用户名: 密码: 验证码:
辽西三叠纪—侏罗纪火山岩:华北北缘东段下地壳再造与克拉通破坏
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
华北克拉通岩石圈减薄破坏及其深部地质过程是我国固体地球科学研究的热点之一。岩浆作用是其形成时深部地质过程信息的载体,可以为克拉通破坏的时限、机制、动力学背景和下地壳再造过程提供约束。论文选取华北北缘燕山造山带为切入点,对辽西三叠纪-侏罗纪水泉沟组、海房沟组和蓝旗组火山岩开展了详细的岩石学、地球化学、锆石U-Pb年代学和Hf同位素组成研究,初步修订了辽西及其邻区中生代火山-沉积地层的年代学格架,探讨了燕山造山带中生代岩浆作用的成因及其记录的壳幔相互作用信息,为华北北缘中生代克拉通破坏的时限、机制和动力学背景提供了约束
     水泉沟组火山岩主要由粗面岩、粗安岩、安山质火山碎屑岩和凝灰岩组成。其下部粗面岩和辉石安山岩中的岩浆锆石给出了-220Ma的谐和年龄,表明水泉沟组火山岩形成于晚三叠世。它们具有高Sr(≥841ppm)、低Yb(≤1.3ppm)和Y (≤17ppm)及高Sr/Y(>72)等“埃达克质”地球化学特征,同时富集轻稀土元素和大离子亲石元素Rb、Ba和Pb,亏损高场强元素Nb、Ta和Ti,以及低的Ce/Pb(<4.3)、Nb/U(<4.8)和中等的GdN/YbN(2.8~3.9)。-2.5Ga的继承和捕获锆石指示新太古代地壳物质可能参与了成岩过程。结合这些火山岩演化的全岩Sr-Nd同位素组成(初始87Sr/86Sr=0.70529-0.70540、εNd(t)=-3.9~-9.9)以及中生代锆石演化的Hf同位素组成(εHf(t)=-8.6~-1.1),我们认为水泉沟组埃达克质火山岩可能是在古亚洲洋俯冲之后的伸展背景下,由底侵的玄武质岩浆诱发大陆下地壳部分熔融的产物。它们高的Sr/Y可能是继承了源区的组成,与较高的熔融深度(如榴辉岩相下地壳)无关。因此,大陆伸展背景下埃达克质岩浆可能来自古老大陆下地壳的部分熔融作用。
     海房沟组主要由沉积碎屑岩夹中酸性火山岩组成,是燕山的运动A幕的产物,其沉积地层中Schmeissneria和Xingxueanthus化石的发现为揭示被子植物起源提供了关键证据。该组火山岩主要由玄武质粗安岩、粗安岩、粗面岩、英安岩及相应的火山碎屑岩组成。粗面岩中岩浆锆石的206Pb/238U加权平均年龄为173.4±3.1Ma,属于中侏罗世,由此推断被子植物的起源至少可以追溯到中侏罗世,燕山运动A幕的时代为中侏罗世。海房沟组火山岩具有变化的Si02(51.7-66.8wt.%),高的Al2O3(14.8~18.4wt.%),中等的MgO(0.6~4.4wt.%)和低的Mg#(19~50)、TiO2(0.57~1.03wt.%)、Ni (13~33ppm)、Cr(7.2~61.8ppm),富集轻稀土和大离子亲石元素,亏损高场强元素Nb、Ta和Ti,以及与埃达克岩相似的高Sr(≥695ppm),低HREE(Yb≤1.65ppm)和Y(≤19.6ppm)等地球化学组成。它们具有EM1型的Sr-Nd同位素组成(初始87Sr/86Sr=0.70491-0.70542,ENd(t)=-16.3--7.3),锆石具有演化的Hf同位素组成(εHf(t)=-21.7~-12.7, Tcrust=2.02~2.58Ga),表明这些岩石主要来自古老下地壳物质的部分熔融。海房沟组火山岩形成于由板内伸展向陆内造山转换的阶段,与蒙古鄂霍茨克洋闭合对燕山造山带的远程效应有关。早中侏罗世时华北北缘富集岩石圈地幔部分熔融产生的玄武质岩浆,持续底侵至下地壳底部形成热区(壳幔过渡带),并诱发上覆古老下地壳部分熔融,这些壳源熔体在源区混合了少量幔源岩浆并经镁铁质矿物分离结晶,喷出地表形成了海房沟组高Sr/Y火山岩。
     蓝旗组火山岩主要由玄武岩、粗安岩、安山岩、粗面岩、英安岩、流纹岩和相应的火山碎屑岩组成。辽西北票常河营子蓝旗组上部安山质角砾熔岩的锆石LA-ICPMS U-Pb年龄分析结果表明,其结晶年龄为159.4±3.4Ma,属晚侏罗世。系统总结前人对蓝旗组/髫髻山组火山岩的同位素定年结果,并结合上下地层接触关系,认为蓝旗期火山作用时间的下限为166~168Ma,上限为152-154Ma。根据蓝旗组火山岩的岩性和地球化学组成,本文将其分为4个亚类:G1,以相对低Si02(<56wt.%)、LREE(La<35ppm)和较低的轻重稀土分异程度(LaN/YbN<14)为特征的玄武岩-玄武质粗安岩,是富集岩石圈地幔部分熔融产生的岩浆,在下地壳底部经橄榄石、单斜辉石和铁钛氧化物的分离结晶,并混染下地壳岩石形成的;G2,以中等的Si02(55.9-58.0wt.%),高ΣREE (273-308ppm)和低LaN/YbN为特征的安山岩-粗安岩,是玄武质岩浆底侵诱发下地壳中性麻粒岩部分熔融的产物;G3,以显著的轻重稀土分异(LaN/YbN=18-27)和高Sr/Y(>50)为特征的粗安岩-粗面岩-英安岩-流纹岩,是幔源岩浆底侵导致古老基性下地壳部分熔融的产物,并存在与幔源岩浆的物质交换;G4,以高SiO2(>65wt.%)和ΣREE (171~280ppm)、低Sr/Y和显著负Eu异常(δEu=0.60--0.79)为特征的粗面岩-英安转-流纹岩,是下地壳长英质麻粒岩或片麻岩部分熔融产生的熔体经角闪石、斜长石分离结晶而成。蓝旗组火山岩形成于侏罗纪古太平洋板块向亚洲大陆快速、斜向俯冲形成的活动大陆边缘环境,是幔源岩浆底侵过程,强烈的壳幔相互作用引起不同源区物质熔融并相互作用的产物。
     对辽西及其邻区中生代火山-沉积地层的同位素年代学数据、构造沉积记录和地层对比资料进行了系统的总结,初步修订了研究区三叠纪-侏罗纪火山-沉积地层年代学格架。凌源水泉沟组、北票兴隆沟组和京西-冀北南大岭组火山岩分别形成于-220Ma、208-202Ma和-174Ma,不能作为相互对比的火山岩地层。京西-冀北杏石口组、辽西凌源-建昌邓杖子组和辽西北票羊草沟组形成于晚三叠世-早侏罗世。京西窑坡组-龙门组-九龙山组、冀北下花园组、辽西凌源郭家店组、辽西北票海房沟组主体是在中侏罗世形成的。蓝旗组/髫髻山组火山岩形成于166-153Ma,其上的土城子组/后城组沉积岩形成于153-137Ma,张家口组火山岩形成于135-126Ma,义县组火山岩形成于132-120Ma。
     燕山造山带中生代火山岩的成因研究表明,在华北克拉通岩石圈地幔中生代减薄破坏过程中,幔源岩浆的底侵引起了华北北缘多期(-220Ma、160-152Ma、130-80Ma)、连续的下地壳增生-再造事件。辽西三叠纪-侏罗纪高Sr/Y火山岩可能是正常厚度/略厚的古老下地壳部分熔融的产物,与榴辉岩部分熔融没有直接联系,其高Sr/Y是继承源区(华北古老下地壳)的特征,高Mg#、Cr、Ni来自幔源岩浆的贡献。因而,华北东部中生代高Sr/Y埃达克质火成岩可能不足以作为支持克拉通破坏拆沉作用模型的主要证据。
     软流圈地幔组分参与了华北北缘晚三叠世岩浆岩的形成过程,表明华北北缘岩石圈地幔破坏可能在晚三叠世已经开始,古生代-早中生代古亚洲洋闭合及后续碰撞改造了华北北缘岩石圈属性,对克拉通破坏起到了唤醒作用。蒙古-鄂霍次克洋自西向东的逐渐闭合和华北-蒙古联合板块与西伯利亚板块的碰撞为华北北缘中侏罗世构造变形提供了动力,引起燕山造山带南北向挤压和地壳缩短,但未引发华北北缘岩石圈属性的改变。晚侏罗世初期(166-153Ma)古太平洋板块向亚洲大陆快速、斜向俯冲改变了燕山造山带构造格局,诱发了进一步的克拉通破坏作用,同时导致郯庐断裂在中晚侏罗世时发生大规模的左行走滑运动,为软流圈地幔物质上涌并侵蚀岩石圈地幔提供了通道。早白垩世,太平洋板片由低角度斜向俯冲转变为高角度正交俯冲/回撤,引起了大规模软流圈上涌、强烈的壳幔相互作用和伸展构造,克拉通破坏达到峰期。因此,华北北缘克拉通破坏是古生代开始的多板块俯冲-碰撞和软流圈地幔沿深大断裂上涌并侵蚀岩石圈地幔的结果。
The destruction of cratonic lithosphere beneath the North China craton (NCC) is one of the central themes in the study of continental geodynamics. The widespread generation of Mesozoic igneous rocks accompanied the cratonic destruction, which provides some insights into the evolution of the craton during lithospheric thinning. Data on mineral chemistry, major and trace elements and Sr-Nd isotopes of whole rocks, and in-situ U-Pb age and Hf-isotope analyses of zircons are reported for Triassic-Jurassic volcanic rocks in the Western Liaoning, in order to investigate their sources, petrogenesis and implications for the Phanerozoic evolution of northern part of NCC.
     Late Triassic high-Sr/Y Shuiquangou lavas, mainly trachytes with minor pyroxene andesite and rhyolite, are found at Lingyuan, in the Yanshanian fold-and-thrust belt on the northern margin of the NCC. The Shuiquangou volcanic rocks with high Sr/Y (>72) and (La/Yb)N (>24) also show enrichment in light rare earth elements and large-ion lithophile elements (e.g., Rb, Ba and Pb), and depletion in high-field-strength elements (e.g., Nb, Ta and Ti). They have low Ce/Pb (<4.3) and Nb/U (<4.8) and moderate (Gd/Yb)N (2.8-3.9). U-Pb dating of zircons yields concordant and lower-intercept ages of~220Ma, indicating that they erupted during the late Triassic. Concordant grains and an upper intercept age of~2.50Ga suggest that Neoarchean materials may have been involved in their petrogenesis. The relatively low initial87Sr/86Sr (0.70529to0.70540) and negative εNd(t)(-3.9to-9.9) of the these rocks, and the negative εHf(t)(-8.6to-1.1) of their zircons, suggest that the magmas were derived by partial melting of the cratonic lower crust, induced by continuous magmatic underplating under an extensional regime following the southward subduction of the Palaeo-Asian Ocean. Their high Sr/Y is inherited from their source, and does not necessarily imply melting at great depths (e.g., garnet-bearing lower crust). We suggest that partial melting of the ancient lower crust may be important for the petrogenesis of "adakitic" magmas in a continental extensional setting.
     The Haifanggou volcanic rocks consist of basaltic andesite, trachy-andesite, trachyte, dacite and pyroclastic rocks. The zircon U-Pb age of the Haifanggou trachyte yield a middle Jurassic age (173.4±3.1Ma), indicating the origin of angiosperms could be as early as~173Ma and the time of phase A of Yanshanian movement is middle Jurassic. The Haifanggou volcanic rocks with variable SiO2(51.7-66.8wt.%), high Al2O3(14.8-18.4wt.%), moderate MgO (0.6-4.4wt.%) and low Mg#(19-50), TiO2(0.57-1.03wt.%), Ni (13-33ppm) and Cr (7.2-61.8ppm). The lavas with high Sr (≥695ppm) and low HREE (Yb≤1.65ppm), also show enrichment in LREE and LILEs (e.g., Rb, Ba and Pb), and depletion in HFSEs (e.g., Nb, Ta and Ti). The EMI type Sr-Nd isotopic compositions (initial87Sr/86Sr=0.70491to0.70542, εNd(t)=-16.3to-7.3) of these rocks, and the evolved Hf isotopic compositions (εHf(t)=-21.7to-12.7, Tcrust=2.02to2.58Ga) of their zircons, suggest the magmas were derived by partial melting of an ancient lower crust, induced by continuous magmatic underplating. They erupted in a switched tectonic regime from within-plate extension to orogeny, which is responded to the closure of Mongolo-Okhotsk Sea and following collision of an amalgamated North China-Mongolian plate with Siberian plate.
     The Lanqi volcanic rocks consist of basalt, basaltic andesite, trachy-andesite, trachyte, dacite, rhyolite and pyroclastic rocks. The zircon U-Pb age (159.4±3.4Ma) of the andesitic breccia lava indicates that they erupted during the late Jurassic. Combined with the pervious geochronology data and the relationship of strata, we propose the Lanqi Fm./Tiaojishan Fm. are formed between166Ma to152Ma. The Lanqi lavas can be subdivided into four group base on their geochemical compositions. Group1basalt and basaltic andesite, with low SiO2(<56wt.%), LREE (La<35ppm) and LaN/YbN (<14), were probably generated by fractionation of olivine, clinopyroxene and Fe-Ti oxide and subsequent interaction with lower crust, of a primary magma derived from partial melting of enriched lithospheric mantle. Group2andesite and trachy-andesite, with moderate SiO2(55.9-58.0%), high REE (ΣREE=273-308ppm) and low LaN/YbN, were derived from intermediate granulites in the lower crust, induced by basaltic magma underplating. Group3intermediate-felsic lavas, with high LaN/YbN (>18) and Sr/Y (>50), were derivation from mafic lower continental crust with involvement of minor mantle materials. Group4high SiO2(>65%) dacite and rhyolite, with low Sr/Y and negative Eu anomalies (δEu=0.60to0.79), were produced by amphibole and plagioclase fractionation of melt derived from partial melting of felsic granulites and gneisses of the lower crust. The Lanqi volcanic rocks are the products of crust-mantle interaction, induced by rapid and oblique subduction of the Izanagi plate.
     The Mesozoic igneous rocks in Yanshan fold and thrust belt provide evidence for the continued reworking of lower crust of the northern part of NCC in Mesozoic time, which caused by episodic widespread magma underplating (-220Ma,160-152Ma,130-80Ma). Their petrogenesis also suggest that the igneous rocks with high Sr/Y "adakitic" signatures can be formed by partial melting of an ancient lower continental crust of normal thickness, without relationship to the melting of eclogite. Thus, they could not be used as an indicator of delamination of lower continental crust and the presence of Mesozoic plateau in the eastern NCC.
     The asthenospheric material involved in the generation of early Mesozoic magmatic rocks in the Yanshan belt, suggest the onset of the lithospheric destruction in the northern NCC may have occurred as early as the late Triassic, inducing by closure of Palaeo-Asian Ocean. The closure of Mongolo-Okhotsk Sea and following collision of an amalgamated North China-Mongolian plate with Siberian plate only caused the Mesozoic deformation without significantly modification of the lithospheric mantle beneath the North China craton. Pacific plate subduction resulted in extensive Jurassic magmatism and NE-to NNE-striking sinistral faults represented by the Tan-Lu fault zone which could be as channel of the upwelling asthenosphere. A shift from oblique shallow subduction of the Izanagi plate to orthogonal, steep subduction of the Pacific plate in early Cretaceous induced more intensive upwelling of asthenosphere and destruction of the North China craton. Thus, we propose that the destruction of the NCC lithospheric mantle was induced by subduction and collision of adjacent blocks in Phanerozoic.
引文
[1]Rudnick R L, Gao S. Composition of the continental crust. In:Treatise on Geochemistry, Elsevier,2003.1-64.
    [2]Lowe D R, Tice M M. Geologic evidence for Archean atmospheric and climatic evolution: Fluctuating levels of CO2, CH4, and O2 with an overriding tectonic control. Geology.2004, 32(6):493-496.
    [3]Fountain D M, Salisbury M H. Exposed cross-sections through the continental crust: implications for crustal structure, petrology, and evolution. Earth and Planetary Science Letters.1981,56:263-277.
    [4]Rudnick R L. Xenoliths-samples of the lower continental crust. In:Fountain D M, Arculus R, Kay R W. Continental Lower Crust, New York:Elservier,1992.269-316.
    [5]Gao S, Rudnick R L, Yuan H L, et al. Recycling lower continental crust in the North China craton. Nature.2004,432(7019):892-897.
    [6]Jahn B M, Wu F Y, Chen B. Massive granitoid generation in Central Asia:Nd isotope evidence and implication for continental growth in the Phanerozoic. Episodes.2000,23(2): 82-92.
    [7]Martin H, Smithies R H, Rapp R, et al. An overview of adakite, tonalite-trondhjemite-granodiorite (TTG), and sanukitoid:relationships and some implications for crustal evolution. Lithos.2005,79(1-2):1-24.
    [8]Liu D Y, Nutman A P, Compston W, et al. Remnants of≥3800 Ma crust in the Chinese part of the Sino-Korean craton. Geology.1992,20(4):339-342.
    [9]Zheng J P, Griffin W L, O'Reilly S Y, et al.3.6 Ga lower crust in central China:New evidence on the assembly of the North China craton. Geology.2004,32(3):229-232.
    [10]Zhao G, Zhai M. Lithotectonic elements of Precambrian basement in the North China Craton:Review and tectonic implications. Gondwana Research, in press.
    [11]Kusky T M. Geophysical and geological tests of tectonic models of the North China Craton. Gondwana Research.2011,20(1):26-35.
    [12]Menzies M A, Xu Y G, Zhang H F, et al. Integration of geology, geophysics and geochemistry:A key to understanding the North China Craton. Lithos.2007,96(1-2):1-21.
    [13]Gao S, Luo T C, Zhang B R, et al. Chemical composition of the continental crust as revealed by studies in East China. Geochimica et Cosmochimica Acta.1998,62(11):1959-1975.
    [14]朱日祥,陈凌,吴福元,等.华北克拉通破坏的时间,范围与机制.中国科学:地球科学.2011,41(5):583-592.
    [15]郑永飞,吴福元.克拉通岩石圈的生长和再造.科学通报.2009,54(14):1945-1949.
    [16]吴福元,徐义刚,高山,等.华北岩石圈减薄与克拉通破坏研究的主要学术争论.岩 石学报.2008,24(6):1145-1174.
    [17]Zheng J P, Griffin W L, Ma Q, et al. Accretion and reworking beneath the North China Craton. Lithos.2012,149:61-78.
    [18]Wilde S A, Zhou X H, Nemchin A A, et al. Mesozoic crust-mantle interaction beneath the North China craton:A consequence of the dispersal of Gondwanaland and accretion of Asia. Geology.2003,31(9):817.
    [19]Zhang H, Zhu R, Santosh M, et al. Episodic widespread magma underplating beneath the North China Craton in the Phanerozoic:Implications for craton destruction. Gondwana Research.2013,23(1):95-107.
    [20]Wu F Y, Lin J Q, Wilde S A, et al. Nature and significance of the Early Cretaceous giant igneous event in eastern China. Earth and Planetary Science Letters.2005,233(1-2): 103-119.
    [21]Liu Y S, Gao S, Kelemen P B, et al. Recycled crust controls contrasting source compositions of Mesozoic and Cenozoic basalts in the North China Craton. Geochimica et Cosmochimica Acta.2008,72(9):2349-2376.
    [22]Yang W, Li S G. Geochronology and geochemistry of the Mesozoic volcanic rocks in Western Liaoning:Implications for lithospheric thinning of the North China Craton. Lithos. 2008,102(1-2):88-117.
    [23]Ma Q, Zheng J, Griffin W L, et al. Triassic "adakitic" rocks in an extensional setting (North China):Melts from the cratonic lower crust. Lithos.2012,149:159-173.
    [24]Christensen N I, Mooney W D. Seismic velocity structure and composition of the continental crust:A global view. Journal of Geophysical Research.1995,100(B6): 9761-9788
    [25]Holbroolk W S, Mooney W D, Christensen N I. The seismic velocity structure of the deep continental crust. In:Fountain D M, Arculus R, Kay R W. Continental lower crust, New York:Elsevier,1992.1-42.
    [26]Rudnick R L, Fountain D M. Nature and composition of the continental crust:A lower crustal perspective. Reviews of Geophysics.1995,33(3):267-309.
    [27]Taylor S R, Mclennan S M. The Continental Crust:Its Composition and Evolution. Oxford: Blackwell,1985
    [28]Wedepohl K H. The composition of the continental crust. Geochimica et Cosmochimica Acta.1995,59(7):1217-1232.
    [29]Hacker B R, Kelemen P B, Behn M D. Differentiation of the continental crust by relamination. Earth and Planetary Science Letters.2011,307(3-4):501-516.
    [30]Klein E M. Geochemistry of the Igneous Oceanic Crust. In:Treatise on Geochemistry, Elsevier,2003.433-463.
    [31]Rudnick R L. Making continental crust. Natrue.1995,378(6557):571-578.
    [32]Kerr A C. Oceanic Plateaus. In:Treatise on Geochemistry, Elsevier,2003.537-565.
    [33]Stein M, Hofmann A W. Mantle plumes and episodic crustal growth. Nature.1994, 372(6501):63-68.
    [34]Barr S R, Temperley S, Tarney J. Lateral growth of the continental crust through deep level subduction-accretion:a re-evaluation of central Greek Rhodope. Lithos.1999,46(1): 69-94.
    [35]Kelemen P B, Hanghh(?)j K, Greene A R. One view of the geochemistry of subduction-related magmatic arcs, with an emphasis on primitive andesite and lower crust. In:Treatise on Geochemistry, Elsevier,2003.593-659.
    [36]Annen C, Blundy J D, Sparks R S J. The Genesis of Intermediate and Silicic Magmas in Deep Crustal Hot Zones. Journal of Petrology.2006,47(3):505-539.
    [37]Hawkesworth C J, Kemp A I S. The differentiation and rates of generation of the continental crust. Chemical Geology.2006,226(3-4):134-143.
    [38]Kemp A I S, Shimura T, Hawkesworth C J, et al. Linking granulites, silicic magmatism, and crustal growth in arcs:Ion microprobe (zircon) U-Pb ages from the Hidaka metamorphic belt, Japan. Geology.2007,35(9):807-810.
    [39]Rudnick R L, Fountain D M. Nature and composition of the continental crust:a lower crustal perspective. Reviews of Geophysics.1995,33(3):267-309.
    [40]Decelles P G, Ducea M N, Kapp P, et al. Cyclicity in Cordilleran orogenic systems. Nature Geosiences.2009,2(4):251-257.
    [41]Hawkesworth C J, Dhuime B, Pietranik A B, et al. The generation and evolution of the continental crust. Journal of the Geological Society, London.2010,167(2):229-248.
    [42]Gao S, Rudnick R L, Xu W L, et al. Recycling deep cratonic lithosphere and generation of intraplate magmatism in the North China Craton. Earth and Planetary Science Letters.2008, 270(1-2):41-53.
    [43]Anderson D L. Large Igneous Provinces, Delamination, and Fertile Mantle. Elements.2005, 1(5):271-275.
    [44]Condie K C. Episodic continental growth and supercontinents:a mantle avalanche connection? Earth and Planetary Science Letters.1998,163(1-4):97-108.
    [45]Cawood P A, Hawkesworth C J, Dhuime B. The continental record and the generation of continental crust. Geological Society of America Bulletin.2013,125(1-2):14-32.
    [46]Dhuime B, Hawkesworth C J, Cawood P A, et al. A Change in the Geodynamics of Continental Growth 3 Billion Years Ago. Science.2012,335(6074):1334-1336.
    [47]Belousova E A, Kostitsyn Y A, Griffin W L, et al. The growth of the continental crust: Constraints from zircon Hf-isotope data. Lithos.2010,119(3-4):457-466.
    [48]Condie K C, Belousova E, Griffin W L, et al. Granitoid events in space and time: Constraints from igneous and detrital zircon age spectra. Gondwana Research.2009, 15(3-4):228-242.
    [49]Kelemen P B. Genesis of high Mg# andesites and the continental crust. Contributions to Mineralogy and Petrology.1995,120(1):1-19.
    [50]Hawkesworth C J, Kemp A I. Evolution of the continental crust. Nature.2006,443(7113): 811.
    [51]Hawkesworth C J, Kemp A I S. Using hafnium and oxygen isotopes in zircons to unravel the record of crustal evolution. Chemical Geology.2006,226(3-4):144-162.
    [52]Rollinson H. Secular evolution of the continental crust:Implications for crust evolution models. Geochemistry Geophysics Geosystems.2008,9(12):Q12010.
    [53]Song B, Nutman A P, Liu D Y, et al.3800 to 2500 Ma crustal evolution in the Anshan area of Liaoning Province, northeastern China. Precambrian Research.1996,78(1-3):79-94.
    [54]Wan Y S, Liu D Y, Song B, et al. Geochemical and Nd isotopic compositions of 3.8 Ga meta-quartz dioritic and trondhjemitic rocks from the Anshan area and their geological significance. Journal of Asian Earth Sciences.2005,24(5):563-575.
    [55]Wu F Y, Zhao G C, Wilde S A, et al. Nd isotopic constraints on crustal formation in the North China Craton. Journal of Asian Earth Sciences.2005,24(5):523-545.
    [56]Jiang N, Guo J H, Zhai M G, et al.-2.7Ga crust growth in the North China craton. Precambrian Research.2010,179(1-4):37-49.
    [57]Zhai M G, Li T S, Peng P, et al. Precambrian key tectonic events and evolution of the North China craton. Geological Society, London, Special Publications.2010,338(1):235-262.
    [58]Geng Y, Du L, Ren L. Growth and reworking of the early Precambrian continental crust in the North China Craton:Constraints from zircon Hf isotopes. Gondwana Research.2012, 21(2-3):517-529.
    [59]Kusky T M, Windley B F, Zhai M G. Tectonic evolution of the North China Block:from orogen to craton to orogen. Geological Society London Special Publications.2007,280(1): 1-34.
    [60]翟明国.克拉通化与华北陆块的形成.中国科学:地球科学.2011,41(8):1037-1046.
    [61]Zhai M, Santosh M. The early Precambrian odyssey of the North China Craton:A synoptic overview. Gondwana Research.2011,20(1):6-25.
    [62]Guo J H, O'Brien P J, Zhai M. High-pressure granulites in the Sanggan area, North China craton:metamorphic evolution, P-T paths and geotectonic significance. Journal of Metamorphic Geology.2002,20(8):741-756.
    [63]Zhao G C, Sun M, Wilde S A, et al. Late Archean to Paleoproterozoic evolution of the North China Craton:key issues revisited. Precambrian Research.2005,136(2):177-202.
    [64]Zhai M G, Guo J H, Liu W J. An exposed cross-section of early precambrian continental lower crust in North China craton. Physics and Chemistry of the Earth,Part A:Solid Earth and Geodesy.2001,26(9-10):781-792.
    [65]翟明国.华北克拉通两类早前寒武纪麻粒岩(HT-HP和HT-UHT)及相关问题.岩石学报.2009,25(8):1753-1771.
    [66]Zhao G, Zhai M. Lithotectonic elements of Precambrian basement in the North China Craton:Review and tectonic implications. Gondwana Research.:in press.
    [67]谢漫泽,冯家麟,张改兰.汉诺坝玄武岩中麻粒岩捕虏体的发现.河北地质学院学报.1993,16(6):587-593.
    [68]Chen S, O'Reilly S Y, Zhou X, et al. Thermal and petrological structure of the lithosphere beneath Hannuoba, Sino-Korean Craton, China:evidence from xenoliths. Lithos.2001, 56(4):267-301.
    [69]Liu Y S, Gao S, Jin S Y, et al. Geochemistry of lower crustal xenoliths from Neogene Hannuoba Basalt, North China Craton:Implications for petrogenesis and lower crustal composition. Geochimica et Cosmochimica Acta.2001,65(15):2589-2604.
    [70]Zhou X H, Sun M, Zhang G, et al. Continental crust and lithospheric mantle interaction beneath North China:isotopic evidence from granulite xenoliths in Hannuoba, Sino-Korean craton. Lithos.2002,62(3-4):111-124.
    [71]Huang X L, Xu Y G, Liu D Y. Geochronology, petrology and geochemistry of the granulite xenoliths from Nushan, east China:Implication for a heterogeneous lower crust beneath the Sino-Korean Craton. Geochimica et Cosmochimica Acta.2004,68(1):127-149.
    [72]Liu Y S, Gao S, Yuan H L, et al. U-Pb zircon ages and Nd, Sr, and Pb isotopes of lower crustal xenoliths from North China Craton:insights on evolution of lower continental crust. Chemical Geology.2004,211(1-2):87-109.
    [73]Zheng J P, Griffin W L, O'Reilly S Y, et al. U-Pb and Hf-isotope analysis of zircons in mafic xenoliths from Fuxian kimberlites:evolution of the lower crust beneath the North China craton. Contributions to Mineralogy and Petrology.2004,148(1):79-103.
    [74]Zheng J P, Griffin W L, O'Reilly S Y, et al. Continental collision and accretion recorded in the deep lithosphere of central China. Earth and Planetary Science Letters.2008,269(3-4): 496-506.
    [75]Ying J F, Zhang H F, Tang Y J. Lower crustal xenoliths from Junan, Shandong province and their bearing on the nature of the lower crust beneath the North China Craton. Lithos.2010, 119(3-4):363-376.
    [76]Zhang H. Destruction of ancient lower crust through magma underplating beneath Jiaodong Peninsula, North China Craton:U-Pb and Hf isotopic evidence from granulite xenoliths. Gondwana Research.2012,21(1):281-292.
    [77]邵济安,张舟,佘宏全,等.华北克拉通北缘赤峰地区显生宙麻粒岩的发现及其意义.地学前缘.2012,19(3):188-198.
    [78]Zheng J P, Griffin W L, Qi L, et al. Age and composition of granulite and pyroxenite xenoliths in Hannuoba basalts reflect Paleogene underplating beneath the North China Craton. Chemical Geology.2009,264(1-4):266-280.
    [79]Zhang H, Ying J, Santosh M, et al. Episodic growth of Precambrian lower crust beneath the North China Craton:A synthesis. Precambrian Research.2012,222-223:255-264.
    [80]郑建平,路凤香,余淳梅,等.汉诺坝玄武岩中麻粒岩捕虏体锆石Hf同位素,U-Pb定年和微量元素研究:华北下地壳早期演化的记录.科学通报.2004,49(4):375-383.
    [81]Zheng J P, Griffin W L, O'Reilly S Y, et al. Neoarchean (2.7-2.8 Ga) accretion beneath the North China Craton:U-Pb age, trace elements and Hf isotopes of zircons in diamondiferous kimberlites. Lithos.2009,112(3-4):188-202.
    [82]Zhang H F, Goldstein S L, Zhou X H, et al. Evolution of subcontinental lithospheric mantle beneath eastern China:Re-Os isotopic evidence from mantle xenoliths in Paleozoic kimberlites and Mesozoic basalts. Contributions to Mineralogy and Petrology.2008,155(3): 271-293.
    [83]Gao S, Rudnick R L, Carlson R W, et al. Re-Os evidence for replacement of ancient mantle lithosphere beneath the North China craton. Earth and Planetary Science Letters.2002, 198(3-4):307-322.
    [84]Yang J, Gao S, Chen C, et al. Episodic crustal growth of North China as revealed by U-Pb age and Hf isotopes of detrital zircons from modern rivers. Geochimica et Cosmochimica Acta.2009,73:2660-2673.
    [85]Zhao G C, Wilde S A, Cawood P A, et al. Archean blocks and their boundaries in the North China Craton:lithological, geochemical, structural and P-T path constraints and tectonic evolution. Precambrian Research.2001,107(1-2):45-73.
    [86]耿元生,沈其韩,任留东.华北克拉通晚太古代末-古元古代初的岩浆事件及构造热体制.岩石学报.2010,26(7):1945-1966.
    [87]Zhang H, Ying J, Tang Y, et al. Phanerozoic reactivation of the Archean North China Craton through episodic magmatism:Evidence from zircon U-Pb geochronology and Hf isotopes from the Liaodong Peninsula. Gondwana Research.2011,19(2):446-459.
    [88]Wan Y, Wilde S A, Liu D, et al. Further evidence for 1.85 Ga metamorphism in the Central Zone of the North China Craton:SHRIMP U-Pb dating of zircon from metamorphic rocks in the Lushan area, Henan Province. Gondwana Research.2006,9(1-2):189-197.
    [89]Santosh M, Wilde S A, Li J H. Timing of Paleoproterozoic ultrahigh-temperature metamorphism in the North China Craton:Evidence from SHRIMP U-Pb zircon geochronology. Precambrian Research.2007,159(3-4):178-196.
    [90]Zhao G C, Wilde S A, Guo J H, et al. Single zircon grains record two Paleoproterozoic collisional events in the North China Craton. Precambrian Research.2010,177(3-4): 266-276.
    [91]Zhang H, Yang Y, Santosh M, et al. Evolution of the Archean and Paleoproterozoic lower crust beneath the Trans-North China Orogen and the Western Block of the North China Craton. Gondwana Research.2012,22(1):73-85.
    [92]樊祺诚,刘若新,李惠民,等.汉诺坝捕虏体麻粒岩锆石年代学与稀土元素地球化学.科学通报.1998,43(2):133-137.
    [93]Wu F Y, Yang J H, Wilde S A, et al. Geochronology, petrogenesis and tectonic implications of Jurassic granites in the Liaodong Peninsula, NE China. Chemical Geology.2005, 221(1-2):127-156.
    [94]Carlson R W, Pearson D G, James D E. Physical, chemical, and chronological characteristics of continental mantle. Reviews of Geophysics.2005,43:G1001.
    [95]Griffin W L, Graham S, O'Reilly S Y, et al. Lithosphere evolution beneath the Kaapvaal Craton:Re-Os systematics of sulfides in mantle-derived peridotites. Chemical Geology. 2004,208(1-4):89-118.
    [96]Percival J A, Stern R A, Skulski T, et al. Minto block, Superior province:Missing link in deciphering assembly of the craton at 2.7 Ga. Geology.1994,22(9):839-842.
    [97]Fan W M, Zhang H F, Baker J, et al. On and off the North China Craton:Where is the Archaean keel? Journal of Petrology.2000,41(7):933-950.
    [98]Zheng J P, Sun M, Lu F X, et al. Mesozoic lower crustal xenoliths and their significance in lithospheric evolution beneath the Sino-Korean Craton. Tectonophysics.2003,361(1-2): 37-60.
    [99]Zheng J P, O'Reilly S Y, Griffin W L, et al. Relict refractory mantle beneath the eastern North China block:significance for lithosphere evolution. Lithos.2001,57(1):43-66.
    [100]Menzies M A, Fan W M, Zhang M. Palaeozoic and Cenozoic lithoprobes and the loss of> 120 km of Archaean lithosphere, Sino-Korean craton, China. Geological Society London Special Publications.1993,76(1):71-81.
    [101]Fan W M, Menzies M A. Destruction of aged lower lithosphere and accretion of asthenosphere mantle beneath eastern China. Geotectonica et Metallogenia.1992,16(2): 171-180.
    [102]Griffin W L, Zhang A, O Reilly S Y, et al. Phanerozoic evolution of the lithosphere beneath the Sino-Korean craton. Mantle dynamics and plate interactions in east Asia.1998, 27:107-126.
    [103]姜耀辉,蒋少涌,赵葵东,等.辽东半岛煌斑岩SHRIMP锆石U-Pb年龄及其对中国东部岩石圈减薄开始时间的制约.科学通报.2005,50(19):2161-2168.
    [104]许文良,王冬艳,王清海,等.华北地块中东部中生代侵入杂岩中角闪石和黑云母的40Ar/39Ar定年:对岩石圈减薄时间的制约.地球化学.2004,33(3):221-231.
    [105]徐义刚,李洪颜,庞崇进,等.论华北克拉通破坏的时限.科学通报.2009,54(14):1974-1989.
    [106]Zhang H F, Sun M, Zhou X H, et al. Secular evolution of the lithosphere beneath the eastern North China Craton:Evidence from Mesozoic basalts and high-Mg andesites. Geochimica et Cosmochimica Acta.2003,67(22):4373-4387.
    [107]Yang J, O'Reilly S, Walker R J, et al. Diachronous decratonization of the Sino-Korean craton:Geochemistry of mantle xenoliths from North Korea. Geology.2010,38(9): 799-802.
    [108]Yang J H, Wu F Y, Wilde S A, et al. Petrogenesis of Late Triassic granitoids and their enclaves with implications for post-collisional lithospheric thinning of the Liaodong Peninsula, North China Craton. Chemical Geology.2007,242(1-2):155-175.
    [109]Zhu R, Yang J, Wu F. Timing of destruction of the North China Craton. Lithos.2012,149: 51-60.
    [110]杨进辉,吴福元.华北东部三叠纪岩浆作用与克拉通破坏.中国科学:D辑.2009,39(7):910-921.
    [111]Zhang S, Zhao Y, Ye H, et al. Early Mesozoic alkaline complexes in the northern North China Craton:Implications for cratonic lithospheric destruction. Lithos.2012,155:1-18.
    [112]Zhang H F, Sun M, Zhou X H, et al. Geochernical constraints on the origin of Mesozoic alkaline intrusive complexes from the North China Craton and tectonic implications. Lithos. 2005,81(1-4):297-317.
    [113]Lan T, Fan H, Santosh M, et al. Early Jurassic high-K calc-alkaline and shoshonitic rocks from the Tongshi intrusive complex, eastern North China Craton:Implication for crust-mantle interaction and post-collisional magmatism. Lithos.2012,140-141:183-199.
    [114]闫峻,陈江峰,谢智,等.鲁东晚白垩世玄武岩中的幔源捕虏体:对中国东部岩石圈减薄时间制约的新证据.科学通报.2003,48(014):1570-1574.
    [115]张宏福,郑建平.华北中生代玄武岩的地球化学特征与岩石成因:以辽宁阜新为例.科学通报.2003,48(6):603-609.
    [116]Zheng J P, Griffin W L, O'Reilly S Y, et al. Mechanism and timing of lithospheric modification and replacement beneath the eastern North China Craton:Peridotitic xenoliths from the 100 Ma Fuxin basalts and a regional synthesis. Geochimica et Cosmochimica Acta. 2007,71(21):5203-5225.
    [117]Cheng C, Chen L, Yao H, et al. Distinct variations of crustal shear wave velocity structure and radial anisotropy beneath the North China Craton and tectonic implications. Gondwana Research.2013,23(1):25-38.
    [118]吴福元,葛文春,孙德有,等.中国东部岩石圈减薄研究中的几个问题.地学前缘.2003,10(3):51-60.
    [119]Niu Y. Generation and evolution of basaltic magmas:Some basic concepts and a new view on the origin of Mesozoic-Cenozoic basaltic volcanism in eastern China. Geological Journal of China Universities.2005,11(1):9-46.
    [120]Deng J F, Su S G, Niu Y L, et al. A possible model for the lithospheric thinning of North China Craton:Evidence from the Yanshanian (Jura-Cretaceous) magmatism and tectonism. Lithos.2007,96(1-2):22-35.
    [121]Xu W L, Gao S, Wang Q H, et al. Mesozoic crustal thickening of the eastern North China craton:Evidence from eclogite xenoliths and petrologic implications. Geology.2006,34(9): 721-724.
    [122]Xu W, Zhou Q, Pei F, et al. Destruction of the North China Craton:Delamination or thermal/chemical erosion? Mineral chemistry and oxygen isotope insights from websterite xenoliths. Gondwana Research.2013,23(1):119-129.
    [123]Zheng J P, O'Reilly S Y, Griffin W L, et al. Nature and evolution of Cenozoic lithospheric mantle beneath Shandong peninsula, Sino-Korean craton, eastern China. International Geology Review.1998,40(6):471-499.
    [124]Xu Y G. Thermo-tectonic destruction of the archaean lithospheric keel beneath the Sino-Korean Craton in China:Evidence, timing and mechanism. Physics and Chemistry of the Earth Part A-Solid Earth and Geodesy.2001,26(9-10):747-757.
    [125]Xu Y G, Huang X L, Ma J L, et al. Crust-mantle interaction during the tectono-thermal reactivation of the North China Craton:constraints from SHRIMP zircon U-Pb chronology and geochemistry of Mesozoic plutons from western Shandong. Contributions to Mineralogy and Petrology.2004,147(6):750-767.
    [126]张宏福.橄榄岩-熔体相互作用:克拉通型岩石圈地幔能够被破坏之关键.科学通报.2009,54(14):2008-2026.
    [127]Tang Y, Zhang H, Ying J, et al. Widespread refertilization of cratonic and circum-cratonic lithospheric mantle. Earth Science Reviews.2013,118:45-68.
    [128]牛耀龄.玄武岩浆起源和演化的一些基本概念以及对中国东部中-新生代基性火山岩成因的新思路(英文).高校地质学报.2005,11(1):9-46.
    [129]Windley B F, Maruyama S, Xiao W J. Delamination/thinning of sub-continental lithospheric mantle under Eastern China:The role of water and multiple subduction. American Journal of Science.2010,310(10):1250-1293.
    [130]Menzies M A, Xu Y G. Geodynamics of the North China Craton. In:Flower M F J, Chung S, Lo C, et al. Mantle Dynamics and Plate Interactions in East Asia, Washington:1998. 155-165.
    [131]Zhang H F, Sun M. Geochemistry of mesozoic basalts and mafic dikes, southeastern North China craton, and tectonic implications. International Geology Review.2002,44(4): 370-382.
    [132]Yang J, Sun J, Zhang J, et al. Petrogenesis of Late Triassic intrusive rocks in the northern Liaodong Peninsula related to decratonization of the North China Craton:Zircon U-Pb age and Hf-O isotope evidence. Lithos.2012,153:108-128.
    [133]Xu Z, Zhao Z, Zheng Y. Slab-mantle interaction for thinning of cratonic lithospheric mantle in North China:Geochemical evidence from Cenozoic continental basalts in central Shandong. Lithos.2012,146-147:202-217.
    [134]郑建平.不同时空背景幔源物质对比与华北深部岩石圈破坏和增生置换过程.科学通报.2009,54(14):1990-2007.
    [135]Tang Y, Zhang H, Santosh M, et al. Differential destruction of the North China Craton:A tectonic perspective. Journal of Asian Earth Sciences., in press.
    [136]Zhang H F, Sun M, Zhou X H, et al. Mesozoic lithosphere destruction beneath the North China Craton:evidence from major-, trace-element and Sr-Nd-Pb isotope studies of Fangcheng basalts. Contributions to Mineralogy and Petrology.2002,144(2):241-253.
    [137]Zheng J P, Sun M, Zhou M F, et al. Trace elemental and PGE geochemical constraints of Mesozoic and Cenozoic peridotitic xenoliths on lithospheric evolution of the North China Craton. Geochimica et Cosmochimica Acta.2005,69(13):3401-3418.
    [138]Ying J F, Zhang H F, Kita N, et al. Nature and evolution of late cretaceous lithospheric mantle beneath the eastern North China Craton:Constraints from petrology and geochemistry of peridotitic xenoliths from Junan, Shandong Province, China. Earth and Planetary Science Letters.2006,244(3-4):622-638.
    [139]Xu W L, Yang D B, Gao S, et al. Geochemistry of peridotite xenoliths in Early Cretaceous high-Mg# diorites from the Central Orogenic Block of the North China Craton:The nature of Mesozoic lithospheric mantle and constraints on lithospheric thinning. Chemical Geology.2010,270(1-4):257-273.
    [140]Zhang H F. Transformation of lithospheric mantle through peridotite-melt reaction:A case of Sino-Korean craton. Earth and Planetary Science Letters.2005,237(3-4):768-780.
    [141]Xu W L, Hergt J A, Gao S, et al. Interaction of adakitic melt-peridotite:Implications for the high-Mg# signature of Mesozoic adakitic rocks in the eastern North China Craton. Earth and Planetary Science Letters.2008,265(1-2):123-137.
    [142]Xu W L, Wang Q H, Wang D Y, et al. Mesozoic adakitic rocks from the Xuzhou-Suzhou area, eastern China:Evidence for partial melting of delaminated lower continental crust. Journal of Asian Earth Sciences.2006,27(2):230-240.
    [143]张旗,王焰,刘红涛,等.中国埃达克岩的时空分布及其形成背景.地学前缘.2003,10(4):385-400.
    [144]Xu Y G, Ma J L, Huang X L, et al. Early cretaceous gabbroic complex from Yinan, Shandong Province:Petrogenesis and mantle domains beneath the North China Craton. International Journal of Earth Sciences.2004,93(6):1025-1041.
    [145]Yang J H, Sun J F, Chen F, et al. Sources and petrogenesis of late Triassic dolerite dikes in the liaodong peninsula:Implications for post-collisional lithosphere thinning of the eastern North China Craton. Journal of Petrology.2007,48(10):1973-1997.
    [146]张旗,钱青,王二七,等.燕山中晚期的中国东部高原:埃达克岩的启示.地质科学.2001,36(2):248-255.
    [147]李伍平,赵越,李献华,等.燕山造山带中-晚侏罗世髫髻山期(蓝旗期)火山岩的成因及其动力学意义.岩石学报.2007,23(3):557-564.
    [148]李伍平,李献华.燕山造山带中段中晚侏罗世中酸性火山岩的成因及其意义.岩石学报.2004,20(3):501-510.
    [149]Qian Q, Hermann J. Formation of High-Mg Diorites through Assimilation of Peridotite by Monzodiorite Magma at Crustal Depths. Journal of Petrology.2010,51(7):1381-1416.
    [150]Moyen J. High Sr/Y and La/Yb ratios:The meaning of the "adakitic signature". Lithos. 2009,112(3-4):556-574.
    [151]Chen B, Jahn B, Suzuki K. Petrological and Nd-Sr-Os isotopic constraints on the origin of high-Mg adakitic rocks from the North China Craton:Tectonic implications. Geology.2013, 41(1):91-94.
    [152]Zhao G, Cawood P A, Li S, et al. Amalgamation of the North China Craton:Key issues and discussion. Precambrian Research.2012,222-223:55-76.
    [153]王根厚,张长厚,王果胜,等.辽西地区中生代构造格局及其形演化.现代地质.2001,15(1):1-7.
    [154]张国仁.辽西地区中生代板内造山作用[博士学位论文].北京:中国地质大学(北京),2006.
    [155]Wang W, Liu S, Santosh M, et al. Zircon U-Pb-Hf isotopes and whole-rock geochemistry of granitoid gneisses in the Jianping gneissic terrane, Western Liaoning Province: Constraints on the Neoarchean crustal evolution of the North China Craton. Precambrian Research.2013,224:184-221.
    [156]Liu S, Santosh M, Wang W, et al. Zircon U-Pb chronology of the Jianping Complex: Implications for the Precambrian crustal evolution history of the northern margin of North China Craton. Gondwana Research.2011,20(1):48-63.
    [157]Kroner A, Cui W Y, Wang S Q, et al. Single zircon ages from high-grade rocks of the Jianping Complex, Liaoning Province, NE China. Journal of Asian Earth Sciences.1998, 16(5-6):519-532.
    [158]赵越,陈斌,张拴宏,等.华北克拉通北缘及邻区前燕山期主要地质事件.中国地质.2010,37(4):900-916.
    [159]Zhang S H, Zhao Y, Yang Z Y, et al. The 1.35 Ga diabase sills from the northern North China Craton:Implications for breakup of the Columbia (Nuna) supercontinent. Earth and Planetary Science Letters.2009,288(3-4):588-600.
    [160]赵越,徐刚,张拴宏,等.燕山运动与东亚构造体制的转变.地学前缘.2004,11(3):319-328.
    [161]董树文,张岳桥,龙长兴,等.中国侏罗纪构造变革与燕山运动新诠释.地质学报.2008,81(11):1449-1461.
    [162]Davis G A, Zheng Y D, Wang C, et al. Mesozoic tectonic evolution of the Yanshan fold and thrust belt, with emphasis on Hebei and Liaoning provinces, northern China. Geological Society of America Memoirs.2001,194:171-197.
    [163]Hu J M, Zhao Y, Liu X W, et al. Early Mesozoic deformations of the eastern Yanshan thrust belt, northern China. International Journal of Earth Sciences.2010,99(4):785-800.
    [164]Davis G A, Meng J, Cao W, et al. Triassic and Jurassic Tectonics in the Eastern Yanshan Belt, North China:Insights from the Controversial Dengzhangzi Formation and Its Neighboring Units. Earth Science Frontiers.2009,16(3):69-86.
    [165]张岳桥,董树文,赵越,等.华北侏罗纪大地构造:综评与新认识.地质学报.2008,81(11):1462-1480.
    [166]李忠,刘少峰,张金芳,等.燕山典型盆地充填序列及迁移特征:对中生代构造转折的响应.中国科学:D辑.2003,33(10):931-940.
    [167]邵济安,杨蔚.关于“辽宁北票兴隆沟火山岩的野外产状,岩石成因及地质意义”文的辩正.地抩学报.2011,85(3):379-382.
    [168]Liu Y S, Zong K Q, Kelemen P B, et al. Geochemistry and magmatic history of eclogites and ultramafic rocks from the Chinese continental scientific drill hole:Subduction and ultrahigh-pressure metamorphism of lower crustal cumulates. Chemical Geology.2008, 247(1-2):133-153.
    [169]Andersen T. Correction of common lead in U-Pb analyses that do not report 204Pb. Chemical Geology.2002,192(1-2):59-79.
    [170]Ludwig K R. User's manual for Isoplot 3.00:a geochronological toolkit for Microsoft Excel. Berkeley:Berkeley Geochronology Center Special Publication,2003
    [171]Amelin Y, Davis W J. Geochemical test for branching decay of 176Lu. Geochimica et Cosmochimica Acta.2005,69(2):465-473.
    [172]Blicherttoft J, Albarede F. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system. Earth and Planetary Science Letters.1997,148(1-2):243-258.
    [173]Griffin W L, Pearson N J, Belousova E, et al. The Hf isotope composition of cratonic mantle:LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochimica et Cosmochimica Acta.2000,64(1):133-148.
    [174]Liu Y S, Gao S, Hu Z C, et al. Continental and Oceanic Crust Recycling-induced Melt-Peridotite Interactions in the Trans-North China Orogen:U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology.2010,51(1-2): 537-571.
    [175]Liu Y S, Hu Z C, Zong K Q, et al. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS. Chinese Science Bulletin.2010,55(15): 1535-1546.
    [176]Liu Y S, Hu Z C, Gao S, et al. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chemical Geology.2008, 257(1-2):34-43.
    [177]Hu Z, Liu Y, Gao S, et al. Improved in situ Hf isotope ratio analysis of zircon using newly designed X skimmer cone and jet sample cone in combination with the addition of nitrogen by laser ablation multiple collector ICP-MS. Journal of Analytical Atomic Spectrometry. 2012,27(9):1391-1399.
    [178]Yuan H L, Gao S, Dai M N, et al. Simultaneous determinations of U-Pb age, Hf isotopes and trace element compositions of zircon by excimer laser-ablation quadrupole and multiple-collector ICP-MS. Chemical Geology.2008,247(1-2):100-118.
    [179]Griffin W L, Powell W J, Pearson N J, et al. GLITTER:Data reduction software for laser ablation ICP-MS. Mineralogical Association of Canada (MAC).2008,40(2):204-207.
    [180]Belousova E A, Griffin W L, Shee S R, et al. Two age populations of zircons from the Timber Creek kimberlites, Northern Territory, as determined by laser-ablation ICP-MS analysis. Australian Journal of Earth Sciences.2001,48(5):757-765.
    [181]Jackson S E, Pearson N J, Griffin W L, et al. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology. Chemical Geology.2004,211(1-2):47-69.
    [182]Griffin W L, Wang X, Jackson S E, et al. Zircon chemistry and magma mixing, SE China: In-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes. Lithos.2002, 61(3-4):237-269.
    [183]Defant M J, Drummond M S. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature.1990,347(6294):662-665.
    [184]Martin H. Adakitic magmas:modern analogues of Archaean granitoids. Lithos.1999,46(3): 411-429.
    [185]Kay R W. Aleutian magnesian andesites:Melts from subducted Pacific ocean crust. Journal of Volcanology and Geothermal Research.1978,4(1-2):117-132.
    [186]Stern R A, Hanson G N. Archean High-Mg Granodiorite:A Derivative of Light Rare Earth Element-enriched Monzodiorite of Mantle Origin. Journal of Petrology.1991,32(1): 201-238.
    [187]Chung S, Chu M, Ji J, et al. The nature and timing of crustal thickening in Southern Tibet: Geochemical and zircon Hf isotopic constraints from postcollisional adakites. Tectonophysics.2009,477(1-2):36-48.
    [188]Condie K C. TTGs and adakites:are they both slab melts? Lithos.2005,80(1-4):33-44.
    [189]Atherton M P, Petford N. Generation of sodium-rich magmas from newly underplated basaltic crust. Nature.1993,362(6416):144-146.
    [190]Xu J F, Shinjo R, Defant M J, et al. Origin of Mesozoic adakitic intrusive rocks in the Ningzhen area of east China:Partial melting of delaminated lower continental crust? Geology.2002,30(12):1111-1114.
    [191]Kay R W, Kay S M. Delamination and delamination magmatism. Tectonophysics.1993, 219(1-3):177-189.
    [192]Wang Q, Wyman D A, Xu J, et al. Early Cretaceous adakitic granites in the Northern Dabie Complex, central China:Implications for partial melting and delamination of thickened lower crust. Geochimica et Cosmochimica Acta.2007,71(10):2609-2636.
    [193]Richards J P, Kerrich R. Special Paper:Adakite-Like Rocks:Their Diverse Origins and Questionable Role in Metallogenesis. Economic Geology.2007,102(4):537-576.
    [194]Castillo P R, Janney P E, Solidum R U. Petrology and geochemistry of Camiguin Island, southern Philippines:insights to the source of adakites and other lavas in a complex arc setting. Contributions to Mineralogy and Petrology.1999,134(1):33-51.
    [195]Chiaradia M. Adakite-like magmas from fractional crystallization and melting-assimilation of mafic lower crust (Eocene Macuchi arc, Western Cordillera, Ecuador). Chemical Geology.2009,265(3-4):468-487.
    [196]Guo F, Nakamuru E, Fan W, et al. Generation of Palaeocene Adakitic Andesites by Magma Mixing; Yanji Area, NE China. Journal of Petrology.2007,48(4):661-692.
    [197]Streck M J, Leeman W P, Chesley J. High-magnesian andesite from Mount Shasta:A product of magma mixing and contamination, not a primitive mantle melt. Geology.2007, 35(4):351-354.
    [198]Castillo P R. Adakite petrogenesis. Lithos.2012,134-135:304-316.
    [199]Jiang N, Liu Y S, Zhou W G, et al. Derivation of Mesozoic adakitic magmas from ancient lower crust in the North China craton. Geochimica et Cosmochimica Acta.2007,71(10): 2591-2608.
    [200]Cope T D, Graham S A. Upper crustal response to Mesozoic tectonism in western Liaoning, North China, and implications for lithospheric delamination. Geological Society, London, Special Publications.2007,280(1):201-222.
    [201]张长厚,王根厚,王果胜,等.辽西地区燕山板内造山带东段中生代逆冲推覆构造.地质学报.2002,76(1):64-76.
    [202]胡健民,赵越,刘晓文,等.辽西凌源地区水泉沟组辉石安山岩锆石iSHRIMPU-Pb定年及其意义.地质通报.2005,24(2):104-109.
    [203]邵济安,路凤香,李伍平.辽西中生代陆内底侵作用背景下形成的安山岩.岩石学报.2007,23(4):701-708.
    [204]Defant M, Clark L, Stewart R, et al. Andesite and dacite genesis via contrasting processes: the geology and geochemistry of El Valle Volcano, Panama. Contributions to Mineralogy and Petrology.1991,106(3):309-324.
    [205]Stern C R, Kilian R. Role of the subducted slab, mantle wedge and continental crust in the generation of adakites from the Andean Austral Volcanic Zone. Contributions to Mineralogy and Petrology.1996,123(3):263-281.
    [206]Bourdon E, Eissen J, Monzier M, et al. Adakite-like Lavas from Antisana Volcano (Ecuador):Evidence for Slab Melt Metasomatism Beneath Andean Northern Volcanic Zone. Journal of Petrology.2002,43(2):199-217.
    [207]Samaniego P, Martin H, Monzier M, et al. Temporal Evolution of Magmatism in the Northern Volcanic Zone of the Andes:The Geology and Petrology of Cayambe Volcanic Complex (Ecuador). Journal of Petrology.2005,46(11):2225-2252.
    [208]Rapp R P, Norman M D, Laporte D, et al. Continent Formation in the Archean and Chemical Evolution of the Cratonic Lithosphere:Melt-Rock Reaction Experiments at 3-4 GPa and Petrogenesis of Archean Mg-Diorites (Sanukitoids). Journal of Petrology.2010, 51(6):1237-1266.
    [209]Rapp R P, Shimizu N, Norman M D, et al. Reaction between slab-derived melts and peridotite in the mantle wedge:experimental constraints at 3.8 GPa. Chemical Geology. 1999,160(4):335-356.
    [210]Wang Q, Xu J F, Jian P, et al. Petrogenesis of Adakitic Porphyries in an Extensional Tectonic Setting, Dexing, South China:Implications for the Genesis of Porphyry Copper Mineralization. Journal of Petrology.2006,47(1):119-144.
    [211]Johnson K, Barnes C G, Miller C A. Petrology, Geochemistry, and Genesis of High-Al Tonalite and Trondhjemites of the Cornucopia Stock, Blue Mountains, Northeastern Oregon. Journal of Petrology.1997,38(11):1585-1611.
    [212]Petford N, Atherton M. Na-rich Partial Melts from Newly Underplated Basaltic Crust:the Cordillera Blanca Batholith, Peru. Journal of Petrology.1996,37(6):1491-1521.
    [213]Muir R J, Weaver S D, Bradshaw J D, et al. The Cretaceous Separation Point batholith, New Zealand:granitoid magmas formed by melting of mafic lithosphere. Journal of the Geological Society.1995,152(4):689-701.
    [214]Mcdonough W F, Sun S S. The composition of the Earth. Chemical Geology.1995, 120(3-4):223-253.
    [215]袁洪林,柳小明,刘勇胜,等.北京西山晚中生代火山岩U-Pb锆石年代学及地球化学研究.中国科学:D辑.2005,35(9):821-836.
    [216]邵济安,陈福坤,路凤香,等.辽西中生代软流圈底辟体的脉动式上涌.地球科学(中国地质大学学报).2006,31(6):807-816.
    [217]佘宏全,徐贵忠,周瑞,等.内蒙东部红花沟金矿田早中生代构造-岩浆活动及对金成矿的控制作用.现代地质.2000,14(4):408-416.
    [218]Davidson J, Turner S, Plank T. Dy/Dy*:Variations Arising from Mantle Sources and Petrogenetic Processes. Journal of Petrology.2013,54(3):525-537.
    [219]Davidson J, Turner S, Handley H, et al. Amphibole "sponge" in arc crust? Geology.2007, 35(9):787-790.
    [220]Zhang S H, Zhao Y, Liu X C, et al. Late Paleozoic to Early Mesozoic mafic-ultramafic complexes from the northern North China Block:Constraints on the composition and evolution of the lithospheric mantle. Lithos.2009,110(1-4):229-246.
    [221]陈斌,田伟,刘安坤.冀北小张家口基性-超基性杂岩的成因:岩石学,地球化学和Nd-Sr同位素证据.高校地质学报.2008,14(3):295-303.
    [222]韩宝福,加加美宽雄,李惠民.河北平泉光头山碱性花岗岩的时代,Nd-Sr同位素特征及其对华北早中生代壳幔相互作用的意义.岩石学报.2004,20(6):1375-1388.
    [223]黄方,何永胜.干的基性大陆下地壳部分熔融:对C型埃达克岩成因的制约.科学通报.2010,55(13):1255-1267.
    [224]邵济安,魏春景.内蒙古东部早中生代麻粒岩捕虏体的岩石学及其构造意义.中国科学:地球科学.2011,41(8):1080-1088.
    [225]佘宏全,王义文,李庆环,等.内蒙古赤峰柴胡栏子金矿基性麻粒岩包体特征及其成矿动力学意义.地质学报.2006,80(6):863-875.
    [226]储玲林,张瑞生,廖群安,等.辽西建昌-凌源地区早侏罗世水泉沟组底部英安岩中斜长石环带特征的解译.岩石学报.2006,22(09):2325-2330.
    [227]阎国翰,牟保磊,许保良,等.燕辽-阴山三叠纪碱性侵入岩年代学和Sr,Nd,Pb同位素特征及意义.中国科学(D辑).2000,30(4):383-387.
    [228]Zhang S H, Zhao Y, Song B, et al. Contrasting Late Carboniferous and Late Permian-Middle Triassic intrusive suites from the northern margin of the North China craton:Geochronology, petrogenesis, and tectonic implications. Geological Society of America Bulletin.2009,121(1-2):181-200.
    [229]韩庆军,邵济安.内蒙古喀喇沁早中生代闪长岩的岩石学,地球化学及其成因.岩石学报.2000,16(3):385-391.
    [230]邵济安,韩庆军,李惠民.华北克拉通早中生代麻粒岩捕虏体的发现.中国科学(D辑)-地球科学.2000,30(S1):148-153.
    [231]Gao S, Zhang B R, Jin Z M, et al. How mafic is the lower continental crust? Earth and Planetary Science Letters.1998,161(1-4):101-117.
    [232]Zhang S, Zhao Y, Kroner A, et al. Early Permian plutons from the northern North China Block:constraints on continental arc evolution and convergent margin magmatism related to the Central Asian Orogenic Belt. International Journal of Earth Sciences.2009,98(6): 1441-1467.
    [233]邵济安,韩庆军,张履桥,等.内蒙古东部早中生代堆积杂岩捕虏体的发现.科学通报.1999,44(5):478-485.
    [234]Zhang Z, Zhang H, Shao J, et al. Guangtoushan granites and their enclaves:Implications for Triassic mantle upwelling in the northern margin of the North China Craton. Lithos. 2012,149:174-187.
    [235]马强,郑建平.辽西北票蓝旗组火山岩锆石U-Pb年龄和Hf同位素组成.岩石学报.2009,25(12):3287-3297.
    [236]吴福元,杨进辉,张艳斌,等.辽西东南部中生代花岗岩时代.岩石学报.2006,22(2):315-325.
    [237]李晓勇,范蔚茗,郭锋,等.古亚洲洋对华北陆缘岩石圈的改造作用:来自于西山南大岭组中基性火山岩的地球化学证据.岩石学报.2004,20(3):557-566.
    [238]Guo F, Fan W M, Li X Y, et al. Geochemistry of Mesozoic mafic volcanic rocks from the Yanshan belt in the northern margin of the North China Block:relations with post-collisional lithospheric extension. Geological Society, London, Special Publications. 2007,280(1):101-129.
    [239]武广,李之彤,王文武.辽西地区中侏罗世海房沟组火山岩地球化学特征及其地质意义.岩石矿物学杂志.2004,23(2):97-108.
    [240]Gao K, Shubin N H. Earliest known crown-group salamanders. Nature.2003,422(6930): 424-428.
    [241]辽宁省地质矿产局.辽宁省区域地质志.北京:地质出版社,1989
    [242]徐刚,赵越,吴海,等.辽西凌源牛营子盆地晚三叠世—中侏罗世地层层序及区域对比.地球学报.2005,26(4):299-308.
    [243]Wang X, Krings M, Taylor T N. A thalloid organism with possible lichen affinity from the Jurassic of northeastern China. Review of Palaeobotany and Palynology.2010,162(4): 591-598.
    [244]Wang X, Duan S, Geng B, et al. Schmeissneria:A missing link to angiosperms? BMC Evolutionary Biology.2007,7(1):14.
    [245]Wang X, Wang S. Xingxueanthus:An enigmatic Jurassic seed plant and its implications for the origin of angiospermy. Acta Geologica Sinica-English Edition.2010,84(1):47-55.
    [246]Wong W H. Crustal movement and igneous activities in eastern China since Mesozoic time. Bulletin of Geological Society of China.1927,6(1):9-36.
    [247]Wong W H. The Mesozoic orogenic movement in eastern China. Bulletin of Geological Society of China.1929,8:33-44.
    [248]崔盛芹等.燕山地区中生代陆内造山作用.北京:地质出版社,2002
    [249]郑亚东,Davis G. A.燕山带中生代主要构造事件与板块构造背景问题.地质学报.2000,74(004):289-302.
    [250]宋鸿林.燕山式板内造山带基本特征与动力学探讨.地学前缘.1999,6(4):309-316.
    [251]吴福元,孙德有,张广良,等.论燕山运动的深部地球动力学本质.高校地质学报.2000,6(3):379-388.
    [252]翟明国,朱日祥,刘建明,等.华北东部中生代构造体制转折的关键时限.中国科学:D辑.2003,33(10):913-920.
    [253]赵越,张拴宏,徐刚,等.燕山板内变形带侏罗纪主要构造事件.地质通报.2004,23(9-10):854-863.
    [254]Wang Z H, Zhao Y, Zou H B, et al. Petrogenesis of the Early Jurassic Nandaling flood basalts in the Yanshan belt, North China Craton:A correlation between magmatic underplating and lithospheric thinning. LITHOS.2007,96(3-4):543-566.
    [255]Hofmann A W. Sampling mantle heterogeneity through oceanic basalts:isotopes and trace elements. In:Treatise on Geochemistry, Elsevier,2003.61-101.
    [256]Song Y, Frey F A, Zhi X. Isotopic characteristics of Hannuoba basalts, eastern China: implications for their petrogenesis and the composition of subcontinental mantle. Chemical Geology.1990,88(1):35-52.
    [257]Yang J H, Wu F Y, Wilde S A, et al. Tracing magma mixing in granite genesis:in situ U-Pb dating and Hf-isotope analysis of zircons. Contributions to Mineralogy and Petrology. 2007,153(2):177-190.
    [258]赵越,宋彪,张拴宏,等.北京西山侏罗纪南大岭组玄武岩的继承锆石年代学及其含义.地学前缘.2006,13(2):184-190.
    [259]郑建平,张瑞生,余淳梅,等.冀东-辽西玄武岩二长岩包体锆石U-Pb定年,Hf同位素和微量元素示踪燕辽地区169Ma和107Ma的热事件.中国科学:D辑.2004,34(S 1):32-44.
    [260]Yang J H, Wu F Y, Shao J A, et al. Constraints on the timing of uplift of the Yanshan Fold and Thrust Belt, North China. Earth and Planetary Science Letters.2006,246(3-4): 336-352.
    [261]Hao Y, Xia Q, Liu S, et al. Recognizing juvenile and relict lithospheric mantle beneath the North China Craton:Combined analysis of H2O, major and trace elements and Sr-Nd isotope compositions of clinopyroxenes. Lithos.2012,149:136-145.
    [262]任纪舜,陈延愚,牛宝.中国东部大陆岩石圈的构造演化与成矿.北京:科学出版社,1990
    [263]邓晋福,赵国春,赵海玲,等.中国东部燕山期火成岩构造组合与造山——深部过程.地质论评.2000,46(1):41-48.
    [264]漆家福,于福生,陆克政,等.渤海湾地区的中生代盆地构造概论.地学前缘.2003,10:199-206.
    [265]Li H, Xu Y, Liu Y, et al. Detrital zircons reveal no Jurassic plateau in the eastern North China Craton. Gondwana Research.2013, in press.
    [266]李伍平.辽西北票晚侏罗世蓝旗组火山岩的岩浆演化及其岩石成因.地球科学:中国地质大学学报.2012,37(1):47-56.
    [267]刘健,赵越,柳小明.冀北承德盆地髫髻山组火山岩的时代.岩石学报.2006,22(11):2617-2630.
    [268]北京市地质矿产局.北京市区域地质志.北京:地质出版社,1989
    [269]河北省地质矿产局.河北省北京市天津市区域地质志.北京:地质出版社,1989
    [270]张俊峰.道虎沟生物群(前热河生物群)的发现及其地质时代.地层学杂志.2002,26(3):173-177.
    [271]Ji Q, Luo Z, Yuan C, et al. A swimming mammaliaform from the Middle Jurassic and ecomorphological diversification of early mammals. Science.2006,311(5764):1123-1127.
    [272]Lu J, Unwin D M, Deeming D C, et al. An egg-adult association, gender, and reproduction in pterosaurs. Science.2011,331(6015):321-324.
    [273]Luo Z, Yuan C, Meng Q, et al. A Jurassic eutherian mammal and divergence of marsupials and placentals. Nature.2011,476(7361):442-445.
    [274]Lu J, Unwin D M, Jin X, et al. Evidence for modular evolution in a long-tailed pterosaur with a pterodactyloid skull. Proceedings of the Royal Society B:Biological Sciences.2010, 277(1680):383-389.
    [275]Cope T C. Sedimentary Evolution of the Yanshan Fold-thrust Belt, Northest China. Califonia:Stanford University,2003
    [276]张宏,王明新,柳小明. LA-ICP-MS测年对辽西-冀北地区髫髻山组火山岩上限年龄的限定.科学通报.2008,53(15):1815-1824.
    [277]张宏,袁洪林,胡兆初,等.冀北滦平地区中生代火山岩地层锆石U-Pb测年及启示.地球科学:中国地质大学学报.2005,30(6):707-720.
    [278]张长厚,吴淦国,徐德斌,等.燕山板内造山带中段中生代构造格局与构造演化.地质通报.2004,23(9-10):864-875.
    [279]张长厚,吴淦国,王根厚,等.冀东地区燕山中段北西向构造带:构造属性及其年代学.中国科学D辑:地球科学.2004,34(7):600-612.
    [280]李伍平,路凤香,李献华,等.北京西山髫髻山组火山岩的地球化学特征与岩浆起源.岩石矿物学杂志.2001,20(2):123-133.
    [281]汪洋,李家振,孙善平,等.北京西山髫髻山组火山岩Sm-Nd等时线年龄初步研究.北京地质.2001,13(3):17-20.
    [282]Liu Y, Kuang H, Jiang X, et al. Timing of the earliest known feathered dinosaurs and transitional pterosaurs older than the Jehol Biota. Palaeogeography, Palaeoclimatology, Palaeoecology.2012,323-325:1-12.
    [283]季强,陈文,王五力等.中国辽西中生代热河生物群.北京:地质出版社,2004
    [284]Chang S, Zhang H, Renne P R, et al. High-precision 40Ar/39Ar age constraints on the basal Lanqi Formation and its implications for the origin of angiosperm plants. Earth and Planetary Science Letters.2009,279(3-4):212-221.
    [285]Liu Y X, Liu Y Q, Zhang H. LA-ICPMS Zircon U-Pb Dating in the Jurassic Daohugou Beds and Correlative Strata in Ningcheng of Inner Mongolia. Acta Geologica Sinica-English Edition.2006,80(5):733-742.
    [286]柳永清,刘燕学,姬书安,等.内蒙古宁城和辽西凌源热水汤地区道虎沟生物群与相关地层SHRIMP锆石U-Pb定年及有关问题的讨论.科学通报.2006,51(19):2273-2282.
    [287]陈文,季强,刘敦一,等.内蒙古宁城地区道虎沟化石层同位素年代学.地质通报.2004,23(12):1165-1169.
    [288]Chang S, Zhang H, Hemming S R, et al.40Ar/39Ar age constraints on the Haifanggou and Lanqi formations:When did the first flowers bloom? Geological Society, London, Special Publications.2013, in press.
    [289]Xu H, Liu Y, Kuang H, et al. U-Pb SHRIMP age for the Tuchengzi Formation, northern China, and its implications for biotic evolution during the Jurassic-Cretaceous transition. Palaeoworld.2012,21(3-4):222-234.
    [290]李伍平,李献华,路凤香.辽西中侏罗世高Sr低Y型火山岩的成因及其地质意义.岩石学报.2001,17(4):523-532.
    [291]王蕊,陈斌,柳小明.北京西山地区髫髻山组和东岭台组火山岩的地球化学特征与岩浆起源.高校地质学报.2007,13(3):603-612.
    [292]Chen B, Jahn B, Zhai M. Sr-Nd isotopic characteristics of the Mesozoic magmatism in the Taihang-Yanshan orogen, North China craton, and implications for Archaean lithosphere thinning. Journal of the Geological Society.2003,160(6):963.
    [293]陈义贤,陈文寄等.辽西及邻区中生代火山岩:年代学,地球化学和构造背景.北京:地震出版社,1997
    [294]张宏,柳小明,高山,等.辽西凌源地区张家口组的重新厘定及其意义——来自激光ICP-MS锆石U-Pb年龄的制约.地质通报.2005,24(2):110-117.
    [295]赵越,崔盛芹,郭涛,等.北京西山侏罗纪盆地演化及其构造意义.地质通报.2002,21(4-5):211-217.
    [296]Luo Z, Yuan C, Meng Q, et al. A Jurassic eutherian mammal and divergence of marsupials and placentals. Nature.2011,476(7361):442-445.
    [297]Xu X, Zheng X, You H. Exceptional dinosaur fossils show ontogenetic development of early feathers. Nature.2010,464(7293):1338-1341.
    [298]Xu X, Wang X, Wu X. A dromaeosaurid dinosaur with a filamentous integument from the Yixian Formation of China. Nature.1999,401(6750):262-266.
    [299]Zhou Z, Barrett P M, Hilton J. An exceptionally preserved Lower Cretaceous ecosystem. Nature.2003,421(6925):807-814.
    [300]Qiang J, Currie P J, Norell M A, et al. Two feathered dinosaurs from northeastern China. Nature.1998,393(6687):753-761.
    [301]胡健民,刘晓文,杨之青.辽西地区燕山板内造山带早中生代构造变形的年代学限定.岩石学报.2007,23(03):605-616.
    [302]邵济安,杨蔚.关于辽西北票地区兴隆沟组火山岩时代的再认识.地质通报.2008,27(6):912-916.
    [303]邵济安,路凤香.再论兴隆沟组火山岩成因.岩石学报.2008,24(6):1313-1322.
    [304]Wang Y, Cheng S. Field relation, geochemistry and origin of the Xinglonggou volcanic rocks in Beipiao area, Liaoning Province (China):Reappraisal on the foundering of lower continental crust of North China Craton. Journal of Asian Earth Sciences.2012,47:35-50.
    [305]Meng F, Gao S, Yuan H, et al. Permian-Triassic (260-220 Ma) crustal growth of Eastern Central Asian orogenic belt as revealed by detrital zircon studies. American Journal of Science.2010,310(5):364-404.
    [306]张宏,韦忠良,柳小明,等.冀北-辽西地区土城子组的LA-ICP-MS测年.中国科学:D辑.2008,38(8):1011-1021.
    [307]Niu B, He Z, Song B, et al. SHRIMP geochronology of volcanics of the Zhangjiakou and Yixian Formations, northern Hebei Province, with a discussion on the age of the Xing'anling Group of the Great Hinggan Mountains and volcanic strata of the southeastern coastal area of China. Acta Geologica Sinica-English Edition.2004,78(6):1214-1228.
    [308]韦忠良,张宏,郭文敏,等.LA-ICP-MS锆石U-Pb测年对辽西-冀北地区晚中生代区域性角度不整合时代的约束.自然科学进展.2008,18(10):1119-1127.
    [309]汪方跃,高山,牛宝贵,等.河北承德盆地114Ma大北沟组玄武岩地球化学及其对华北克拉通岩石圈地幔减薄作用的制约.地学前缘.2007,14(02):98-108.
    [310]张宏,柳小明,袁洪林,等.辽西凌源地区义县组下部层位的U-Pb测年及意义.地质论评.2006,52(1):63-71.
    [311]孟凡雪,高山,柳小明.辽西凌源地区义县组火山岩锆石U-Pb年代学和地球化学特 征.地质通报.2008,27(3):364-373.
    [312]C Swisher C.,汪筱林.义县组同位素年代新证据及土城子组40Ar/39Ar年龄测定.科学通报.2001,46(023):2009-2012.
    [313]米家榕,张川波,孙春林,等.北京西山杏石口组发育特征及其时代.地质学报.1984,58(4):273-283.
    [314]陈芬,窦亚伟,黄其胜等.北京西山侏罗纪植物群.北京:地质出版社,1984
    [315]胡健民,刘晓文,徐刚,等.辽西晚三叠世末—中侏罗世崩塌-滑坡-泥石流沉积及其构造意义.地质学报.2005,79(04):453-466.
    [316]邵济安,牟保磊,何国琦,等.华北北部在古亚洲域与古太平洋域构造叠加过程中的.中国科学:D辑.1997,27(5):390-394.
    [317]邵济安,张履桥.华北北部中生代岩墙群.岩石学报.2002,18(3):312-318.
    [318]Windley B F, Alexeiev D, Xiao W, et al. Tectonic models for accretion of the Central Asian Orogenic Belt. Journal of the Geological Society, London.2007,164(1):31-47.
    [319]Xiao W, Windley B F, Hao J, et al. Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China:Termination of the central Asian orogenic belt. Tectonics.2003,22(6):1069,10-1029.
    [320]刘少峰,李忠,张金芳.燕山地区中生代盆地演化及构造体制.中国科学:D辑.2004,34(A01):19-31.
    [321]刘少峰,李忠,张金芳.燕山地区中生代盆地演化及构造体制.中国科学:D辑.2004,34(A01):19-31.
    [322]吴福元,孙德有.中国东部中生代岩浆作用与岩石圈减薄.长春科技大学学报.1999,29(4):313-318.
    [323]Isozaki Y. Jurassic accretion tectonics of Japan. Island Arc.1997,6(1):25-51.
    [324]Wu F Y, Yang J H, Lo C H, et al. The Heilongjiang Group:A Jurassic accretionary complex in the Jiamusi Massif at the western Pacific margin of northeastern China. Island Arc.2007,16(1):156-172.
    [325]Maruyama S, Isozaki Y, Kimura G, et al. Paleogeographic maps of the Japanese Islands: Plate tectonic synthesis from 750 Ma to the present. Island Arc.1997,6(1):121-142.
    [326]Kojima S, Kemkin I V, Kametaka M, et al. A correlation of accretionary complexes of southern Sikhote-Alin of Russia and the Inner Zone of Southwest Japan. Geosciences Journal.2000,4(3):175-185.
    [327]Tomurtogoo O, Windley B F, Kroner A, et al. Zircon age and occurrence of the Adaatsag ophiolite and Muron shear zone, central Mongolia:constraints on the evolution of the Mongol-Okhotsk ocean, suture and orogen. Journal of the Geological Society, London. 2005,162(1):125-134.
    [328]Zorin Y A. Geodynamics of the western part of the Mongolia-Okhotsk collisional belt, Trans-Baikal region (Russia) and Mongolia. Tectonophysics.1999,306(1):33-56.
    [329]郑亚东,王士政,王玉芳.中蒙边界区新发现的特大型推覆构造及伸展变质核杂岩.中国科学B辑.1990,12:1300-1305.
    [330]郑亚东,Davis G. A.,王琮,等.内蒙古大青山大型逆冲推覆构造.中国科学:D辑. 1998,28(4):289-295.
    [331]李伍平.辽西北票早侏罗世兴隆沟组英安岩的地球化学特征.岩石学报.2006,22(6):1608-1616.
    [332]吴福元,杨进辉,柳小明.辽东半岛中生代花岗质岩浆作用的年代学格架.高校地质学报.2005,11(3):305-317.
    [333]郑建平,余淳梅,路凤香,等.辽宁金伯利岩变基性岩石捕虏体地球化学及锆石年代学:示踪华北下地壳早期演化.中国科学:D辑.2004,34(5):412-422.
    [334]Liu Y, Gao S, Gao C, et al. Garnet-rich granulite xenoliths from the Hannuoba basalts, North China:Petrogenesis and implications for the Mesozoic crust-mantle interaction. Journal of Earth Science.2010,21(5):669-691.
    [335]Xu X, Zhao Q, Norell M, et al. A new feathered maniraptoran dinosaur fossil that fills a morphological gap in avian origin. Chinese Science Bulletin.2009,54(3):430-435.
    [336]Hu D, Hou L, Zhang L, et al. A pre-Archaeopteryx troodontid theropod from China with long feathers on the metatarsus. Nature.2009,461(7264):640-643.
    [337]柳永清,刘燕学,李佩贤,等.内蒙古宁城盆地东南缘含道虎沟生物群岩石地层序列特征及时代归属.地质通报.2004,23(12):1180-1187.
    [338]季强,柳永清,陈文,等.再论道虎沟生物群的时代.地质论评.2006,51(6):609-612.
    [339]田伟,陈斌,刘超群,等.冀北小张家口超基性岩体的锆石U-Pb年龄和Hf同位素组成.岩石学报.2007,23(3):583-590.
    [340]Griffin W L, O'Reilly S Y, Ryan C G. Composition and thermal structure of the lithosphere beneath South Africa, Siberia and China:proton microprobe studies.1992:65-66.
    [341]Zhu G, Niu M, Xie C, et al. Sinistral to Normal Faulting along the Tan-Lu Fault Zone: Evidence for Geodynamic Switching of the East China Continental Margin. The Journal of Geology.2010,118(3):277-293.
    [342]Zhang Y, Dong S, Shi W. Cretaceous deformation history of the middle Tan-Lu fault zone in Shandong Province, eastern China. Tectonophysics.2003,363(3):243-258.
    [343]Zhu G, Wang Y, Liu G, et al. 40Ar/39Ar dating of strike-slip motion on the Tan-Lu fault zone, East China. Journal of Structural Geology.2005,27(8):1379-1398.
    [344]Mercier J L, Hou M, Vergdly P, et al. Structural and stratigraphical constraints on the kinematics history of the Southern Tan-Lu Fault Zone during the Mesozoic Anhui Province, China. Tectonophysics.2007,439(1):33-66.
    [345]朱光,王道轩,刘国生,等.郯庐断裂带的演化及其对西太平洋板块运动的响应.地质科学.2004,39(1):36-49.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700