用户名: 密码: 验证码:
基于统一强度理论的土体应变局部化预测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土体剪切带的形成机理与应变局部化理论是当今国际力学界和岩土工程界广泛研究的课题,应变局部化分叉理论预测为揭示岩土材料的破坏机理提供了有力依据。统一强度理论具有统一的力学模型、统一的理论和统一的数学表达式,可以有规律地变化以适用于各类工程材料,形成了一系列有序的破坏准则,可广泛适用于各种工程领域。但统一强度理论在剪切带形成机理以及非共轴本构模型和应变局部化分叉判别等方面还缺乏深入细致的系统应用研究,而且以往应变局部化没有考虑三维应力空间下混合硬化模型的影响。本文将混合硬化模型和统一强度理论用于应变局部化应力应变关系,应变局部化分叉点位置和剪切带倾角等预测研究。主要研究内容与结论如下:
     (1)建立了以压应力为正的统一强度理论公式,进而推导了新的加载函数和相应的塑性势函数及本构方程,并结合修正Euler积分方法编制了率型本构方程的积分程序对粘性土平面应变试验和密砂真三轴试验进行了模拟和验证,得出:当参数b取合适值时,预测值比已有文献结果更接近试验结果。对于所选的粘性土材料和密砂材料,可分别选用参数b=1和b=0.9所对应的强度理论进行应力应变关系预测。
     (2)在三维非共轴应力空间内,考虑第三应力不变量对塑性变形非共轴性的影响,基于非共轴混合硬化法则,建立了更加符合土体实际受力性状的非共轴本构新模型、变形局部化分叉点判别准则和剪切带倾角公式,并对所得结果进行退化必要性验证;同时,结合修正Euler积分的基本步骤进行模拟,与已有成果和试验数据进行比较,验证了所得分叉点判别准则的初步合理性。
     (3)建立了基于统一强度理论和混合硬化法则的新的加载函数、塑性势函数、统一非共轴本构模型、应变局部化分叉点判别准则和剪切带倾角公式,并对粘性土平面应变试验和密砂真三轴试验进行了模拟和试验验证,得出:非共轴项的引入并不改变土体应力应变关系特性;对于所选的粘性土材料和密砂材料,可分别选用参数b=1和b=0.9所对应的强度理论来分析预测应变局部化分叉点和剪切带倾角。
The formation of shear band and the theory of progressive failure of soils are key topicsfocused greatly both in solid mechanics and geomechanics around the world. Softeningproperties of soil is the structurally reflection of localized deformation. Strain localizationbifurcation theory predicts to reveal the failure mechanism of rock and soil materials providedstrong basis. The unified strength theory which has be widely used in various engineeringfields has a unified mechanical model, a unified theory and a unified mathematical expression,that can be applicable to more than one kind of material and establishing the relationshipamong different theories. But unified strength theory that has be used in the shear bandformation mechanism, non-coaxiality constitutive model and strain localization bifurcationdiscriminant is still lack of intensive study, and have not considered the effects of mixedhardening model in three-dimensional stress space when in the study of strain localization inthe past. In this paper, the unified strength theory and the mixed hardening model are used tostudy the stress strain relationship and bifurcation point position of strain localization, and theangle of shear band. The main contents in this dissertation can be summarized as follows:
     (1) We deduce the unified strength theory when compressive stress is positive, the yieldfunction, the plastic potential function and the constitutive equation. Based on the revisedEuler integral, the constitutive equation of rate type integral program to simulate and verifydense sand true triaxial test and the clay plane strain tests was prepared, we obtain that when bis right value, the predicted results is closer to the experimental results than the existingliterature. For the dense sand and the clay, we can choose the strength theory when b=1andb=0.9to predict the relations of stress and strain.
     (2) In three-dimensional stress space, considering the effect of the third stress invarianton the non-coaxality of plastic deformation, based on the non-coaxial mixed hardening modeland non-coaxial elastoplastic constitutive model, the criterion of deformation localizationbifurcation in the true triaxial state and the shear band angle were deduced, then verify theresults by degradation. At the same time, combining with the basic steps of the revised Euler integral to simulate and comparing with existing results and test data, we verified thepreliminary rationality of the obtained bifurcation point criterion.
     (3) Based on the unified strength theory and the mixed hardening rule, the new loadingfunction, the plastic potential function, non-coaxiality constitutive model, strain localizationbifurcation point criterion and the angle of shear band were established, then the dense sandtrue triaxial test and the clay plane strain tests were simulated and verified. We concluded thatthe introduction of non-coaxiality does not change the stress-strain relationship of soilproperties, For the dense sand and the clay, we can choose the strength theory when b=1andb=0.9to predict the bifurcation point and the angle of shear band.
引文
[1]沈珠江.土体渐进性破坏问题研究的进展[J].河海大学学报,1999,27:1-4
    [2]赵锡宏,孙红,罗冠威.损伤土力学(Damage Soil Mechanics)[M].中英文版.上海:同济大学出版社,2000
    [3] Terzaghi K. Stability of slopes of natural clay[C]//Proceedings of the1st International Conference ofSoil Mechanics and Foundations.1936:161-165
    [4]李宏儒,胡再强,冯飞,等.结构性土局部化剪切带的有限元数值模拟[A].第十二次全国岩石力学与工程学术大会会议论文摘要集[C].2012
    [5] Vardoulakis I, Goldscheider M, Gudehus G. Formation of shear bands in sand bodies as a bifurcationproblem[J]. International Journal for numerical and analytical methods in Geomechanics,1978,2(2):99-128
    [6] Vardoulakis I. Shear band inclination and shear modulus of sand in biaxial tests[J]. International Journalfor Numerical and Analytical Methods in Geomechanics,1980,4(2):103-119
    [7] Desrues J, Chambon R, Mokni M, et al. Void ratio evolution inside shear bands in triaxial sandspecimens studied by computed tomography[J]. Géotechnique,1996,46(3):529-546
    [8]蒋明镜,沈珠江.结构性粘土剪切带的微观分析[J].岩土工程学报,1998,20(2):102-107
    [9]蒋明镜,彭立才,朱合华,等.珠海海积软土剪切带微观结构试验研究[J].岩土力学,2010,31(7):2017-2023
    [10] Hettler A, Vardoulakis I. Behaviour of dry sand tested in a large triaxial apparatus[J]. Geotechnique,1984,34(2):183-197
    [11] Vardoulakis I, Graf B. Calibration of constitutive models for granular materials using data from biaxialexperiments[J]. Géotechnique,1985,35(3):299-317
    [12] Vardoulakis I. Theoretical and experimental bounds for shear-band bifurcation strain in biaxial tests ondry sand[J]. Res mechanica,1988,23(2-3):239-259
    [13] Vermeer PA. The orientation of shear bands in biaxial tests[J]. Geotechnique,1990,40(2):223-236
    [14] Drescher A, Gr we B, Hahn B, et al. The argus electron-photon calorimeter III. Electron-hadronseparation[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators,Spectrometers, Detectors andAssociated Equipment,1985,237(3):464-474
    [15] Han C, Vardoulakis I G. Plane-strain compression experiments on water-saturated fine-grained sand[J].Geotechnique,1991,41(1):49-78
    [16] Han C, Drescher A. Shear bands in biaxial tests on dry coarse sand[J]. Soils Found,1993,33(1):118-132
    [17]董建国,袁聚云.局部变形及基坑围护理论的探讨[J].地下空间与工程学报,2005,1(4):522-525
    [18]张启辉,李蓓,赵锡宏,等.上海粘性土剪切带形成的平面应变试验研究[J].大坝观测与土工测试,2000,24(5):40-43
    [19] Arthur J R F, Dunstan T, Al-Ani Q, et al. Plastic deformation and failure in granular media[J].Geotechnique,1977,27(1):53-74
    [20] Wang Q, Lade P V. Shear banding in true triaxial tests and its effect on failure in sand[J]. Journal ofEngineering Mechanics,2001,127(8):754-761
    [21] Lade P V, Wang Q. Analysis of shear banding in true triaxial tests on sand[J]. Journal of engineeringmechanics,2001,127(8):762-768
    [22] Bardet J P. A comprehensive review of strain localization in elastoplastic soils[J]. Computers andGeotechnics,1990,10(3):163-188
    [23] Rudnicki J W, Rice J R. Conditions for the localization of deformation in pressure-sensitive dilatantmaterials[J]. Journal of the Mechanics and Physics of Solids,1975,23(6):371-394
    [24] Chikayoshi Yatomi, Atsushi Yashima, Atsushi Iizuka, et al. General Theory of Shear Bands Formationby a Non-coaxial Cam-Clay Model[J]. Soils and Foundations,1989,29(3):41-53
    [25] Papamichos E, Vardoulakis I. Shear band formation in sand according to non-coaxial plasticitymodel[J]. Geotechnique,1995,45(4):649-661
    [26]赵锡宏,张启辉.土的剪切带试验与数值分析[M].机械工业出版社,2003
    [27]钱建固,黄茂松.土体变形分叉的非共轴理论[J].岩土工程学报,2004,26(6):777-781
    [28]钱建固,黄茂松,杨峻.真三维应力状态下土体应变局部化的非共轴理论[J].岩土工程学报,2006,28(4):510-515
    [29] QIAN J G, HUANG M S, YAN J. Non-coaxial plastic flow theory based on3D stress space[C]//Recent Developments of Geotechnical Engineering in Soft Ground. Shanghai: Tongji Univ Press,2005:189-195
    [30]钱建固,黄茂松.复杂应力状态下岩土体的非共轴塑性流动理论[J].岩石力学与工程学报,2006,25(6):1259-1264
    [31]钱建固,黄茂松.土体塑性各向异性的微宏观机理分析[J]. Rock and Soil Mechanics,2011,32(增2):88-94
    [32] Miihlhaus H B, Vardoulakis I. The thickness of shear bands in granular materials[J]. Geotechnique,1987,37(3):271-283
    [33] Bazant Z P, Pijaudier-Cabot G. Nonlocal continuum damage localization instability andconvergence[J]. Journal ofApplied Mechanics,1988,55(2):287-293
    [34] Schanz T. A constitutive model for cemented sands[J]. Localisation and Bifurcation Theory for Soilsand Rocks, Balkema, Rotterdam,1998:165-172
    [35] De Borst R, Mühlhaus H B. Gradient-dependent plasticity: Formulation and algorithmic aspects[J].International Journal for Numerical Methods in Engineering,1992,35(3):521-539
    [36] Zbib H M, Aifantis E C. On the localization and postlocalization behavior of plastic deformation. I:On the initiation of shear bands[J]. Res Mechanica,1988,23(2-3):261-277
    [37]陈少华,冯彪.单轴拉伸下剪切带的应变梯度理论预测[J].塑性力学新进展——2011年全国塑性力学会议,2011
    [38] De Borst R. Bifurcations in finite element models with a non-associated flow law[J]. Internationaljournal for numerical and analytical methods in geomechanics,1988,12(1):99-116
    [39] Yatomi C, Yashima A, Izuka A, et al. Shear bands formation numerically simulated by a non-coaxialcam-clay model[J]. Soils and foundations,1989,29(4):1-13
    [40] Iwashita K, Oda M. Rolling resistance at contacts in simulation of shear band development by DEM[J].Journal of engineering mechanics,1998,124(3):285-292
    [41] Pitman E B. A Godunov method for localization in elastoplastic granular flow[J]. International journalfor numerical and analytical methods in geomechanics,1993,17(6):385-400
    [42]郑颖人,沈珠江,龚晓南.岩土塑性力学原理[M].中国建筑工业出版社,2002
    [43] Hansiorg Kielhofer. Bifurcation theory—An introduction with applications to partial differentialequations[M]. New York: Springer,2010
    [44] Vardoulakis I I. Constitutive properties of dry sand observable in the triaxial test[J]. Acta Mechanica,1981,38(3-4):219-239
    [45] Yamamoto H. Conditions for shear localization in the ductile fracture of void-containing materials[J].International Journal of Fracture,1978,14(4):347-365
    [46]强跃,赵明阶,林军志,等.基于分叉理论的岩体局部化现象研究[J].岩土力学,2013,34(7):2099-2104
    [47]甄文战,孙德安,陈瑶瑶.三维应力状态下砂的临界状态本构模型分叉分析[J].岩土力学,2011,32(9):2663-2668
    [48]甄文战,孙德安.砂的临界状态本构模型局部化分叉分析[J].水利学报,2011,42(5):588-593
    [49]陈立文,孙德安.不同应力路径下水土耦合超固结黏土分叉分析[J].岩土力学,2011,32(10):2922-2928
    [50] Drucker D C, Greenberg H J, Prager W. The safety factor of an elastic-plastic body in plane strain[M].Division ofApplied Mathematics, Brown University,1950
    [51] Hill R. A general theory of uniqueness and stability in elastic-plastic solids[J]. Journal of theMechanics and Physics of Solids,1958,6(3):236-249
    [52] Valanis K C. Banding and stability in plastic materials[J].Acta mechanica,1989,79(1-2):113-141
    [53] Hill R. Acceleration waves in solids[J]. Journal of the Mechanics and Physics of Solids,1962,10(1):1-16
    [54] Mandel M. Deoxyribonucleic acid base composition in the genus Pseudomonas[J]. Journal of generalmicrobiology,1966,43(2):273-292
    [55] Rice J R. The localization of plastic deformation[C]//Proc14th International Conference onTheoretical and Applied Mechanics,1976:207-220
    [56] Rice J R, Rudnicki J W. A note on some features of the theory of localization of deformation[J].International Journal of solids and structures,1980,16(7):597-605
    [57] Matsuoka H, Nakai T. Stress-deformation and strength characteristics of soil under three differentprincipal stresses[C]//Proc. JSCE.1974,232:59-70
    [58] Ottosen N S, Runesson K. Properties of discontinuous bifurcation solutions in elasto-plasticity[J].International Journal of Solids and Structures,1991,27(4):401-421
    [59]张东明.岩石变形局部化及失稳破坏的理论与实验研究[D].重庆:重庆大学,2004
    [60]刘金龙.岩土应变局部化的有限单元理论与应用[D].武汉大学,2005
    [61]甄文战.岩土材料变形局部化问题理论及数值分析研究[D].上海大学,2010
    [62]王学滨.应变软化材料变形、破坏、稳定性的理论及数值分析[D].阜新:辽宁工程技术大学,2006
    [63]俞茂宏.岩土类材料的统一强度理论及其应用[J].岩土工程学报,1994,16(2):1-10
    [64]俞茂宏, Oda Y,盛谦,等.统一强度理论的发展及其在土木水利等工程中的应用和经济意义[J].建筑科学与工程学报,2005,22(1):24-41
    [65]俞茂宏.双剪理论及其应用[M].北京:科学出版社,1998
    [66] Reed M B. Stresses and displacements around a cylindrical cavity in soft rock[J]. IMA Journal ofApplied Mathematics,1986,36(3):223-245
    [67] Lee Y K, Ghosh J. The significance of J3to the prediction of shear bands[J]. International Journal ofPlasticity,1996,12(9):1179-1197
    [68]俞茂宏,刘奉银,胡小荣,等. Mohr-Coulomb强度理论与岩土力学基础理论研究[J].岩石力学与工程学报,2001,20(增1):841-845
    [69]俞茂宏,昝月稳,范文.20世纪岩石强度理论的发展[J].岩石力学与工程学报,2000,19(5):545-550
    [70] Nayak G C, Zienkiewicz O C. A convenient form of invanants and its application in plasticity[J].J.Engrg. Mesh.ASCE,1972,98(4):949-954
    [71] Zienkiewicz O C, Pande G N. Some useful forms of isotropic yield surfaces for soil and rockmechanics[J]. Finite elements in geomechanics,1977:179-198
    [72]吕玺琳.岩土材料应变局部化理论预测及数值模拟(博士学位论文)[D].上海:同济大学,2008
    [73] Yang Y, Yu H S. Numerical simulations of simple shear with non-coaxial soil models[J]. InternationalJournal for Numerical and Analytical Methods in Geomechanics,2006,30(1):1-19
    [74] Yang Y, Yu H S. Numerical aspects of non-coaxial model implementations[J]. Computers andGeotechnics,2010,37(1):93-102
    [75]罗强,王忠涛,栾茂田,等.非共轴本构模型在地基承载力数值计算中若干影响因素的探讨[J].Rock and Soil Mechanics,2011
    [76] Abbo A J. Finite element algorithms for elastoplasticity and consolidation[M]. Australia: University ofNewcastle,1997
    [77] Yang Y, Yu H S. Numerical aspects of non-coaxial model implementations[J]. Computers andGeotechnics,2010,37(1):93-102
    [78] Sloan S W. Substepping schemes for the numerical integration of elastoplastic stress–strain relations[J].International journal for numerical methods in engineering,1987,24(5):893-911
    [79]杨蕴明,柴华友,韦昌富.非共轴本构模型的数值计算问题[J]. Rock and Soil Mechanics,2010,31(增2):373-377
    [80]姚仰平,侯伟,罗汀.土的统一硬化模型[J].岩石力学与工程学报,2009,28(10):2135-2151
    [81]姚仰平,侯伟,罗汀,等.统一硬化模型[J].第一届全国岩土本构理论研讨会论文集,2008
    [82]罗汀,姚仰平.岩土材料应力路径无关硬化参量的构成方法[J].岩土力学,2007,28(1):69-76
    [83] Yu M H, Yang S Y, Fan S C, et al. Unified elasto-plastic associated and non-associated constitutivemodel and its engineering applications[J]. Computers&structures,1999,71(6):627-636
    [84]宋丽,廖红建,韩剑.软岩三维非线性统一弹粘塑性本构模型有限元分析[J].应用力学学报,2009,26(1):109-114
    [85]潘晓明,孔娟,杨钊,等.统一弹塑性本构模型在ABAQUS中的开发与应用[J].岩土力学,2010,31(4):1092-1098
    [86]俞茂宏,杨松岩,范寿昌,等.双剪统一弹塑性本构模型及其工程应用[J].岩土工程学报,1997,19(6):2-10
    [87]董建国,李蓓,袁聚云,等.上海浅层褐黄色粉质粘土剪切带形成的试验研究[J].岩土工程学报,2001,23(1):23-27
    [88]周健,池永.土的工程力学性质的颗粒流模拟[J].固体力学学报,2004,25(4):377-382
    [89]吕玺琳,黄茂松,钱建固.基于非共轴本构模型的砂土真三轴试验分叉分析[J].岩土工程学报,2008,30(5):646-651
    [90]赵均海,王敏强,魏雪英.高等有限元[M].武汉理工大学出版社,2004
    [91]Arthur J R F, Chua K S, Dunstan T. Induced anisotropy in sand[J]. Geotechnique,1977,27(1):613-82
    [92] Ishihara K, Towhata I. Sand response to cyclic rotation of principal stress directions as induced bywave loads[J]. Soils and Foundations,1983,23(4):11-26
    [93] Matsuoka H, Sakakibara K. A constitutive model for sands and clays evaluating principal stressrotation[J]. Soils and Foundations,1987,27(4):73-88
    [94] Pradel D, Ishihara K M. Yielding and flow of sand under principalaxes rotation[J]. Soils andFoundations,1990,30(1):87-89
    [95] Gutierrez M, Ishihara K, Towhata I. Flow theory for sand during rotation of principal stressdirection[J]. Soils and Foundations,1991,31(4):121-132
    [96]蔡燕燕,俞缙,余海岁,等.考虑主应力轴旋转的砂土变形特性试验研究[J].岩石力学与工程学报,2013,32(2):417-424
    [97]严佳佳,周建,管林波,等.杭州原状软黏土非共轴特性与其影响因素试验研究[J].岩土工程学报,2013,35(001):96-102
    [98]李蓓,赵锡宏,董建国.上海粘性土剪切带倾角的试验研究[J].岩土力学,2002,23(4):423-427
    [99]董建国,陈祥达,袁聚云.上海黏性土剪切带形成的数值模拟分析[J].第九届全国岩土力学数值分析与解析方法讨论会论文集,2007
    [100]董建国,李蓓.黏性土剪切带的形成与其屈服的内在联系的探索[J].岩土力学,2007,28(5):851-854

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700