态下的渗透系数,为此对传统渗透仪进行改装,并以黑方台黄土为研究对象,对不同深度的黄土试样进行不同压力下土的固结-渗透试验,得到了各种土样的固结压力-渗透系数关系曲线,进而得到土样真实应力状态下的渗透系数。对比分析了土的变形及渗透特征,结果表明室内常规变水头渗透试验所得黄土渗透系数较固结-渗透试验所测得数据大25-40倍。在饱和渗透试验的基础上,结合采用张力计测得的土水特征曲线,利用经验公式换算出非饱和渗透系数。
     将上述三轴试验和渗透试验参数应用到GEO-Studio软件的SEEP/W、SIGMA/W、SLPOE/W模块,对该滑坡-泥流进行渗流分析、应力-应变分析和稳定性计算。分析结果表明:随着灌溉水的入渗,地下水位不断上升,土体的孔隙水压力不断升高,导致土体应力重分布;当水位增加到一定程度,潜在滑动面(带)土体接近饱和,滑带土体的抗剪强度大幅度降低,导致滑坡-泥流发生。
     K.Sassa基于流体力学的理论推导出三维滑坡运动模型,开发的三维滑坡运动模拟程序LS-RAPID适用于滑坡-泥流和泥石流的运动模拟。本文采用该程序通过对取样点的土进行环剪试验,确定各层土的残余摩擦角、饱和不排水抗剪强度τss,估计孔隙水压力发挥程度Bss,然后进行三维滑坡-泥流运动模拟,得出滑坡-泥流发生时的瞬时速度和稳定时的堆积范围,为滑坡-泥流破坏程度和致灾范围的预测提供了依据。
Irrigation-induced slide-flow is one of the most general geological disasters in loessirrigation areas and there is hardly any research of it. Based on the survey and research of thetwo platforms named HeiTai and FangTai, which are located to the north of the Yellow Riverand south of the MoShiGou, there are12quick collapse landslides,15slide-flows,10slowtransitional landslides and no rapid long run-out landslides. Slide-flow distributes the mostextensively and it always originates from the head of the gully which presents the concavetype. Meanwhile, the slope general stays stable under the natural state for its narrow slidingpath and the thick vegetation. During the investigation, this kind of landslide is easily ignoredfor the reason that it doesn’t have the typical physiognomy. At last, the landslide grows in thetop while the effected area in the bottom, when it turns to slide-flow, its destructive scope isexpanded significantly.
     Through the physical and mechanical test of the soil for every1.0meter taken fromsouthwest of HeiTai, we get the result of the moisture content, liquid limit, plastic limit,saturated moisture content, void ratio, plasticity index and particle composition. The resultshows the three typical stratums, namely24m Q3loess,20m Q2loess and8m alluvial siltyclay.
     Physical mechanical performance tests were taken on the soil samples which were takenfrom the slope with intervals of1m in the vertical direction. The slope is on the north of theYongjing PowerStation which is located in the southwest end of Heitai. Through the tests, Igot the data of water content, liquid limit, plastic limit, saturated water content, void ratio,plasticity index and grain composition at different height, and find that the upper formationmainly consists of three layers: Q3loess layer of24m, Q2loess layer of20m and alluvial siltyclay layer of8m. I find that the loess that can became mudflow has several characteristics:void ratio bigger than0.8, saturated water content bigger than liquid limit, silty claysubstratum relative impermeable. Thus, we find the ground water condition and physicalcondition of landslide-mud flow.
     Loess with different moisture content under different confining pressures in three axle shear test should be got three failure models of environment, namely the splitting failure,shear failure and destruction of bulging. The field investigation shows that the top of theslope loess mostly appears splitting failure with low moisture content and small confiningpressure. The loess in bottom of the slope more performance for the creep damage, both ofconfining pressure and moisture content are large. The soil in the middle of the slope oftenappears obvious failure surface of shearing, and value of the confining pressure and watercontent are always between the aforesaid two cases.
     Test result is in conformity with the actual, so the test results revealed the deformationand failure characteristics of unsaturated soil. The triaxial test shows that with the increasingof the pore pressure, the stress path is turning to the left that is the direction of damage. Wealso measured the effective c’ and and total residual c and of alluvial silty clay, Q2loess,and Q3loess. The result shows that the total stress value is lower than the effective one,suggesting the great possibility of the slide flow.
     Based on the saturated permeability tests, we used the tensiometer to measure soil-watercharacteristic curve and calculate the unsaturated permeability coefficient using the empiricalformula.The sample usually used in permeability test is unloaded, not in the real stressenvironment. The permeability coefficient we get is not what we want. In order to restore thereal stress environment of the sample, the instruments have been improved. The loess inHeifangtai platform from different depth has been choose as the object of study, and theconsolidation-permeability test under different stress environment have been done. Thecomparative analysis is made on the deformation and permeability of the loess under theeffect of different loads. It turned out that the permeability coefficient obtained from thepenetration test under consolidation is25-40times as high as the one obtained from theconventional penetration test.
     After that, we make the parameters into SEEP/W, SIG, MA/W, SLPOE/W of GEO-Studiosoftware, to analysis the seepage, stress and stability. The result shows that with the rising ofgroundwater levels, oil pore water pressure is changing, resulting in redistribution of stress.When the water level rising to a certain extent, the potential sliding surface soil is close tosaturation, the landslide occurred.
     Based on the theory of fluid mechanics and three-dimensional landslide motion model, K.Sassa developed LS-RAPID which is appropriate for the simulation of the landslide, rapidslide-flow and debris flow. By ring shear test on soil sample points, we get the residualfriction angle, saturated undrained shear strength τss, estimating degree of pore waterpressure Bss, then simulate the movement process. From the result, we can get theinstantaneous velocity and scope of accumulation that is close to the actual situation. So thesimulation provides a basis for the prediction of the damage ability and disaster scopes.
引文
[1]刘东生.黄土与环境[M].北京:科学出版社,1985.
    [2]孙建中.黄土学(上篇)[M].香港:香港考古学会出版社,2005.
    [3]刘祖典.黄土力学与工程[M].西安:陕西科学技术出版社,1997.
    [4]文宝萍,李媛,王兴林等.黄土地区典型滑坡预测预报及减灾对策研究[M].北京:科学出版社,1965.
    [5]吴玮江,何琼,程建祥等.甘肃省东部滑坡发育规律[J].中国地质灾害防治学报.1993,(3):91-97
    [6]王念秦,张倬元.黄土滑坡灾害研究[M].兰州:兰州大学出版社,2005.
    [7]陕西省滑坡工作办公室.陕西省滑坡分布说明书(1:750000)[M].西安:西安地图出版社,1995.
    [8]陕西省滑坡工作办公室.陕西省滑坡分布图、陕西省滑坡灾害预测图[M].西安:西安地图出版社,1995.
    [9]中国科学院水利部成都山地灾害与环境研究所.中国滑坡灾害分布图[M].成都:成都地图出版社,1991.
    [10]任仓钰.农业灌溉引起的环境地质问题[J].地质灾害与环境保护,2002,13(4):16-17
    [11]雷祥义.黄土高原地质灾害与人类活动[M].北京:地质出版社,2001.
    [12]濮声荣.陕西华县高楼村滑坡灾害的缘由及教训[J].资源环境与工程,2008,22(增):130-132
    [13]叶成才.浅谈卧龙寺滑坡的治理[J].陕西水利,1999(增):34-36
    [14]王家鼎,惠泱河.黑方台台缘灌溉水诱发黄土滑坡群的系统分析[J].水土保持报,2001,21(3):10-15
    [15]铁道部科学研究院西北分院.滑坡防治[M].北京:人民铁道出版社,1977.
    [16]乔平定,李增均.黄土地区工程地质[M].北京:水利电力出版社,1990.
    [17]王志荣,王念秦.黄土滑坡研究现状综述[J].中国水土保持,2004,(11):16-19
    [18]雷祥义.陕西关中人为黄土滑坡类型的研究-人类活动的黄土斜坡地质环境负效应问题[J].水文地质工程地质,1996,(3):36-42
    [19]吴玮江,王念秦.黄土滑坡的基本类型与活动特征[J].中国地质灾害与防治学报,2002,13(2):36-40
    [20]张茂省,校培喜,魏兴丽.延安市宝塔区崩滑地质灾害发育特征与分布规律初探[J].水文地质工程地质,2006,(6):72-79
    [21]徐张建,林在贯,张茂省.中国黄土与黄土滑坡[J].岩石力学与工程学报,2007,26(7):1297-1312
    [22]许领,戴福初,邝国麟等.黑方台黄土滑坡类型与发育规律[J].山地学报,2008,26(3):364-371
    [23]段钊,赵法锁,陈新建.陕北黄土高原滑坡发育类型与时空分布特征—以吴起县为例[J].灾害学,2011,26(4):52-56
    [24]李同录,龙建辉,李新生.黄土滑坡发育类型及空间预测方法[J].工程地质学报,2007,15(4):500-505
    [25]许领,戴福初,闵弘.黄土滑坡研究现状与设想[J].地球科学进展,2008,23(03):632-242
    [26] Terzagh I. K., Peck R. B.. Soil Mechanics in Engineering Practice [M]. New York: John Wiley,1948.
    [27]王德潜.洛川黄土潜水补给特征[J].水文地质工程地质,1982,(5):1-8
    [28]阎太白,王德潜.洛川塬黄土潜水的补给机制及黄土含水特征[J].地质论评,1983,29(5):418-427
    [29]阎太白.黄土潜水补给周期的探讨[J].水文地质工程地质,1986,(3):42-44
    [30]王得潜.黄土含水介质特征与地下水类型[J].陕西地质,1985,3(1):11-12
    [31]薛根良.黄土地下水的补给与赋存形势探讨[J].水文地质工程地质,1995,22(1):38-39
    [32]杨小雄,林文亮,俞尧龙.黄土塬区潜水运移规律的探讨[J].水文地质工程地质,1982,(1):1-7
    [33]雷祥义.泾阳南塬黄土滑坡与引水灌溉的关系[J].工程地质学报,1994,3(1):56-64
    [34]范立民,岳明,冉广庆.泾河南岸崩岸型滑坡的发育规律[J].中国煤田地质,2004,16(5):33-35
    [35]宁社教,康金栓,陶虹等.黄土塬边大型滑坡成功预报的基本做法[J].水文地质工程地质,2006,6:110-112
    [36]徐峻龄.再论高速滑坡的闸门效应及其运动特征[J].中国地质灾害防治学报,1997,8(4):23-27
    [37]吴玮江.季节性冻融作用与斜坡整体变形破坏[J].中国地质灾害与防治学报,1996,7(4):59-64
    [38]许领,李宏杰,吴多贤.黄土台塬滑坡地表水入渗问题分析[J].中国地质灾害与防治学报,2008,19(2):32-35
    [39] Sasaa K.. The mechanism starting liquefied landslides and debris flows [C]//4th InternationalSymposium Landslide.1984:349-354
    [40] Sassa K.. The mechanism of debris flows [C]//11th International Conference on Soil Mechanicsand Foundation Engineering. San Francisco,1985:1173-1176
    [41] Poulos S. J., Castro G., France J. W.. Liquefaction evaluation procedure [J]. Journal of GeotechnicalEngineering, ASCE,1985,11(6):772-791
    [42] Sladen J. A., D'Hollander R. D., Krahn J., et al. Back analysis of the Nerlerk berm liquefactionslides [J]. Canadian Geotechnical Journal,1985,22:579-588
    [43] Sladen J. A., D'Hollander R. D., Krahn J.. The liquefaction of sands, a collapse surface approach [J].Canadian Geotechnical Journal,1985,22:564-578
    [44] Hutchinson J. N.. General Report: Morphological and geotechnical parameters of landslides inrelation to geology and hydrogeology [C]//5th International Symposium on Landslides. SwitzerlandLausanne,1988:3-35
    [45] Lade P. V.. Static instability and liquefaction of loose fine Sandy slopes [J]. Journal of GeotechnicalEngineering, ASCE,1992,118(1):51-71
    [46] Sasitharan S., Robertson P. K., Sego D. C., et al. Collapse behavior of sand [J]. CanadianGeotechnical Journal,1993,30:569-577
    [47] Yamamuro J. A., Lade P. V.. Steady-state concepts and static liquefaction of salty sands [J]. Journalof Geotechnical and Geo-environmental Engineering,1998,124(9):868-877
    [48] Sassa K., Fukuoka H., Scarascia-Mugnozza G., et al. Earthquake-induced-landslides Distribution,motion and mechanisms [J]. Soil and Foundations,1996,(Special Issue for the great HanshinEarthquake Disasters):53-64
    [49]汪发武.高速滑坡形成机制:土粒子破碎导致超孔隙水压力的产生[J].长春科技大学学报,2001,31(1):64-69
    [50] Wang F. W., Sassa K.. A modified geotechnical simulation model for landslide motion [C] In:Proc.1st European Conf. on Landslides.Prague,2002,735-740
    [51] Wang F. W.. Fluidization mechanisms and motion simulation on flowslides triggered by earthquakeand rainfall [J]. Journal of Rock Mechanics and Engineering,2005,24(10):1654-1661
    [52]龙建辉,李同录,雷晓锋.黄土滑坡滑带土的物理特性研究[J].岩土工程学报,2007,29(2):289-293
    [53]王家鼎,张倬元.地震诱发高速黄土滑坡的机理研究[J].岩土工程学报,1999,21(06):670-674
    [54]王家鼎,刘悦.高速黄土滑坡蠕、滑动液化机理的进一步研究[J].西北大学学报,1999,29(1):79-82
    [55] Atkinson J. H., Farrar D. M.. Stress path tests to measure Soil strength parameters for shallowlandslips [C]//11th International Conference on Soil Mechanics and Foundation Engineering. SanFrancisco, Rotterdam,1985:983-986
    [56] Zhu J. H., Anderson S. A.. Determination of shear strength of Hawaiian residual soil subjected torainfall-induced landslides [J]. Geotechnique,1998,48(1):73-82
    [57] Dai F. C., Lee C. F., Wang S. J.. Analysis of rainfall-introduced slide-debris flows on natural terrainof Lantau Island, Hong Kong [J]. Engineering Geology,1999,51:179-190
    [58] Brand E. W.. Some rain-induced landslide failures. Proc.10th ICSMFE,1981,(3):373-376
    [59] Anderson S. A., Riemer M. F.. Collapse of saturated soil due to reduction in confinement [J].Journal of Geotechnical Engineering,121(2):216-220
    [60]戴福初.火山岩坡残积土地区暴雨滑坡泥石流的形成机理[D].北京:中国科学院地质与地球物理研究所,1997.
    [61]戴福初.从土的应力应变特性探讨滑坡发生机理[J].岩土工程学报,2000,22(1):127-130
    [62]金艳丽,戴福初.灌溉诱发黄土滑坡机理研究[J].岩土工程学报,2007,29(10):1493-1499
    [63] Krahn J., Fredlund D. G., Klassen M. J.. Effects of soil suction on slope stability at North Hill [J].Canadian Geotechnical Journal,1989,26:269-278
    [64] Fredlund D. G.. Bringing unsaturated soil mechanics into engineering practice [C]//2thInternational Conference on Unsaturated Soils. Beijing,1998:1-36
    [65] Ng C W W, Pang Y. W.. Influence of stress state on soil-water characteristics and slope stability [J].Journal of Geotechnical and Geo-environmental Engineering, ASCE,2000,126(2):157-166
    [66]陈善雄,陈守义.考虑降雨的非饱和土坡稳定性分析方法[J].岩土力学,2001,22(4):47-450
    [67]胡炜,张茂省,朱立峰.黑方台灌溉渗透型黄土滑坡的运动学模拟研究[J].工程地质学报,1994,3(1):56-64
    [68] Scheidegger A. E.. On the prediction of the reach and velocity of catastrophic landslides. RockMechanics,1973,5(4):231-236
    [69]卢万年.用空气动力学分析坡体高速滑动的滑行问题[J].西安地质学院学报,1991,13(4):77-85
    [70]廖小平,徐峻龄,郑静.高速远程滑坡的动力分析和运动模拟[J].中国地质灾害与防治学报,1993,4(2):26-30
    [71]刘忠玉,马崇武,苗天德等.高速滑坡远程预测的块体运动模型[J].岩石力学与工程学报,2000,19(6):742-746
    [72]胡广韬.滑坡动力学[M].北京:地质出版社,1995.
    [73]张明,殷跃平,吴树仁等.高速远程滑坡-碎屑流运动机理研究发展现状与展望[J].工程地质学报,2010,18(6):805-817
    [74]潘家铮.建筑物的抗滑稳定与滑坡分析[M].北京:水利出版社,1980.
    [75]胡广韬,毛彦龙,杨建宏.论基岩滑坡的临床聚能与启程弹冲[J].西安地质学院学报,1992,14(4):50-57
    [76]王家鼎,肖树芳,张倬元.灌溉诱发高速黄土滑坡的运动机理[J].工程地质学报,2001,9(3):241-246
    [77]邢爱国,殷跃平.云南头寨滑坡全程流体动力学机理分析[J].同济大学学报(自然科学版),2009,37(4):481-485
    [78]李保雄,王得楷.黄土滑坡空间预报的一种新理论[J].甘肃科学学报,1998,10(3):57-58
    [79]王念秦,张倬元,王家鼎.一种典型黄土滑坡的滑距预测方法[J].西北大学学报(自然科学版),2003,33(1):111-114
    [80]黄润秋.灾害性崩滑地质过程的全过程模拟[J].中国地质灾害与防治学报,1994,5(增):11-17
    [81]邓辉,黄润秋.岩口滑坡的发育特征及运动过程研究[J].成都理工学院学报,1999,26(3):283-286
    [82]程谦恭,胡厚田.剧冲式高速岩质滑坡全过程运动学数值模拟[J].西南交通大学学报,2000,35(1):18-22
    [83]殷坤龙,姜清辉,汪洋.新滩滑坡运动全过程的非连续变形分析与仿真模拟[J].岩石力学与工程学报,2002,21(7):959-962
    [84]刘高,邓建丽,梁昌玉.有限体积法在滑坡滑动过程模拟中的应用[J].地球科学进展,2007,22(11):1129-1133
    [85]邢爱国,高广运,吴世明.高速滑坡飞行气动特性的风洞试验研究[J].同济大学学报(自然科学版),2002,30(5):633-638
    [86]刘涌江,胡厚田,白志勇.大型高速滑坡体运动的空气动力学试验研究[J].岩石力学与工程学报,2003,22(5):784-789
    [87] Sassa K.. Geotechnical model for the motion of landslides [C]. In Proc.5th international Symposiumlandslides.1988:37-56
    [88] Hutchinson J. N., Bhandari R. K.. Undrained loading, a fundamental mechanism of mudslide andother mass movements [J].Geotechnique,1971,21(4):353-358
    [89](日)胁森宽.王念秦(译).滑坡滑距的地貌预测[J].铁路地质与路基,1989,(3):42-47
    [90] Li T.. A mathematical model for predicting the extent of a major rockfall [J]. Zeitschrift furGeomorphologie,1983,27(Heft4):473-482
    [91] Okuda S.. Features of debris deposits of large slope failures investigated from historical records [J].Annuals of DPRI, Kyoto Univ,1984,27B-1:353-368(in Japanese)
    [92]王思敬,王效宁.大型高速滑坡的能量分析及其灾害预测.1987年全国滑坡学术讨论会滑坡论文选集[C].成都:四川科学技术出版社,1989,117-124
    [93]方玉树.大型高速滑坡运程预测研究.自然边坡稳定性分析暨华蓥山边坡变形研讨会论文集[C].北京:地质出版社,1993,92-102
    [94] Hsmu K.. Catastrophic debris stream generated by rockfalls [J]. Bull. of Geological Society ofAmerican,1975,86:129-140
    [95]刘公社,巫志辉.往返荷载作用下饱和黄土的孔压演化规律及其在地基动力分析中的应用[A].全国土工建筑物及地基抗震学术会议,海口,1992.
    [96]佘跃心,刘汉龙,高玉峰.饱和黄土孔压增长模式与液化机理的试验研究[J].岩土力学,2002,23(4):395-399
    [97]王永焱,林在贯.中国黄土的结构特征及物理力学性质[M].北京:科学出版社,1990.
    [98]李广信.高等土力学[M].北京:清华大学出版社:2004,207-209
    [99] Taylor D. W.. Fundamentals of soil mechanics [M]. New York: John Wiley&Sons, Inc,1948
    [100]李云峰.黄土渗透性与空隙性关系的研究[M].北京:地质出版社,1994.
    [101]顾正维,孙炳楠,董邑宁.粘土的原状土、重塑土和固化土渗透性试验研究[J].岩石力学与工程学报,2003,22(3):505-508
    [102]王铁行,卢靖,张建锋.考虑干密度影响的人工压实非饱和黄土渗透系数的试验研究[J].岩石力学与工程学报,2006,25(11):2364-2368
    [103]杨博,张虎元,赵天宇等.改性黄土渗透性与孔隙结构的依存关系[J].水文地质工程地质,2011,38(6):96-101
    [104]董邑宁.饱和粘土渗透特性的试验研究[J].青海大学学报,1999,17(1):6-9
    [105]王辉,岳祖润,叶朝良.原状黄土及重塑黄土渗透特性的试验研究[J].石家庄铁道学院学报,2009,22(2):20-22
    [106] Zhen Z. L., Takeshi K., Toru I.. Hydraulic Conductivity of Kaolin Permeated with Salt Solution [J].Geotechnical Special Publication,2011
    [107] Clément L., Jacques L.. Mercury intrusion and permeability of Louiseville clay [J]. CanadianGeotechnical Journal,1990(27):761-773
    [108]孔令荣.不同固结压力软粘土的孔隙分布与渗透系数研究[J].地下空间与工程学报,2011,7(增2):1664-1667
    [109]苗明臣.固结对填土地基渗透系数影响的试验研究[J].辽宁科技学院学报,2011,13:40-42
    [110]陈能远,孟庆山,胡晓兰.滨海相软土固结-渗透联合测定试验研究[J].工程勘察,2011,(12):6-10
    [111] Mark R. K., Newmam E. B.. Rainfall totals before and during the storm: distribution and correlationwith damaging lamdslides [A]. Ellen S. E.. Wieczored G. F.. Landslides, floods and marine effectsof the storm of January3-5,1982, in the San Francisco Bay Region [C]. California: US GeologicalSurvey Professional Paper1434,1989,12-26
    [112] Fausto C., Mauro C., Paola R., et al. Landslides triggered by the23November2000rainfall event inthe Imperia Province [J], Western Liguria, Italy, Engineering Geology,2004,73:229-245
    [113] Maurizio P., Francesco S.. The role of rainfall in the Landslide hazard: the case of the Aviglianourban area (Southern Apennines, Italy)[J]. Engineering Geology,1999,53:297-309
    [114] Pearce A. J. Stream flow generation processes: an Austral view [J].Water Resources Research,1990,26(12):3037-3047
    [115] Lam L., Fredlund D. G.. Transient seepage model for saturated-unsaturated soil systems: ageotechnical engineering approach [J]. Canadian Geotechnical Journal,1987,(24):565-580
    [116]李兆平,张弥.考虑降雨入渗影响的非饱和土边坡瞬态安全系数研究[J].土木工程学报,2001,34(5):57-61
    [117]王志荣,吴玮江,周自强.甘肃黄土台塬区农业过量灌溉引起的滑坡灾害[J].中国地质灾害与防治学报,2004,15(3):43-54
    [118]金艳丽.地下水位上升造成的黄土远程滑坡形成机理及数值模拟研究[D].中国科学院地质与地球物理研究所,2007
    [119]岳乐平,雷祥义,屈红军.靖远黄土剖面磁性地层的初步研究[J].第四纪研究,1991,11(4):349-353
    [120]科迪.降雨强度标准划分[J].北京水利,1995,(4):49
    [121] Bishop A. W., Aplan I., Blight G. E., et al. Factors controlling the shear strength of partly saturatedcohesive soil [A]. ASCE Research Conference on Shear Strength of Cohesive Soils [C]. Boulder:University of Colorado,1960.503-532
    [122] Fredlund D. G., Morgenstern N. R., Widger R. A.. The shear strength of unsaturated soils [J].Canadian Geotechnical Journal,1978,15:313-321
    [123]洪勇,孙涛,栾茂田等.土工环剪仪的开发及其应用研究现状[J].岩土力学,2009,30(3):628-634
    [124] Sassa K., Fukuoka H., Wang G. H.. Undrained dynamic-loading ring-shear apparatus and itsapplication to landslide dynamics [J]. Landslides,2004,1(1):7-19
    [125]湛壮丽.新型土工试验仪器-环状剪力仪[J].中国铁道,1982,10:26-28
    [126] Skempton A. W.. Residual strength of clays in landslides, folded strata and the laboratory [J].Geotechnique,1985,35(1):3-18
    [127] Skempton A. W.. First-time slides in over-consolidated clays [J]. Geotechnique,1970,20(3):320-324
    [128] Kamai T.. Monitoring the process of ground failure in repeated landslides and associated stabilityassessments [J]. Engineering geology,1998,50(1):71-84
    [129] Agung W. M., Sassa K., Fukuoka H., et al. Evolution of shear-zone structure in undrained ring-sheartests [J]. Landslides,2004,1(1):101-112
    [130] Gibo S., Egashira K., Ohtsubo M.. Residual strength of smectite-dominated soils from theKamenose landslide in Japan [J]. Canadian Geotechnical Journal,1987,24(3):456-462
    [131] Stark T. D., Eid H. T.. Drained residual strength of cohesive soils [J]. Journal of GeotechnicalEngineering, ASCE,1994,120(5):856-871
    [132] Di M. C., Fenelli G. B.. Residual strength of kaolin and bentonite: The influence of their constituentpore fluid [J]. Geotechnique,1994,44(2):217-226
    [133] Lupini J. F., Skinner A. E., Vaughan P. R.. Drained residual strength of cohesive soils [J].Geotechnique,1981,31(2):181-213
    [134] Gatta L.. Report of Residual strength of clays and clay-shales by rotation shear tests [C]//HarvardSoil Mechanics Series, No.86. Cambridge, Massachusetts: Harvard University,1970
    [135] Garga V. K. Residual shear strength under large strains and the effect of sample size on theconsolidation of fissured clay [D]. London: University of London,1970
    [136] Townsend F. C, Gilbert P. A.. Tests to measure residual strengths of some clay shales [J].Geotechnique,1973,23(2):267-271
    [137] Lupini J. F., Skinner A. E., Vaughan P. R.. The drained residual strength of cohesive soils [J].Geotechnique,1981,31(2):181-213.
    [138] Tika T. E., Vaughan P. R., Lemos L. J.. Fast shearing of pre-existing shear zone in soil [J].Geotechnique,1996,46(2):197-233
    [139]戴福初,王思敬,李焯芬.香港大屿山残坡积土的残余强度试验研究[J].工程地质学报,1998,(3):223-229
    [140] Chandler R. J.. Recent European experience of landslides in overconsolidated clays and soft rocks[C]//Proc.4th lnt. Symp Landslides. Toronto,1984:61-81
    [141] Lambe T. W.. Amuay landslides [C]//Proc.11th lnt. Conf. SMFE. San Francisco: Golden Jubileevolume,1985:137-158
    [142] Lupini J. F., et al. The drained residual strength of cohesive soils [J]. Geotechnique,1981,31(2):181-213
    [143] Skempton A. W.. Long-term stability of clay slopes [J]. Geotechnique,1964,14(2):77-102
    [144] Voight B.. Correlation between Atterberg plasticity limits and residual shear strength of natural soils[J]. Geotechnique,1973,23(2):265-267
    [145] Collotta T., Cantoni R., Pavesi U., et al. A correlation between residual friction angle, gradation andthe index properties of cohesive soils [J]. Geotechnique,1989,39(2):343-346
    [146]李妥德.滑坡滑带土抗剪强度的确定方法[J].山地学报,1984,1:27-32
    [147] Wang G. H., Sassa K.. Post-failure mobility of saturated sands in undrained load-controlled ringshear tests [J]. Canadian Geotechnical Journal,2002,39:821-837
    [148] Okada Y., Sassa K., Fukuoka H.. Excess pore pressure and grain crushing of sands by means ofundrained and naturally drained ring-shear tests [J]. Engineering Geology,2004,75(4):325-343
    [149] Wang F. W. An experimental study on grain crushing and excess pore pressure generation duringshearing of sandy soils—A key factor for rapid landslide motion [D]. Japan: Kyoto University,1998
    [150] Swan R. H., Bonaparte R., Bachus R. C., et al. Effect of soil compaction conditions ongeomembrane-soil interface strength [J]. Geotextiles and Geomembranes,1991,10:523-529
    [151] Stark T. D., Poeppel A. R.. Landfill liner interface strengths from torsional-ring-shear tests [J].Journal of Geotechnical Engineering, ASCE,1994,120(3):597-615
    [152] Tan S. A., Chew S. H., Wong W. K.. Sand-geotextile interface shear strength by torsional ring sheartests [J]. Geotextiles and Geomembranes,1998,16:161-174
    [153] Eid H. T., Stark T. D.. Shear behavior of an unreinforced geosynthetic clay liner [J]. GeosyntheticsInternational,1997,4(6):645-659
    [154] Hillman R. P., Stark T. D.. Shear strength charac-teristics of PVC geomembrane-geosyntheticinterfaces [J]. Geosynthetics International,2001,8(2):1-127
    [155] Stark T. D., Williamson T. A., Eid H. T.. HDPE geomembrane/geotextile interface shear strength [J].Journal of Geotechnical Engineering, ASCE,1996,122(3):197-203
    [156] Bishop A. W., Green G. E., Garga V. K., et al. A new ring shear apparatus and its application to themeasurement of residual strength [J]. Geotechnique,1971,21(4):273-328

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700