用户名: 密码: 验证码:
裂缝油气藏储层预测方法及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当前,伴随我国经济快速发展的同时,石油天然气资源的开发利用也逐渐增多,导致常规油气藏正在逐渐减少,勘探开发的难度也日益增大。这些现实导致了必须将今后油气勘探的方向转向深部储层和非常规油气藏,所以裂缝油气藏已成为当前油气勘探工作的重点领域。
     需要注意的是,裂缝油气藏的岩性岩相横向变化大、储集空间类型和渗流物理特征复杂、裂缝的形状及大小变化大、填充物性质和类型多样、储集空间分布规律不清等诸多因素,都给裂缝油气藏的勘探开发带来了很大的难度,所以裂缝油气藏也成为当前油气勘探工作的难点之一。目前,生产和科研实践表明,如果要利用单一的学科或方法对裂缝进行预测通常是很困难的,所以在这种情况下,需要采用多学科、多方法和多参数对裂缝进行综合预测,减少多解性,提高勘探发开的成功率。
     准噶尔盆地西北缘哈山西地区石炭系火山岩储层具有良好的勘探潜力,但是该区石炭系火山岩裂缝发育特征及地球物理响应特征认识不清,且针对火山岩裂缝预测的识别技术缺乏,因此需要建立适合哈山西地区石炭系火山岩储层的裂缝综合预测技术,建立火山岩裂缝有效的地震识别模式,指出哈山西地区不同构造带的裂缝有利发育区。通过该课题的研究,不但能尽快明确裂缝发育特征,建立火山岩裂缝综合预测技术,还对类似勘探区带具有较大的借鉴和指导意义。
     本论文围绕哈山西地区石炭系火山岩裂缝综合预测,为下一步该地区的勘探部署提供依据,主要开展了以下7个方面的研究:
     (1)对国内外裂缝预测方法的研究现状和发展趋势进行了调研,分析了研究区特点,提出了针对本地区裂缝识别的具体思路和方法。
     (2)收集、整理、分析了各类地质、录井、岩芯、测井及地震资料。通过观察、描述裂缝,对裂缝发育类型和特征进行了总结;从构造、断裂、储层等多个方面,对本区裂缝发育的主控因素进行了分析和归纳;对裂缝段的测井、地震响应特征进行了详细描述,完成了裂缝段测井响应图版和裂缝段地震响应成果图。
     (3)完成了6个不同裂缝参数的地震地质模型的建模及波动方程正演模拟,并对其地震波场特征进行了分析,为本区地震属性分析和敏感性属性提取提供了依据。
     (4)计算并分析了相干、倾角、方位角、曲率、吸收衰减等多种叠后地震属性数据体,并分析了属性过井剖面以及水平切片。在此基础上,基于神经网络算法,利用地震属性对本区石炭系火山岩裂缝发育带进行了预测;此外,在对6口重点探井的测井资料进行特征曲线重构的基础上,采用拟测井曲线稀疏脉冲反演的方法进行了叠后裂缝预测。
     (5)研究了裂隙介质的基本理论(Hudson理论和Thomsen理论),从速度、振幅、衰减等方面对叠前纵波各向异性特征进行了理论分析。
     (6)对本区叠前地震道集进行了叠前保幅处理、偏移距-方位角处理,分方位角叠加、偏移及裂缝发育段的岩石物理模型正演,以及基于应力场分析的构造成因裂缝预测;利用叠前AVAZ和FVAZ特征,对本区进行了综合裂缝预测,得到了裂缝发育方位和密度预测图。
     (7)针对不同地区、不同层系、不同类型裂缝的预测技术展开适用性研究,明确不同技术之间的组合衔接关系,优选出针对不同地区、不同层系的适用方法。在技术适用性研究的基础上,根据地层岩性特征、裂缝规律、构造复杂程度、地震资料质量、钻井多少,优化组合不同裂缝预测技术,建立准西北缘火山岩裂缝的地震有效识别模式,最终指导裂缝储层有利发育区的预测。
     结合上述研究内容,通过对哈山西地区实际资料的研究和分析,本论文形成了以下主要研究成果:
     (1)研究区的裂缝表现为高角度、近平行分布的特征;裂缝走向以北东-南西向为主;裂缝发育密度可以达到50条/米,而半充填-未充填的裂缝占裂缝总数的86%,因此工区裂缝整体具有“高角度、高密度、高有效”的特征,对于该区的油气运移、富集具有积极的作用。同时本区的裂缝主要以高角度剪切裂缝为主,对本区裂缝发育起到主要控制作用的因素为岩性和区域构造位置。
     (2)明确了成像测井和常规测井对裂缝发育的响应规律:①钻井液的侵入会使高导缝在FMI图像上主要表现为深色的正弦曲线;被后期次生作用的高阻矿物所填充的高阻缝在FMI图像上则主要表现为亮色正弦曲线。②常规测井曲线对裂缝发育段的响应特征为:声波时差对裂缝的反映效果与裂缝规模及形态有关,若裂缝为水平缝或网状缝,且裂缝相对发育,则声波时差值会变大,速度会降低;当裂缝开度较大时,声波曲线可能会出现“周波跳跃”的现象:自然伽马曲线一般较低,但可能出现突然增大的现象:井径曲线可能出现扩径现象;密度曲线在裂缝发育段可明显降低;此外,还由于钻井液的侵入,导致电阻率曲线值显著降低,所以其特征为高电阻率的背景上出现相对较低的电阻率值:由于补偿中子测井具有较大的探测深度,所以在裂缝发育段上,显示的孔隙度值较高,若中子孔隙度越大,则表示裂缝相对越发育。
     (3)对裂缝段的地震响应特征分析认为:在叠后地震剖面中裂缝发育段的反射主要以延伸距离较短、具有一定倾斜角度的同相轴为主,横向连续性差:在反射强度剖面上主要表现为反射强度高值呈串珠状、非连续样式:瞬时频率会随深度的增加和油气的填充产生衰减,但在低频趋势下可能出现高频信息,推测与裂缝导致地震波干涉有关。
     (4)从裂隙模型正演和实际地震属性分析两方面来看:①裂缝密度和裂缝速度是影响地震波场特征的首要因素,裂缝密度越大,速度与围岩的差别越大,裂缝响应越明显,总体上是杂乱反射特征,局部呈现短的倾斜同相轴。②裂隙发育区会使得其下伏地层成像不清楚。③地震属性最能反映裂缝密度和裂缝速度的变化,其次是裂缝长度和宽度,很难反映裂缝倾角的变化。对裂缝发育比较敏感的属性包括均方根振幅、平均反射强度和瞬时频率等。④所设计的实际过哈浅6-哈山1井的地震地质模型,其正演结果与实际地震剖面能较好地对应,其裂缝发育带的反射特征与实际地震记录具有较高的相似性。属性分析结果认为相干体、倾角、方位角和曲率等属性也对裂缝发育带较敏感,为实际资料的裂缝预测奠定了依据。
     (5)通过相干及多属性叠合技术能更好地从宏观上检测裂缝的主要发育部位,预测结果认为裂缝发育区带主要位于哈浅6井以南的区域,并且自上而下,裂缝预测发育区域有自北向南逐渐变小的趋势,但是裂缝发育程度是逐渐由弱变强的。
     (6)通过对多条敏感测井曲线的加权拟合重构出了对裂缝段反映更为准确的特征曲线,并以此为基础开展了拟测井稀疏脉冲反演研究,从而实现了对裂缝发育特征的定性-半定量预测。预测的结果显示:裂缝发育区与波阻抗反演剖面中的低值区对应,其吻合关系较好。
     (7)分别从裂隙参数对地震波传播的影响、纵波反射系数的方位各向异性、NMO速度的方位各向异性、单层EDA介质时距曲线特征、正交测线的P波时差、方位变化的Q值估算裂隙走向这6个方面研究裂缝,对叠前方位各向异性特征进行了综合研究。研究表明:①裂隙介质中三类波的速度和衰减与裂隙密度有很大的关系,随着裂隙密度的增大,纵横波速度降低,衰减增大②在EDA介质中,三类波的传播速度和衰减具有明显的方向性,且干裂隙中纵波变化明显,含流体裂隙中横波变化明显;③在近偏移距(小入射角)时,反射系数在不同方位角时差别较小,在大偏移距时差别增大,所以大偏移距信息更能反映各向异性特征。④沿裂缝走向观测时,波的视速度最大,其旅行时最小,取得最大的动校正速度;垂直裂缝走向观测时,波的视速度最小,其旅行时最大,得到最小的动校正速度。⑤测线沿着裂缝对称轴方向或垂直裂缝走向时衰减最大,垂直裂缝对称轴方向或沿着裂缝走向时衰减最小值;入射角越小,衰减随观测夹角的变化越小,入射角为0°(垂直入射)时,衰减小且不同方位观测时无差别。
     (8)运用叠前AVAZ和FVAZ综合裂缝预测技术对哈山西三维区的裂缝发育方向和密度开展半定量-定量研究,预测结果认为:裂缝发育密度以哈山1井—哈山2井—哈浅7井一线为裂缝密度的转折线,该线以南密度明显要高于以北,而研究区以南的区域内裂缝密度并非均匀分布,而是存在一些局部高值区,如哈浅6井、哈浅101井等;裂缝发育方向以北东-南西、北西-南东为主。
     (9)针对研究区不同裂缝特征、不同层系、不同构造区带的地质特征及所具有的资料情况,在不同裂缝预测技术适用性分析的基础上对典型预测模式进行了总结:按照裂缝宏观描述→裂缝定性描述→裂缝半定量—定量描述逐步深入的思路,首先在正演模拟基础上运用叠后多属性技术揭示相对宏观的断裂信息;在此基础上,运用曲线重构反演技术对裂缝发育特征展开更为精确的定性预测,指出不同区域、不同层段裂缝的相对发育程度。最后,通过叠前AVAZ和FVAZ裂缝预测技术指出不同区域、不同层位的裂缝发育密度及方向,实现对裂缝的半定量—定量的预测。
     本论文的主要创新点体现在:
     (1)首次应用多属性预测技术及神经网络的方法对哈山西地区石炭系火山岩裂缝发育带进行了预测,其预测结果与实钻资料吻合较好。在基于地震多属性的预测中,为了更好地减少预测的多解性,首先优选了对裂缝发育敏感的地震属性。本次研究通过波动方程正演模拟(含裂隙介质的层状模型及实际过井模型)和实际地震资料属性交会分析两种手段,确定了能较好反映本区裂缝发育的若干地震属性,为叠后裂缝预测奠定了基础。在此基础上,通过BP神经网络原理,得到了地震属性与裂缝发育密度的非线性关系,最后预测了全区裂缝发育密度的平面分布图,实现了裂缝的半定量预测,预测结果与实钻资料吻合。
     (2)从理论上对地震波方位各向异性特征进行了综合分析,推导了裂隙密度等因素与纵波方位各向异性的关系,为叠前裂缝预测奠定了理论依据。本文中重点论述了由方位角变化的Q值估算裂隙走向和岩石速度比的方法,并推导出利用正交测线的Q值参数计算裂隙方位的计算公式。最后基于叠前P波方位各向异性分析技术进行了哈山西地区裂缝综合预测,得到了裂缝发育方位和密度预测平面图,其结果与实钻资料吻合度较高。
     (3)首次对不同裂缝预测技术优势及适用条件进行了分析,建立了哈山西地区的火山岩裂缝综合预测模式,明确了其技术流程。综合预测结果显示该模式取得了较好的效果,对该地区其他类似勘探区带具有较大的借鉴和指导意义。其预测模式为:按照裂缝宏观描述→裂缝定性描述→裂缝半定量—定量描述逐步深入的思路,首先运用叠后多属性技术揭示相对宏观的断裂信息;在此基础上,运用曲线重构反演技术对裂缝发育特征展开更为精确的定性预测,指出不同区域、不同层段裂缝的相对发育程度。最后,通过叠前裂缝预测技术指出不同区域、不同层位的裂缝发育密度及方向,实现对裂缝的半定量-定量的预测。
With the rapid development of China's economy, the more oil and gas resources are exploited and utilized, the less reservoirs of conventional oil and gas become and the more difficult their exploitation turns. As a result, fractured reservoirs will inevitably become a significant field as the focus of oil and gas exploitation are gradually shifted from shallow exploitation to deep one and from conventional reservoirs to unconventional ones.
     It should be noted that great troubles are encountered in the exploitation and development of fractured reservoirs due to such factors as great lateral variability in lithology and lithofacies, considerable complexity of the types of reservoir space and the physical characteristics of seepage, great changes in the nature, type, shape and size of filling of fractures, and the unclear spatial distribution of reservoirs. So the fractured reservoir has become one of the difficulties in the exploration of oil and gas. Currently, production and research shows that it is very difficult to predict fractures with a single discipline or method. In this case, we need comprehensive prediction of fractures with multi-disciplines, multi-methods and multi-parameters, with the purpose of avoiding multiple solutions and improving the success rate in exploration.
     The Carboniferous volcanic reservoir in the west of Hashan has a good exploration potential, but a poor knowledge of its fracture characteristics and geophysical response characteristics and a lack of recognition technology to predict this type of fractures call for a comprehensive prediction technology, an effective seismic recognition mode and designation of the favorable development zones in the different tectonic fractures in this region. The study of this subject not only helps nail down the fracture characteristics and establish a comprehensive prediction technology of volcanic fractures, but is also of great referring and guiding significance to similar exploration zones.
     In this doctoral dissertation, centering around the prediction of Carboniferous volcanic fractures in the west of Hashan, the paper has carried out its study mainly from the following seven aspects, aiming at furnishing a theoretical basis for further exploration there.
     1. The paper has studied the domestic research status and strike of fracture prediction methods, analyzed the characteristics of the researched regions, and proposed ideas and methods specific for fracture recognition in the west of Hashan.
     2. The paper has collected, collated, and analyzed a variety of geological, well logging, core, and seismic data. Through observation and description of fractures, it has summed up the types and characteristics of fractures; from the perspectives of structure, fault, reservoir and etc., it has analyzed and summarized the controlling factors of fractures in the west of Hashan; it has summarized fracture segments and completed the statistical tables about the logging response of fracture segments and achievement graphs about seismic response of fractures.
     3. The paper has completed the seismic geological modeling of six different fracture parameters and wave equation forward modeling of seismic waves, and analyzed the characteristics of seismic wave fields, which underlie the analysis of seismic attributes and extraction of sensitive attributes.
     4. The paper has calculated and analyzed coherence, dip, azimuth, curvature, attenuation and other data volumes of post-stack seismic attributes, through-well profiles and horizontal slices. And then, based on the neural network algorithm, the paper has predicted the Carboniferous igneous fractured zones in this region according to the seismic attributes; additionally, it has reconstructed characteristic logs of six key wells with their logging data and predicted the post-stack fractures with the method of log restructuring inversion.
     5. The paper has studied the basic theories of fractured media, i.e. Hudson's and Thomsen's theories and make a theoretical analysis of prestack anisotropic characteristics from the aspects of speed, amplitude, attenuation, etc.
     6. The paper has done a lot of study to do with the prestack seismic gathers in the west of Hashan, such as processing of the prestack preserved amplitude, stacking of the sub-azimuth, migration and forward modeling of the fracture segments and fracture prediction of structural causes based on the analysis of stress fields. The paper has also detected anisotropic fractures according to the prestack azimuth AVO and QVO characteristics in this region and finally predicted the orientation and density map of fractures.
     7. The paper has explored the applicability of prediction technologies specific to different regions, different strata and different types of fractures, and then designated the relationship between different combinations of technologies and finally optimized the methods applicable to different regions and different strata. Based on the applicability of technologies, it has proceeded to optimize the combinations of different fracture prediction technologies, establish a valid seismic recognition mode of the igneous fractures in the Northwestern Junggar, according to the lithological characteristics, laws of fractures, structural complexity, the quality of seismic data and the amount of drilling wells, and finally guide the delineation of the favorable development zone in the fractured reservoirs.
     Combining the above research, this paper has mainly proposed the following findings through the research and analysis of data in the western of Hashan.
     1. The fractures in the studied region are high-angled and nearly parallel in distribution; they run mainly from northeast to southwest; they can reach as many as50strips/meter in density with86%being semi-filled and unfilled fractures. Therefore, the fractures mainly generally characterized as high angled, highly dense and highly effective in the work area will play a positive role in the migration and enrichment of oil and gas in this region. Meanwhile, as the fractures here are mainly high-angledly sheared, the factor which played an important role in the development of fractures is their lithology and regional tectonic position.
     2. By analyzing the logging response characteristics of fracture segments, the paper has designated the following laws concerning the responses of FMI and conventional logging to fractures.(a) In the FMI images, the high-conductivity fractures are mainly shown as dark sine waves, which are caused by penetration of drilling fluids; the high-resistance are shown as bright sine waves, which are caused by filling of high-resistance minerals with secondary effects in the later periods.(b) The responses of conventional logging to fractures reflect the following characteristics. Firstly, the responses of sonic movements are closely related to the scale and morphology of fractures. If the fractures are horizontal or netted, and relatively developed, the sonic interval transit time will be enlarged in value and lowered in speed. Secondly, when the fracture openings are comparatively large, the "cycle skip" phenomenon may be noted in the p-sonic logs; natural gamma logs are generally low, but may be abruptly increased; the caliper logs may be expanded in diameter; the density of the developed segments may be significantly reduced; as they may be significantly lowered in value due to penetration of drilling fluids, the resistivity logs are characterized as relatively low-valued in the background high-valued resistivity; additionally, due to the relatively great depth in the compensated neutron logging, the developed segments of volcanic fractures are relatively high-valued in porosity, indicating that the greater the porosities are, the more developed the fractures are.
     3.The seismic responses of the fracture segments are characterized as follows:reflection in the conventional seismic profiles of the developed segments is mainly events which extend over a short distance and tilt to some degrees, but is horizontally discontinuous; the density profiles of reflection are mainly shown as in a beaded and discontinuous pattern in the high-valued section; the instantaneous frequency attenuates fast in the direction of vertical fractures with strong heterogeneity and gas-bearing fractures are more heterogeneous than oil-bearing ones.
     4.The results from the forward modeling of different random fractures and the actual fractured reservoir models demonstrate the following characteristics.(a) The density and rate of fractures are leading factors in influencing the characteristics of the seismic wave field. The denser the fractures are, the greater the difference between speed and surrounding rocks becomes and the more evident the response of fractures is. The response is generally messy and is shown as partially short slant events.(b) The developed zones of fractures will obscure imaging off the underlying strata.(c) Seismic attributes can best reflect the variations of fracture density and speed, and then length and width, but they can't reflect the changes in dip. Sensitive attributes include root mean square amplitude, average reflectance intensity, instantaneous frequency, etc.(d) As for the paper's seismic modeling of the HQ6-HS1well, the results of its forward modeling can well correspond to the actual seismic profiles. The response characteristics of the developed zones are highly similar to those shown by the actual seismic data. The results of attribute analysis demonstrate that those attributes such as coherence, dip, azimuth and curvature are comparatively sensitive to the developed zones, which sets stages for prediction of fractures with the actual data.
     5. The post-stack technology based on coherence and other attributes facilitates qualitative detection of fractures in the main developed zones, which reveals relatively macroscopic information of faults. The final results of the analysis show that the predicted fracture zones are mainly located in the south of the HQ6-HS1well, and that vertically downward, they tend to be smaller from north to south, but the signaled degree of development goes from weakness to strength.
     6. Through weighted fitting of multi sensitive well logs, the paper has reconstructed characteristic logs which can reflect the segments of fractures more accurately, and then carried out the log restructuring inversion, thus succeeding in qualitatively predicting the development characteristics of fractures. The results of the prediction show that the high values of fractures' density logs well correspond to the low values of acoustic impedance inversion profiles.
     7) The paper has studied fractures from six aspects including influences of fracture parameters on the propagation of seismic waves, azimuthal anisotropic reflection coefficients of P-waves, azimuthal anisotropy of NMO speed, characteristics of single EDA media's time-distance curves, P-wave movement of orthogonal survey lines, estimation of fracture strike according to the changes of Q-value with azimuth. Besides, the paper has done comprehensive research into methods of prestack azimuthal anisotropy. The findings of the studies are as follows.(a) The velocity and attenuation of three fractured media's waves have a certain relationship with the fracture density. With the increase of fracture density, S-waves decrease in speech and increase in attenuation.(b) As for EDA media, propagation velocity and attenuation of three waves is evidently oriented; P-waves in dry fractures and the shear waves of fractures containing fluids change significantly.(c) In the near offset (i.e. at small incidence angles), the reflection coefficients change a little at different incidence angles; but in the far offset, they change greatly. Therefore, the data collected in the far offset can better reflect the characteristics of anisotropy.(d) In the observation along the fracture strike, waves are maximum in apparent velocity but minimum in travel time, thus achieving maximum NMO velocity; in the observation perpendicular to the fracture strike, waves are minimum in apparent velocity but maximum in travel time, thus achieving minimum NMO velocity.(e) Along the fractures' symmetry axis or perpendicular to the fracture strike, the survey lines are maximum in attenuation; but perpendicular to the fractures' symmetry axis or along the fracture strike, the survey lines are minimum in attenuation. The smaller the incidence angles are, the least the attenuation changes with the observation angles; at the0°incidence angle (i.e. vertical incidence), the attenuation is small and has no difference at different observation angles.
     8.With the fracture prediction technology based on changes of prestack amplitude with azimuth, the paper has carried out semi-quantitative and quantitative research into the development orientation and density of fractures in the west of Hashan. The results of prediction are as follows. The transition line of fracture density is from HS2well to HQ7well. The density in the south of this line was significantly higher than that in the north; the fracture density in the south of the studied area is not evenly distributed, but with some high-valued parts, such as HQ6 well and HQ101well. The development orientation of fractures is mainly northeast and northeast, between which northeast is dominating.
     9. Based on the applicability analysis of various fracture prediction technologies, the paper has summed up the typical prediction mode applicable to the different strata, different tectonic zones, and different types of fractures in the studied region. On the whole, the paper has gradually deepened his research from the macro description of fractures, to the qualitative one, then to the semi-quantitative one and finally to the quantitative one. Firstly, it has shown relatively macroscopic information of fractures with the post-stack multi-attribute technology; on this basis, with log restructuring inversion, it has made more accurate qualitative prediction of fractures' development characteristics and designated relative development degrees of different regions and segments; finally, with the fracture prediction technology of prestack AVAZ and FVAZ, it has pointed out the development density and direction of fractures in different regions and different layers, thus achieving the semi-quantitative to quantitative predictions.
     The innovations in this dissertation are mainly as follows.
     1. For the first time the paper has applied the multi-attribute predication technology and the neural network approach to the prediction of the development zones of carboniferous fractures in the west of Hashan. The results of the prediction have great coincidence with the drilling data. In the prediction based on seismic multi-attributes, in order to reduce multiple solutions in prediction, it is necessary to preferably select those seismic attributes which are sensitive to the development of fractures. So in this study, the paper has employed two methods—wave equation forward modeling (including the theoretical models of fracture media and the actual through-well models) and the cross plots analysis of the actual seismic data's attributes, thus selecting several seismic attributes which can better reflect the development of fractures and laying a foundation for post-stack prediction of fractures. Based on this, with the BP neural network algorithm, the paper has found out non-linear relationship between the fracture density and seismic attributes. Finally the paper has predicted the planar map of fracture's development density in the whole region, which has achieved good effects.
     2. Theoretically, the paper has made a comprehensive analysis of the characteristics of seismic waves'azimuthal anisotropy and deduced the relationship between the development azimuth and the parameters such as reflection coefficients, attenuation, movements, which has laid a theoretical foundation for the prestack prediction of fractures. In this thesis, it has focused on deriving the estimation of fracture-strike and velocity-ratio according to the changes of Q with azimuth, and formula calculating the azimuth of fractures with the attenuation parameters of orthogonal survey lines. Finally, based on the technology of azimuthal anisotropy, it has made an integrated prediction of fractures in the west of Hashan, and then worked out the plan of fractures development azimuth and density, whose results greatly coincide with actual drilling data.
     3. For the first time the paper has analyzed the advantages and application conditions of different fracture prediction technologies, established the comprehensive prediction mode of volcanic fractures in the west of Hashan, and defined the technical processes of the mode. The results of prediction show that this mode achieved satisfactory effects, and is also of great referring and guiding significance to similar exploration zones. The prediction mode is as follows. On the whole, the paper has gradually deepened his research from the macro description of fractures, to the qualitative one, then to the semi-quantitative one and finally to the quantitative one. Firstly, it has shown relatively macroscopic information of fractures with the post-stack multi-attribute technology; on this basis, with log restructuring inversion, it has made more accurate qualitative prediction of fractures' development characteristics and designated relative development degrees of different regions and segments; finally, with the fracture prediction technology of prestack AVAZ and FVAZ, it has pointed out the development density and direction of fractures in different regions and different layers, thus achieving the semi-quantitative to quantitative predictions.
引文
[1]巫芙蓉,李亚林,王玉雪.储层裂缝发育带的地震综合预测[J].天然气工业,2006,26(11):49-51.
    [2]何巍巍.裂缝性储层预测研究[学位论文].中国地质大学(北京),2010
    [3]G H Murry. Quantitative fracture study, Sanish Pool, Fracture-controlled. AAPG, Bulletin Reprint Series 21,1977
    [4]陈太源,曾锦光.应用构造面主曲率研究油气藏裂缝的方法[A].石油开发论文集[C],北京:石油工业出版社,1980.
    [5]曾锦光.应用构造面主曲率研究油气藏裂缝问题[J].力学学报,1982.
    [6]曾锦光.构造裂缝的理论分析研究[A].中国南方油气勘查新领域探索论文集[C].北京:地质出版社,1988.
    [7]曾锦光,苏雅琴.断层裂缝系统分布的预测方法研究[A].中国南方碳酸盐岩油气勘查研究论文集[C],南京:江苏科技出版社,1994.
    [8]殷有泉.有限单元方法及其在地学中的应用[M].北京:地震出版社,1987.
    [9]宋惠珍,黄立人.地应力场综合研究[M].北京:石油工业出版社,1990.
    [10]尚岳全,黄润秋.工程地质研究中的数值分析方法[M].成都:成都科技大学出版社,1991.
    [11]安欧.构造应力场[M].北京:地震出版社,1992.
    [12]QIN Qirong. Quantitative prediction of fracture distribution in volcanic reservoir in 7th area, Karamay Oilfield[C].15thWorld Petroleum Congress,1997
    [13]秦启荣,黄润秋.构造应力场数值模拟在哈密凹陷四道沟地区T2k储层裂缝预测中的应用[J],山地学报,2000,18(3):117-122.
    [14]周新桂,邓宏文,操成杰等.储层构造裂缝定量预测研究及评价方法[J].地球学报,2003,24(2):175-180
    [15]宋永东,戴俊生.储层构造裂缝预测研究[J].油气地质与采收率,2007,14(6):9-13
    [16]郭迎春,薛峰,汪必峰.储层应力应变与裂缝体积密度定量关系研究-以史南油田史深100块沙三段中亚段为例[J].油气地质与采收率,2010,17(4):87-90
    [17]季宗镇,戴俊生,汪必峰.地应力与构造裂缝参数间的定量关系[J].石油学报,2010,31(1):68-72
    [18]张景和.地应力、裂缝测试技术在石油勘探开发中的应用[M].北京:石油工业出版社,2011:1·130
    [19]张筠.川西坳陷裂缝性储层的裂缝测井评价技术[J].天然气工业,2003,23(增刊):43-47.
    [20]张树东,司马立强,刘萍英等.基于测井新技术解释有效裂缝发育规律[J].西南石油大学学报,2007,29(1):23-25.
    [21]黄继新,彭仕宓,王小军等.成像测井资料在裂缝和地应力研究中的应用[J].石油学报,2006,27(6):65-69
    [22]李佳阳,夏宁,秦启荣.成像测井评价致密碎屑岩储层的裂缝与含气性[J].测井技术,2007,31(1):17-20
    [23]冯翠菊,闫伟林.利用常规测井资料识别变质岩储层裂缝的方法探讨[J].国外测井技术,2008,23(2):14-16
    [24]绪磊,齐井顺,罗明高等.测井多参数综合识别火山岩裂缝[J].天然气勘探与开发,2009,32(1):21-24
    [25]邓模,瞿国英,蔡忠贤.常规测井方法识别碳酸盐岩储层裂缝[J].地质学刊,2009,33(1):75-78
    [26]李宁,乔德新,李庆峰等.火山岩测井解释理论与应用[J].石油勘探与开发,2009,36(6):683-692
    [27]王建国,何顺利,刘红岐.火山岩储层裂缝的测井识别方法研究[J].西南石油大学学报(自然科学版),2008,30(6):27-30
    [28]汤小燕,刘之的,王兴元.基于多测井参数的火山岩裂缝识别方法研究[J].测井技术,2009,33(4):368-370
    [29]张福明,陈义国,邵才瑞,等.基于双侧向测井的裂缝开度估算模型比较及改进[J].测井技术,2010,34(4):339-342
    [30]赵军龙,巩泽文,李甘,等.碳酸盐岩裂缝性储层测井识别及评价技术综述与展望[J].地球物理学进展,2012,27(2):537-547
    [31]刘传虎.相干分析技术在裂缝油气藏预测中的应用[J].石油地球物理勘探,2001,36(2):238-244
    [32]苏朝光,刘传虎,王军,等.相干分析技术在泥岩裂缝油气藏预测中的应用[J].石汕物探,2002,41(2):197-201
    [33]张军华,王月英,赵勇.C3相干体在断层和裂缝识别中的应用[J].地震学报,2004,26(5):560-564
    [34]万学鹏,欧瑾,于兴河.利用相干体技术研究碳酸盐岩裂缝特征[J].断块油气田,2007,14(3):43-45
    [35]王从镔,龚洪林,许多年.高分辨率相干体分析技术及其应用[J].地球物理学进展,2008,23(5):1575-1578
    [36]胡伟光.相干体技术在川东北油气勘探中的应用[J].物探与化探计算技术,2010,32(3):260-264
    [37]李雪峰.基于方向加权的相干属性分析及在裂缝检测中的应用研究[学位论文].成都理工大学,2011
    [38]陈波,孙德胜,朱筱敏,等.利用地震数据分频相干技术检测火山岩裂缝[J].石油地球物理勘探,2011,46(4):610-613
    [39]倪根生,何建军,李琼.利用小波相干技术检测致密储层裂缝发育带[J].物探与化探计算技术,2011,33(2):111-114
    [40]王霞,汪关妹,刘东琴等.地震体属性分析技术及应用[J].石油地球物理勘探,2012,47(增刊1):45-49
    [41]G H Murry. Quantitative fracture study, Sanish Pool, Mckenzie County, North Dakota AAPG, 1968,52(1):57-59
    [42]张凤莲,曹国银,李玉清.地震属性分析技术在松辽北徐东地区火山岩裂缝中的应用[J].大庆石油学院学报,2007,31(2):12-14
    [43]刘晓梅,孙勤华,刘建新.利用地震属性、多元统计分析理论和ANFIS预测碳酸盐岩储层裂缝孔隙度[J].测井技术,2009,33(3):257-260
    [44]王雷,陈海清,陈国文等.应用曲率属性预测裂缝发育带及其产状[J].石油地球物理勘探,2010,45(6):885-889
    [45]孔选林,唐建明,徐天吉.曲率属性在川西新厂地区裂缝检测中的应用[J].石油物探,2011,50(5):517-520
    [46]顾雯.地震多属性裂缝检测方法技术研究[学位论文].成都理工大学,2012
    [47]汤浩哲,许永忠,刘永福.多属性分析在哈拉哈塘断裂及裂缝中的应用[J].中国矿业,2013,22(4):51-53
    [48]张军林,田世澄,郑多明,等.裂缝型储层地震属性预测方法研究与应用[J].石油天然气学报(江汉石油学院学报),2013,35(3):79-84
    [49]陈辉,胡英,李军.数学形态学在地震裂缝检测中的应用[J].天然气工业,2008,28(3):48-50
    [50]严哲,顾汉明,赵小鹏.基于蚁群算法的非线性AVO反演[J].石油地球物理勘探,2009,44(6):700-702
    [51]段海滨.蚁群算法原理及其应用[M].北京:科学出版社,2005
    [52]张欣.蚂蚁追踪在断层自动解释中的应用:以平湖油田放鹤亭构造为例[J].石油地球物理勘探,2010,45(2):278-281
    [53]Cox T, Seitz Kz. Ant tracking seismic volumes for automated fault interpretation[C]//2007 CSPG CSEG Convention, May 14-17,2007, Calgary, Alberta, Cannada. [S.l.]:Canadian Society of Petroleum Geologist,2007,2:670-671
    [54]程超,杨洪伟,周大勇等.蚂蚁追踪技术在任丘潜山油藏的应用[J].西南石油大学学报(自然科学版),2010,32(2):48-52
    [55]龙旭,武林芳.蚂蚁追踪属性体提取参数对比试验及其在塔河四区裂缝建模中的应用[J].石油天然气学报(江汉石油学院学报),2011,33(5):76-81
    [56]张欣.蚂蚁追踪在断层自动解释中的应用-以平湖油田放鹤亭构造为例[J].石油地球物理勘探,2010,45(2):278-281.
    [57]张淑娟,王延斌,梁星如等.蚂蚁追踪技术在潜山油藏裂缝预测中的应用[J].断块油气田,2011,18(1):51-54
    [58]赵建儒,曹雪莲,白军等.储层预测技术在鸭西、柳沟庄地区的应用[J].石油地球物理勘探,2012,47(增刊1):59-65
    [59]张程恩.成像测井裂缝识别与提取及裂缝参数计算方法研究[学位论文].吉林大学,2012
    [60]吴斌,唐洪,王素荣等.用蚁群算法识别及预测碳酸盐岩裂缝的方法探讨[J].重庆大学学报,2012,35(9):131-137
    [61]杨瑞召,李洋,庞海玲等.产状控制蚂蚁体预测微裂缝技术及其应用[J].煤田地质与勘探,2013,41(2):72-75
    [62]Peck L, Barton C C, Gordon R B. Microstructure and the resistance of rock to fracture[J]. Journal of Geophysical Research,1985,90(13):533-546
    [63]Velde B, Duboes J. et al. Fractal analysis of fracture in rocks the Cantors Dust method[J], 1990,57(3):61-68
    [64]Velde B. Structure of surface cracks in soil and muds[J]. Tectonphysics,1999, 93(1-2):101-124
    [65]Barton C C. Fractal analysis of scaling and spatial clustering of fracture[M]. Fractal in the earth sciences Plenum Press New York,1995
    [66]何光明,高如曾.分形理论在裂缝预测中的尝试[J].石油物探,1993,32(2),1-12
    [67]李海燕,彭仕宓.应用分形技术预测井间裂缝[J].石油大学学报(自然科学版),2002,26(6),33-35
    [68]Crampin S. A review of the effects of anisotropic layering on the propagation of seismic waves[J]. Geophysics,1977,49:9-27
    [69]Crampin S. Effective anisotropic elastic constants for wave propagation through cracked solids[J]. Geophysics,1984,76:135-145
    [70]Hudson J A. Wave speeds and attenuation of elastic waves in material containing cracks[J]. Geophysics,1981,64:133-150
    [71]Hudson J A. Ahegher-order approximation to the wave propagation constants for a cracked solid[J]. Geophysics,1986,87:265-274
    [72]Thomsen L. Weak elastic anisotropy[J]. Geophysics,1986,51:1954-1966
    [73]Thomsen L. Elastic anisotropy due to aligned cracks in porous rocks[J]. Geophys Prosp, 1995,43:805-829
    [74]Mallick S, Craft K, Meister L, et al. Determination of the principle direction of azimuthal anisotropy from P-wave seismic data[J]. Geophysics,1998,63:692-707
    [75]Ruger A. Variation of P-wave reflectivity with offset and azimuth in anisotropic media[J]. Geophysics,1998,63(3):935-947
    [76]Ruger A. Using AVO for fracture detection:analytic basis and practical solutions[J]. The Leading Edge,1997,16(10):1429-1430,1432-1434
    [77]Shen F, Zhu X and Toksoz N. Anisotropy of aligned fractures and P-wave azimuthal AVO response[J]. SEG,1997:2001-2004
    [78]Mallick S, Frazer L N. Relflection/transmission coefficients and azimuthal anisotropy in marine seismic studies[J]. Geophysics,1991,105:241-252
    [79]Craft K L, Mallick S, Meister L J, et al. Azimuthal anisotropy analysis from P wave seismic travel time data[C]//Expanded Abstracts of 67th SEG Meeting,1997:1214-1217
    [80]Tsvankn I. Reflection moveout and parameter estimation for horizontal transverse isotropy[J]. Geophyysics,1997,62(2):614-629
    [81]曲寿利,季玉新,王鑫等.全方位P波属性裂缝检测方法研究[J].石油地球物理勘探,2001,36(4):390-397
    [82]范国章,牟永光,金之钧裂缝介质中地震波方位AVO特征分析[J].石油学报,2002,23(4):42-45
    [83]乐绍东.AVA裂缝检测技术在川西JM构造的应用[J].天然气工业,2004,24(4):22-24
    [84]喻岳钰,杨长春,王彦飞,等.瞬时频域衰减属性及其在碳酸盐岩裂缝检测中的应用[J].地球物理学进展,2009,24(5):1717-1722
    [85]黄伟传,杨长春,王彦飞.利用叠前地震数据预测裂缝储层的应用研究[J].地球物理学报,2007,22(5):1602-1606.
    [86]姜传金,鞠林波,张广颖,等.利用地震叠前数据预测火山岩裂缝的方法和效果分析-以松辽盆地北部徐家围子断陷营城组火山岩为例[J].地球物理学报,2011,54(2):515-523
    [87]贺振华,黄德济,文晓涛.裂缝油气藏地球物理预测[M].成都:四川科学技术出版社,2007.
    [88]朱培民,王家映,於文辉,等.用纵波AVO数据反演储层裂隙密度参数[J].石油物探,2001,40(2):1-12.
    [89]Crampin S. Evaluation of anisotropy by shear-wave splitting[J]. Geophysics,1985,50(1): 142-152
    [90]Crampin S. The new geophysics:shear-wave splitting provides a window into the crack-critical rock mass[J]. Leading Edge,2003,22(6):536-549
    [91]Crampin S, Peacock S. A review of the current understanding of seismic shear-wave splitting in the Earth's crust and common fallacies in interpretation[J]. Wave Motion,2008, 45(6):675-722
    [92]Martinez J R, Ortega A A,Mc Mechan G A.3-D seismic modeling for,cracked media: Shear-wave splitting at zero-offset[J].Geophysics,2000,65(1):211-221.
    [93]Bansal R,Sen M K. Finite-difference modeling of S-wave splitting in anisotropic media[J].Geophysical Prospecting,2008,56:293-312.
    [94]裴正林.层状各向异性介质中横波分裂和再分裂数值模拟[J].石油地球物理勘探,2006,41(1):17-25
    [95]吴松翰,贺振华,曹均.EDA介质快慢横波时差和振幅-方位曲线的实验分析[J].石油物探,2006,45(2):146-150
    [96]李忠.三分量地震勘探方法研究[学位论文].成都:成都理工大学,2007:1-107
    [97]郭桂红,石双虎,剡惠君,等.基于二维三分量伪谱法模拟数据的EDA介质中横波分裂研究[J].地球物理学报,2008,51(2):469-478
    [98]Alford R M. Shear data in the presence of azimuthal anisotropy:Dilley, Texas[J]. Expanded Abstracts of 56th Annual Internat SEG Mtg,1986,476-479
    [99]马在田等.计算地球物理学概论[M].上海:同济大学出版社,1997,359-362
    [100]Gabriela Dumitru, Richard Bale. Minimum entropy Rotation:a new shear wave splitting technique for converted wave data[J]. SEG 2000 Expanded Abstracts,2000,1229-1232
    [101]黄中玉,赵金洲.正交基旋转的横波分裂检测技术[J].石油地球物理勘探,2004,39(2):150-152
    [102]黎书琴,李忠,张白林.利用横波分裂预测裂缝[J].石油地球物理勘探,2009,44(增刊1):130-134
    [103]Johnston D H.VSP detection of fracture induced velocity anisotropy[J].SEG Expanded Abstracts,1986,5:464-467
    [104]Alford R M. Shear data in the presence of azimuthal anisotropy:Dilley, Texas[J]. Expanded Abstracts of 56th Annual Internat SEG Mtg,1986,476-479
    [105]Lefeuvre F, Nicoletis L, Ansel V, et al. Detection and measure of the shear wave birefringence from vertical seismic data:theory and applications[J]. Geophysics,1992, 57(11):1463-1481
    [106]侯安宁,马在田.垂直地震剖面横波分裂的理论研究[J].同济大学学报,1996,21(5):574-579
    [107]高希勤,侯安宁,白俊辉等.利用P波源三分量VSP检测裂缝[J].石油地球物理勘探,1998,33(1):109-128
    [108]董良国,马在田,丁建荣等.利用横波源四分量VSP资料检测盐城凹陷地下裂隙[J].石油地球物理勘探,2000,35(4):517-526
    [109]高希勤,高爱荣,于德华等.利用S波源VSP四分量检测裂缝[J].石油地球物理勘探,2001,36(1):93-99
    [110]曹立斌,李亚林,梁波等.三分量VSP资料在裂缝检测中的应用[J].石汕物探,2008,47(1):67-71
    [111]季玉新.用地震资料检测裂缝性油藏的方法[J].勘探地球物理进展,2002,25(5):28-35
    [112]邱兰军,陆梅娟,朱煜.用地球物理方法研究ZJD地区阜二段泥岩裂缝[J].特种油气藏,2002,9(1):23-25
    [113]何发歧,刘清林.高分辨率多方位VSP方法在塔河油田奥陶系裂缝性储层研究中的应用[J].吉林大学学报(地球科学版),2002,32(4):386-389
    [114]孙祥娥,高军,凌云,等.利用Walkaway VSP和全方位地面地震数据求取各向异性参数[J].石油地球物理勘探,2010,45(增刊1):172-175
    [115]Helbig K, Thomsen L.75-plus years of anisotropy in exploration and reservoir seismic:A historical review of concepts and methods[J]. Geophysics,2005,70(6):9-23
    [116]Xiangyang Li, Jianxin Yuan. Converted-wave Seismology in Anisotropic Media Resvisited, Part I:Basic Theory[J]. Applied Geophysics,2005,2(1):26-40
    [117]唐晓雪,唐建侯.用P-SV转化波资料研究储层各向异性[J].石油地球物理勘探,1997,32(1):27-33.
    [118]Stewart R R, Gaiser J E, Brown R J et al. Converted-wave seismic exploration:Methods[J]. Geophysics,2002,67(5):1348-1363
    [119]Bakulin, et al. Estimation of fracture parameters of HTI media from surface P and PS data[M]. SEG 1999 Expanded Abstracts,1999
    [120]Levin. Estimating shear-wave velocities from P wave and converted-wave data[J]. Geophysics,1999,64(2):504-507
    [121]程冰洁,徐天吉.转换波方位各向异性裂缝检测技术研究及应用[J].地球物理学进展,2012,27(2):575-581
    [122]王世瑞,杨德益.多分量转换波裂缝检测技术的进展[J].特种油气藏,2004,11(3):12-15
    [123]Cherepanov MV, Nefedkina T V. Alalytic description of PS-wave reflection in weakly anisotropic media[J]. SEG Technical Program Expanded Abstracts,2004,23(1):191-194
    [124]唐旭东,甘利灯.转换波反射系数近似公式及精度分析[J].石油物探,2008,47(2):150-155
    [125]Liu Qiankun, Han Liguo, Wang Enli. Reflection coefficients of P-SV waves in weak anisotropic media[J]. Applied Geophysics,2008,5(1):18-23
    [126]Tsvankin I. Seismic signatures and analysis of reflection data in anisotropic media[M]. Netherlands:Elsevier Science,2001
    [127]徐天吉,程冰洁.PP波与P-SV波叠前联合反演研究与应用[J].勘探地球物理进展,2008,31(5):368-372.
    [128]刘开元.裂缝介质转换波方位各向异性研究[J]岩性油气藏,2011,23(1):90-93
    [129]徐善辉,韩立国,郭建.TTI介质各向异性参数多波反演与PS波AVO分析[J].地球物理学报,2012,55(2):569-576
    [130]鲁红利,准噶尔盆地哈山地区构造样式分析[J],科技传播,2013.4(下):129-130
    [131]曲江秀,邱贻博,时振峰等.准噶尔盆地西北缘乌夏断裂带断裂活动与油气运聚[J],新疆石油地质,2007,28(4):403-405
    [132]冯建伟,准噶尔盆地乌夏断裂带构造演化及控油作用研究[学位论文],中国石油大学,2008
    [133]马宝林,新疆哈拉阿拉特山地区的地层和沉积环境[J],沉积学报,1987,5(4):66-75
    [134]匡立春;吕焕通;薛晶晶等,准噶尔盆地西北缘五八开发区二叠系佳木河组火山岩储层特征[J],高校地质学报,2008,14(2):164-171
    [135]侯连华,邹才能,匡立春等,准噶尔盆地西北缘克-百断裂带石炭系油气成藏控制因素新认识[J],石油学报,2009,30(4):513-517
    [136]冯翠菊,用测井资料确定次生孔隙[学位论文],大庆石油学院,2005
    [137]黄平辉,准噶尔盆地百口泉油田百31井区二叠系佳木河组三段储层裂缝研究[学位论文],西南石油学院,2005
    [138]王增香,塔里木盆地塔中地区奥陶系裂缝储层发育特征[学位论文],中国地质大学(北京)硕士论文,2006
    [139]伍鹏,贺振华,陈学华等,二维高斯迭代平滑滤波曲率属性及其应用[J],地球物理学进展,2010,25(6):2144-2149
    [140]任芳祥,辽河西部凹陷欢103井区杜家台油层油藏描述[学位论文],中国地质大学(北京)硕士论文,2002
    [141]余瀚熠,李瑞,蒋涔等,测井曲线重构技术在储层反演中的应用[J],物探化探计算技术,2009,31(6):603-610
    [142]Chichinina, T, V. Sabinin, and G.Ronquillo-Jarillo,2004, P-wave attenuation anisotropy in fracture characterization:Numerical modeling for reflection data:74th Annual International Meeting, SEG, Expanded Abstracts,143-146
    [143]Crampin,S.,1981, A review of wave motion in anisotropic and cracked elastic media[J]: Wave Motion,3,343-391
    [144]Chapman, M.,2003, Frequency-dependent anisotropy due to meso-scale fractures in the presence of equant porosity[J]:Geophysical Prosecting,51,369-379
    [145]Carcione, J. M.,2000, A model for seismic velocity and attenuation in petroleum source rocks[J]:Geophysics,65,1080-1092
    [146]Bakulin, A., Grechka, and I. Tsvankin,2000, Estimation of gracture parameters from reflection seismic data-Part Ⅰ:HTI model due to a single fracture set[J]:Geophysics,65, 1788-1802
    [147]Tatiana Chichinina, Vladimir Sabinin, and Gerardo Ronquillo-Jarillo,2006, QVOA analysis: P-wave attenuation anisotropy for fracture characterization[J]:Geophysics,71,37-48
    [148]Schoenberg,M. and J.Douma,1988, Elastic wave propagation in media with parallel fractures and aligned cracks[J]:Geophysical Prospecting,36,571-590

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700