用户名: 密码: 验证码:
二氧化锰的隧道调控和电化学离子存储性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
二氧化锰是一种重要的功能材料,由于具有多种晶体结构和锰的多变价态,已广泛应用于电化学储能领域。二氧化锰晶体结构的基础单元为MnO6八面体,由其可构成一维、二维或三维的特殊隧道结构,这些隧道中常含有水分子或者阳离子(如Li+、K+或NH4+等)。二氧化锰电化学储能原理是利用其隧道存储一价或二价离子(如Na+或Zn2+)来存储能量,因此其隧道结构和隧道中的阳离子决定了其电化学储能行为,本论文系统地研究了二氧化锰隧道结构和隧道中阳离子的种类和浓度对其电化学储存Na+或Zn2+行为的影响。
     首先本论文利用液相中锰的氧化还原反应,通过控制氧化剂和还原剂的比例、合成条件和合成方法制备了不同隧道结构的α-MnO2、δ-MnO2、γ-MnO2、β-MnO2和其它锰氧化合物MnOOH、Mn2O3和Mn3O4,对二氧化锰隧道结构转变的机理进行了探讨,并对其存储一价Na+和二价Zn2+的行为进行了研究。研究发现不同隧道结构的二氧化锰都能存储一价Na+,但在所有隧道结构中大隧道的α-MnO2能够快速存储大量的Na+,因此其具有最高的存储容量。
     本论文对制备的具有不同隧道结构的二氧化锰存储二价Zn2+的电池行为进行研究,发现不同隧道结构的二氧化锰在含Zn2+的水溶液中也能储存二价的Zn2+。二氧化锰通过Mn4+和Mn3+之间的变价来存储Zn2+。研究发现在ZnSO4电解液中加入Mn2+可以抑制Mn3+歧化反应生成Mn2+,减少了锰溶解引起的活性物质二氧化锰的减少,改善了充放电过程中循环容量的衰减。而由于二氧化锰的隧道结构,Zn2+能够快速的嵌入和脱出,放电时间可以从数十秒到数小时,说明其可以应用于新型的同时具有高功率密度和能量密度的锌离子电池中。
     本文系统研究了不同阳离子(Li+、Na+、K+或NH4+)对α-MnO2隧道结构稳定性和其存储一价Na+和二价Zn2+行为的影响,发现K+由于具有和O2-以及OH-近似的离子半径,对无定形态的α-MnO2有最好的稳定效果,K+的出现促使由MnO6八面体组成的二氧化锰链进行更多的无序搭接,提供了更多的大隧道结构,使其能存储更多的Na+和Zn2+,表现出更高的储存容量。此外,研究发现K+的引入极大的改变了α-MnO2的比表面、孔结构,提供了一种得到不同密度非晶态α-MnO2的新方法。
Manganese dioxides are important functional materials. Since having a variety ofcrystal structures and manganese changeable valence, manganese oxides are widelyused as electrode materials in electrochemical storage energy devices. The basic crystalstructure of manganese dioxide consists of MnO6octahedral units, which form1D,2Dand3D tunnel structures, it possesses H2O or cations such as Li+, K+, NH4+in the tunnelstructures. The electrochemical energy storage mechanism of MnO2is using the tunnelas host and monovalent or divalent ion (Na+or Zn2+) as media to store energy, thereforethe tunnel structures and cations in tunnel determine its electrochemical energy storagebehavior. The influence of cation species and concentration on electrochemical energystorage of Na+or Zn2+performances of MnO2was studied systematically in this work.
     First, a common liquid co-precipitation method based on the redox reactions of Mnwas used to synthesize α-MnO2, δ-MnO2, γ-MnO2, β-MnO2, MnOOH, Mn2O3andMn3O4by controlling the proportion of the oxidant and reductant, the synthesiscondition and synthesis method in this dissertation,. The transformation mechanism oftunnel structure of MnO2and its storage of Na+or Zn2+performances were discussed.The results indicated that all types MnO2with tunnel structure could store Na+, sinceα-MnO2with large tunnel old store large amounts of Na+, it had the highest storagecapacity of all manganese dioxides..
     The battery behavior of zinc ions stored by manganese dioxides with differenttunnel structures was study, the result showed that of Zn2+could be stored bymanganese dioxide with different tunnel structure in an aqueous solution. Manganesedioxide storage Zn2+by the redox reaction between Mn4+and Mn3+. Further studyindicated that adding Mn2+in aqueous ZnSO4electrolyte inhibited thedisproportionation reaction of Mn3+changing to Mn2+, which caused manganesedissolved. Through reducing the dissolution the active materials of manganese dioxideto improve the capacity during the charging and discharging cycle. Since Zn2+couldinsertion/extraction into the positive MnO2tunnel rapidly, the discharge time could befrom several tens of seconds to several hours, which made it can be used in the newtype zinc ion battery having a high power density and energy density at the same time.
     The effect of different ions such as Li+, Na+, K+or NH4+on the stability of tunnel structure of α-MnO2and storage performances of Na+or Zn2+was studied systematicallyin this dissertation. It was found that K ion has the best stabilizing effect of α-MnO2tunnel with approximate ionic radius of O2-and OH-. Since the MnO6octahedral chaindisorder lap provides more space, amorphous α-MnO2can store more Na+and Zn+,exhibit better capacitor performance. In addition, introducing K ions in the tunnel ofα-MnO2changed its specific surface area and pore structure greatly, which provided anew method for getting amorphous α-MnO2with different density.
引文
[1] Kotz R,Carlen M. Principles and applications of electrochemical capacitors. ElectrochimicaActa,2000,45(15-16):2483-2498.
    [2] Xia H, Feng J K, Wang H L, et al. MnO2nanotube and nanowire arrays by electrochemicaldeposition for supercapacitors. Journal of Power Sources,2010,195(13):4410-4413.
    [3] Xu C J, Du H D, Li B H, et al. Reversible Insertion Properties of Zinc Ion into ManganeseDioxide and Its Application for Energy Storage. Electrochemical and Solid State Letters,2009,12(4): A61-A65.
    [4] Xu C J, Du H D, Li B H, et al. Capacitive Behavior and Charge Storage Mechanism ofManganese Dioxide in Aqueous Solution Containing Bivalent Cations. Journal of theElectrochemical Society,2009,156(1): A73-A78.
    [5] Thackeray M M. Manganese oxides for lithium batteries. Progress in Solid State Chemistry,1997,25(1-2):1-71.
    [6] Feng Q, Yanagisawa K,Yamasaki N. Hydrothermal soft chemical process for synthesis ofmanganese oxides with tunnel structures. Journal of Porous Materials,1998,5(2):153-161.
    [7] Xu C J, Du H D, Li B H, et al. Asymmetric Activated Carbon-Manganese Dioxide Capacitorsin Mild Aqueous Electrolytes Containing Alkaline-Earth Cations. Journal of theElectrochemical Society,2009,156(6): A435-A441.
    [8] Ghodbane O, Pascal J L,Favier F. Microstructural Effects on Charge-Storage Properties inMnO2-Based Electrochemical Supercapacitors. Acs Applied Materials& Interfaces,2009,1(5):1130-1139.
    [9] Beaudrouet E, La Salle A L G,Guyomard D. Nanostructured manganese dioxides: Synthesisand properties as supercapacitor electrode materials. Electrochimica Acta,2009,54(4):1240-1248.
    [10] Xia X, Li J,Li Q W. Synthesis and electrochemical properties of nanophase MnO2bysolid-phase reaction (II)-Electrochemical properties of nanophase gamma-MnO2. ChemicalJournal of Chinese Universities-Chinese,1999,20(10):1584-1588.
    [11] Li J, Xia X,Li Q W. Synthesis and electrochemical properties of nanophase MnO2bysolid-phase reaction(I)-Synthesis and characterization of nanophase gamma-MnO2.Chemical Journal of Chinese Universities-Chinese,1999,20(9):1434-1437.
    [12] Pan Z W, Dai Z R,Wang Z L. Nanobelts of semiconducting oxides. Science,2001,291(5510):1947-1949.
    [13] Kim S H, Kim S J,Oh S M. Preparation of layered MnO2via thermal decomposition ofKMnO4and its electrochemical characterizations. Chemistry of Materials,1999,11(3):557-563.
    [14] Subramanian V, Zhu H W, Vajtai R, et al. Hydrothermal synthesis and pseudocapacitanceproperties of MnO2nanostructures. Journal of Physical Chemistry B,2005,109(43):20207-20214.
    [15] Yang Y J, Liu E J, Li L M, et al. Nanostructured amorphous MnO2prepared by reaction ofKMnO4with triethanolamine. Journal of Alloys and Compounds,2010,505(2):555-559.
    [16] Athouel L, Moser F, Dugas R, et al. Variation of the MnO2birnessite structure uponcharge/discharge in an electrochemical supercapacitor electrode in aqueous Na2SO4electrolyte. Journal of Physical Chemistry C,2008,112(18):7270-7277.
    [17] Brousse T, Toupin M, Dugas R, et al. Crystalline MnO2as possible alternatives to amorphouscompounds in electrochemical supercapacitors. Journal of the Electrochemical Society,2006,153(12): A2171-A2180.
    [18] Tang X H, Li H J, Liu Z H, et al. Preparation and capacitive property of manganese oxidenanobelt bundles with birnessite-type structure. Journal of Power Sources,2011,196(2):855-859.
    [19] Collins K D. Ion hydration: Implications for cellular function, polyelectrolytes, and proteincrystallization. Biophysical Chemistry,2006,119(3):271-281.
    [20] Wang X,Li Y D. Rational synthesis of alpha-MnO2single-crystal nanorods. ChemicalCommunications,2002,(7):764-765.
    [21] Wang X,Li Y D. Selected-control hydrothermal synthesis of alpha-and beta-MnO2singlecrystal nanowires. Journal of the American Chemical Society,2002,124(12):2880-2881.
    [22] Li W N, Yuan J K, Shen X F, et al. Hydrothermal synthesis of structure-and shape-controlledmanganese oxide octahedral molecular sieve nanomaterials. Advanced Functional Materials,2006,16(9):1247-1253.
    [23] Wu C Z, Xie Y, Wang D, et al. Selected-control hydrothermal synthesis of gamma-MnO23Dnanostructures. Journal of Physical Chemistry B,2003,107(49):13583-13587.
    [24] Liu Y, Zhang M, Zhang J H, et al. A simple method of fabricating large-area alpha-MnO2nanowires and nanorods. Journal of Solid State Chemistry,2006,179(6):1757-1761.
    [25] Ding Y S, Shen X F, Gomez S, et al. Hydrothermal growth of manganese dioxide intothree-dimensional hierarchical nanoarchitectures. Advanced Functional Materials,2006,16(4):549-555.
    [26] Tang B, Wang G L, Zhuo L H, et al. Novel dandelion-like beta-manganese dioxidemicrostructures and their magnetic properties. Nanotechnology,2006,17(4):947-951.
    [27] Lee H Y,Goodenough J B. Supercapacitor behavior with KCl electrolyte. Journal of SolidState Chemistry,1999,144(1):220-223.
    [28] Yuan J K, Li W N, Gomez S, et al. Shape-controlled synthesis of manganese oxide octahedralmolecular sieve three-dimensional nanostructures. Journal of the American Chemical Society,2005,127(41):14184-14185.
    [29] Xu C, Li B, Du H, et al. Electrochemical properties of nanosized hydrous manganese dioxidesynthesized by a self-reacting microemulsion method. Journal of Power Sources,2008,180(1):664-670.
    [30] Gao Y Q, Wang Z G, Wan J X, et al. A facile route to synthesize uniform single-crystallinealpha-MnO2nanowires. Journal of Crystal Growth,2005,279(3-4):415-419.
    [31] Wang X,Li Y D. Synthesis and formation mechanism of manganese dioxidenanowires/nanorods. Chemistry-a European Journal,2003,9(1):300-306.
    [32] Shen X F, Ding Y S, Liu J, et al. Control of nanometer-scale tunnel sizes of porous manganeseoxide octahedral molecular sieve nanomaterials. Advanced Materials,2005,17(7):805-809.
    [33]夏熙.碱性锌锰电池的过去、现在和未来. CBIA2005中国国际电池学术交流会.中国北京,2005:A83.
    [34]陈俊元.中国原电池工业史.北京:国防工业出版社,1997.
    [35] Ghaemi M, Gholami A,Moghaddam R B. A study around the improvement of electrochemicalactivity of MnO2as cathodic material in alkaline batteries. Electrochimica Acta,2008,53(8):3250-3256.
    [36] Ghaemi M, Amrollahi R, Ataherian F, et al. New advances on bipolar rechargeable alkalinemanganese dioxide-zinc batteries. Journal of Power Sources,2003,117(1-2):233-241.
    [37] Shen Y W,Kordesch K. The mechanism of capacity fade of rechargeable alkaline manganesedioxide zinc cells. Journal of Power Sources,2000,87(1-2):162-166.
    [38] Binder L, Kordesch K,Urdl P. Improvements of the rechargeable alkaline MnO2-Zn cell.Journal of the Electrochemical Society,1996,143(1):13-17.
    [39] Wruck W J, Reichman B, Bullock K R, et al. Rechargeable Zn-MnO2Alkaline Batteries.Journal of the Electrochemical Society,1991,138(12):3560-3567.
    [40] Sharma Y,Kordesch K. Microporous Separators to Improve the Technology of theRechargeable Alkaline Manganese Dioxide-Zinc Cells. Research and Industry,1991,36(4):239-242.
    [41] Pan J Q, Sun Y Z, Wang Z H, et al. Mn3O4doped with nano-NaBiO3: A high capacity cathodematerial for alkaline secondary batteries. Journal of Alloys and Compounds,2009,470(1-2):75-79.
    [42] Raghuveer V,Manthiram A. Role of TiB2and Bi2O3additives on the rechargeability of MnO2in alkaline cells. Journal of Power Sources,2006,163(1):598-603.
    [43] Ghaemi M, Khosravi-Fard L,Neshati J. Improved performance of rechargeable alkalinebatteries via surfactant-mediated electrosynthesis of MnO2. Journal of Power Sources,2005,141(2):340-350.
    [44] Winter M,Brodd R J. What are batteries, fuel cells, and supercapacitors? Chemical Reviews,2004,104(10):4245-4269.
    [45] Kloss M, Rahner D,Plieth W. The effect of alkaline earth titanates on the rechargeability ofmanganese dioxide in alkaline electrolyte. Journal of Power Sources,1997,69(1-2):137-143.
    [46] Kordesch K,Weissenbacher M. Rechargeable Alkaline Manganese-Dioxide Zinc Batteries.Journal of Power Sources,1994,51(1-2):61-78.
    [47] Mondoloni C, Laborde M, Rioux J, et al. Rechargeable Alkaline Manganese-DioxideBatteries1. Insitu X-Ray-Diffraction Investigation of the H+/Gamma-MnO2(Emd-Type)Insertion System. Journal of the Electrochemical Society,1992,139(4):954-959.
    [48] Schlorb H, Bungs M,Plieth W. Synthesis and electrochemical studies of manganese oxideswith spinel structure in aqueous electrolyte (9M KOH). Electrochimica Acta,1997,42(17):2619-2625.
    [49] Mo Y B, Hu Y N, Bae I T, et al. In site x-ray absorption fine structure studies of a manganesedioxide electrode in a rechargeable MnO2/Zn alkaline battery environment. Journal of theElectrochemical Society,1997,144(5):1598-1603.
    [50] Barbic P, Binder L, Voss S, et al. Thin-film zinc/manganese dioxide electrodes. MonatshefteFur Chemie,2001,132(4):465-472.
    [51]邓润荣.碱性锌锰电池可充性的研究.电池工业,2008,13(6):4.
    [52] Chen S, Zhu J W, Wu X D, et al. Graphene Oxide-MnO2Nanocomposites for Supercapacitors.Acs Nano,2010,4(5):2822-2830.
    [53] Pandolfo A G,Hollenkamp A F. Carbon properties and their role in supercapacitors. Journal ofPower Sources,2006,157(1):11-27.
    [54] Huang J S, Sumpter B G,Meunier V. A universal model for nanoporous carbonsupercapacitors applicable to diverse pore regimes, carbon materials, and electrolytes.Chemistry-a European Journal,2008,14(22):6614-6626.
    [55] Zhang L L,Zhao X S. Carbon-based materials as supercapacitor electrodes. Chemical SocietyReviews,2009,38(9):2520-2531.
    [56] Chen W C, Wen T C,Teng H S. Polyaniline-deposited porous carbon electrode forsupercapacitor. Electrochimica Acta,2003,48(6):641-649.
    [57] Frackowiak E, Metenier K, Bertagna V, et al. Supercapacitor electrodes from multiwalledcarbon nanotubes. Applied Physics Letters,2000,77(15):2421-2423.
    [58] Tan M X,Bankert M A. Carbon films for supercapacitor applications. Abstracts of Papers ofthe American Chemical Society,1996,211:49-49.
    [59] Wang X F, You Z,Ruan D B. A hybrid metal oxide supercapacitor in aqueous KOH electrolyte.Chinese Journal of Chemistry,2006,24(9):1126-1132.
    [60] Lewandowski A, Zajder M, Frackowiak E, et al. Supercapacitor based on activated carbonand polyethylene oxide-KOH-H2O polymer electrolyte. Electrochimica Acta,2001,46(18):2777-2780.
    [61] Izmailova M Y, Rychagov A Y, Den'shchikov K K, et al. Electrochemical Supercapacitor withElectrolyte Based on an Ionic Liquid. Russian Journal of Electrochemistry,2009,45(8):949-950.
    [62] Balducci A, Dugas R, Taberna P L, et al. High temperature carbon-carbon supercapacitorusing ionic liquid as electrolyte. Journal of Power Sources,2007,165(2):922-927.
    [63] Sivaraman P, Thakur A, Kushwaha R K, et al. Poly(3-methyl thiophene)-activated carbonhybrid supercapacitor based on gel polymer electrolyte. Electrochemical and Solid StateLetters,2006,9(9): A435-A438.
    [64] Xiuling W, Anbao Y,Yuqin W. Supercapacitive behaviors and their temperature dependence ofsol-gel synthesized nanostructured manganese dioxide in lithium hydroxide electrolyte.Journal of Power Sources,2007,172(2):1007-1011.
    [65] Pang S C, Anderson M A,Chapman T W. Novel electrode materials for thin-filmultracapacitors: Comparison of electrochemical properties of sol-gel-derived andelectrodeposited manganese dioxide. Journal of the Electrochemical Society,2000,147(2):444-450.
    [66] Pang S C,Anderson M A. Novel electrode materials for electrochemical capacitors: Part II.Material characterization of sol-gel-derived and electrodeposited manganese dioxide thinfilms. Journal of Materials Research,2000,15(10):2096-2106.
    [67] Nagarajan N, Cheong M,Zhitomirsky I. Electrochemical capacitance of MnOxfilms.Materials Chemistry and Physics,2007,103(1):47-53.
    [68] Nagarajan N, Humadi H,Zhitomirsky I. Cathodic electrodeposition of MnOxfilms forelectrochemical supercapacitors. Electrochimica Acta,2006,51(15):3039-3045.
    [69] Cheong M,Zhitomirsky I. Electrophoretic deposition of manganese oxide films. SurfaceEngineering,2009,25(5):346-352.
    [70] Li J,Zhitomirsky I. Electrophoretic deposition of manganese oxide nanofibers. MaterialsChemistry and Physics,2008,112(2):525-530.
    [71] Wang J G, Yang Y, Huang Z H, et al. Rational synthesis of MnO2/conductingpolypyrrole@carbon nanofiber triaxial nano-cables for high-performance supercapacitors.Journal of Materials Chemistry,2012,22(33):16943-16949.
    [72] Simon P,Gogotsi Y. Materials for electrochemical capacitors. Nature Materials,2008,7(11):845-854.
    [73] Wang Y H,Zhitomirsky I. Electrophoretic Deposition of Manganese Dioxide-MultiwalledCarbon Nanotube Composites for Electrochemical Supercapacitors. Langmuir,2009,25(17):9684-9689.
    [74]康飞宇,徐成俊,李宝华,可充电锌离子电池:中国,200910205640.5.2011-04-13.
    [75]吴刚.材料结构表征及应用.北京:化学工业出版社,2005.
    [76] Yu G H, Hu L B, Liu N A, et al. Enhancing the Supercapacitor Performance ofGraphene/MnO2Nanostructured Electrodes by Conductive Wrapping. Nano Letters,2011,11(10):4438-4442.
    [77] Toupin M, Brousse T,Belanger D. Charge storage mechanism of MnO2electrode used inaqueous electrochemical capacitor. Chemistry of Materials,2004,16(16):3184-3190.
    [78]徐成俊.非对称电容器的设计及二氧化锰电极材料的制备[博士学位论].北京:清华大学材料科学与工程系,2009.
    [79] Chigane M, Ishikawa M,Izaki M. Preparation of Manganese Oxide Thin Films byElectrolysis/Chemical Deposition and Electrochromism. Journal of the ElectrochemicalSociety,2001,148(7): D96-D101.
    [80] Chigane M,Ishikawa M. Manganese oxide thin film preparation by potentiostatic electrolysesand electrochromism. Journal of the Electrochemical Society,2000,147(6):2246-2251.
    [81] Zhang J T, Chu W, Jiang J W, et al. Synthesis, characterization and capacitive performance ofhydrous manganese dioxide nanostructures. Nanotechnology,2011,22(12):125703.
    [82] Wei W, Cui X, Chen W, et al. Manganese oxide-based materials as electrochemicalsupercapacitor electrodes. Chemical Society Reviews,2011,40(3):1697-1721.
    [83] Brock S L, Duan N G, Tian Z R, et al. A review of porous manganese oxide materials.Chemistry of Materials,1998,10(10):2619-2628.
    [84] Adelkhani H,Ghaemi M. Influence of the solution pH on the nanostructural, andelectrochemical performance of electrolytic manganese dioxide. Journal of Alloys andCompounds,2009,481(1-2):446-449.
    [85] Reddy R N,Reddy R G. Sol-gel MnO2as an electrode material for electrochemical capacitors.Journal of Power Sources,2003,124(1):330-337.
    [86] Tsang C, Kim J,Manthiram A. Synthesis of manganese oxides by reduction of KMnO4withKBH4in aqueous solutions. Journal of Solid State Chemistry,1998,137(1):28-32.
    [87] Devaraj S,Munichandraiah N. Effect of crystallographic structure of MnO2on itselectrochemical capacitance properties. Journal of Physical Chemistry C,2008,112(11):4406-4417.
    [88] Li Z C, Bao H L, Miao X Y, et al. A facile route to growth of gamma-MnOOH nanorods andelectrochemical capacitance properties. Journal of Colloid and Interface Science,2011,357(2):286-291.
    [89] Hu C C, Liao S C, Chang K H, et al. Electrochemical characterization of MnOOH-carbonnanocomposite cathodes for metal-air batteries: Impacts of dispersion and interfacial contact.Journal of Power Sources,2010,195(21):7259-7263.
    [90] Zhang Y G,Chen Y C. Low-temperature hydrothermal synthesis of MnOOH nanorods.Journal of Inorganic Materials,2006,21(5):1249-1252.
    [91] Williams G R, Norquist A J,O'Hare D. Incorporation of Li into MnOOH: An in situ X-ray andneutron diffraction study. Chemistry of Materials,2006,18(16):3801-3807.
    [92] Dong X Y, Zhang X T, Liu B, et al. Controlled synthesis of manganese oxohydroxide(MnOOH) and Mn3O4nanorods using novel reverse micelles. Journal of Nanoscience andNanotechnology,2006,6(3):818-822.
    [93] Mi Y H, Zhang X B, Zhou S M, et al. Low temperature hydrothermal synthesis andcharacterization of gamma-MnOOH multipods. Chinese Journal of Inorganic Chemistry,2006,22(12):2242-2246.
    [94] Wu J B, Zhang H, Ma X Y, et al. Synthesis and characterization of single crystalline MnOOHand MnO2nanorods by means of the hydrothermal process assisted with CTAB. MaterialsLetters,2006,60(29-30):3895-3898.
    [95] Zhang Y C, Qiao T, Hu X Y, et al. Simple hydrothermal preparation of gamma-MnOOHnanowires and their low-temperature thermal conversion to beta-MnO2nanowires. Journal ofCrystal Growth,2005,280(3-4):652-657.
    [96] Xi G C, Peng Y Y, Zhu Y C, et al. Preparation of beta-MnO2nanorods through agamma-MnOOH precursor route. Materials Research Bulletin,2004,39(11):1641-1648.
    [97] Chandra N, Bhasin S, Shanna M, et al. A room temperature process for making Mn2O3nano-particles and gamma-MnOOH nano-rods. Materials Letters,2007,61(17):3728-3732.
    [98] Zhang Z Q,Mu J. Hydrothermal synthesis of gamma-MnOOH nanowires and alpha-MnO2seaurchin-like clusters. Solid State Communications,2007,141(8):427-430.
    [99] Zhen F, Kaibin T, Lisheng G, et al. Facile and large-scale synthesis of single-crystallinemanganese oxyhydroxide/oxide nanostructures. Materials Research Bulletin,2007,42(9):
    [100] El-Deab M S,Ohsaka T. Electrosynthesis of single-crystalline MnOOH nanorods onto Ptelectrodes-Electrocatalytic activity toward reduction of oxygen. Journal of theElectrochemical Society,2008,155(1): D14-D21.
    [101] Tang X F, Li J H, Chen J H, et al. Synthesis and characterization of gamma-MnOOHnanorods with tetragonal prism cross section. Chinese Journal of Inorganic Chemistry,2008,24(9):1468-1473.
    [102] Zhou F, Zhao X M, Yuan C G, et al. Synthesis of gamma-MnOOH nanorods and theirisomorphous transformation into beta-MnO2and alpha-Mn2O3nanorods. Journal of MaterialsScience,2007,42(24):9978-9982.
    [103] Li Y, Tan H Y, Lebedev O, et al. Insight into the Growth of Multiple Branched MnOOHNanorods. Crystal Growth&Design,2010,10(7):2969-2976.
    [104] Li F, Wu J F, Qin Q H, et al. Facile synthesis of gamma-MnOOH micro/nanorods and theirconversion to beta-MnO2, Mn3O4. Journal of Alloys and Compounds,2010,492(1-2):339-346.
    [105] Jia Y, Xu J, Zhou L, et al. A simple one step approach to preparation of gamma-MnOOHmultipods and beta-MnO2nanorods. Materials Letters,2008,62(8-9):1336-1338.
    [106] Zhang L, Liu Z-H, Tang X, et al. Synthesis and characterization of beta-MnO2single crystalswith novel tetragonous morphology. Materials Research Bulletin,2007,42(8):1432-1439.
    [107] Zhang Y G, Liu Y, Guo F, et al. Single-crystal growth of MnOOH and beta-MnO2microrodsat lower temperatures. Solid State Communications,2005,134(8):523-527.
    [108]王莉,袁中直,陈秋红,等.方形γ-MnOOH单晶的水热法制备.无机材料学报,2007,(04):667-670.
    [109] Murphy C J. Nanocubes and nanoboxes. Science,2002,298(5601):2139-2141.
    [110] Yuan Z Y, Zhang Z L, Du G H, et al. A simple method to synthesise single-crystallinemanganese oxide nanowires. Chemical Physics Letters,2003,378(3-4):349-353.
    [111] Sampanthar J T, Dou J, Joo G G, et al. Template-free low temperature hydrothermal synthesisand characterization of rod-shaped manganese oxyhydroxides and manganese oxides.Nanotechnology,2007,18(2):02560.
    [112] Xu C, Kang F, Li B, et al. Recent progress on manganese dioxide based supercapacitors.Journal of Materials Research,2010,25(8):1421-1432.
    [113] Zhai D, Li B, Xu C, et al. A study on charge storage mechanism of alpha-MnO2by occupyingtunnels with metal cations (Ba2+, K+). Journal of Power Sources,2011,196(18):7860-7867.
    [114] Yuan C Z, Gao B, Shen L F, et al. Hierarchically structured carbon-based composites: Design,synthesis and their application in electrochemical capacitors. Nanoscale,2011,3(2):529-545.
    [115] Ghodbane O, Pascal J L,Favier F. Microstructural Effects on Charge-Storage Properties inMnO2-Based Electrochemical Supercapacitors. Acs Applied Materials&Interfaces,2009,1(5):1130-1139.
    [116] Huang H,Wang X. Graphene nanoplate-MnO2composites for supercapacitors: a controllableoxidation approach. Nanoscale,2011,3(8):3185-3191.
    [117] Zhang L C, Liu Z H, Lv H, et al. Shape-controllable synthesis and electrochemical propertiesof nanostructured manganese oxides. Journal of Physical Chemistry C,2007,111(24):8418-8423.
    [118] Fei J B, Cui Y, Yan X H, et al. Controlled preparation of MnO2hierarchical hollownanostructures and their application in water treatment. Advanced Materials,2008,20(3):452-456.
    [119] Fischer A E, Pettigrew K A, Rolison D R, et al. Incorporation of homogeneous, nanoscaleMnO2within ultraporous carbon structures via self-limiting electroless deposition:Implications for electrochemical capacitors. Nano Letters,2007,7(2):281-286.
    [120] Wei M, Konishi Y, Zhou H, et al. Synthesis of single-crystal manganese dioxide nanowires bya soft chemical process. Nanotechnology,2005,16(2):245-249.
    [121] Kuo S L,Wu N L. Investigation of pseudocapacitive charge-storage reaction of MnO2.nH2Osupercapacitors in aqueous electrolytes. Journal of the Electrochemical Society,2006,153(7):A1317-A1324.
    [122] Yuan A B,Zhang Q L. A novel hybrid manganese dioxide/activated carbon supercapacitorusing lithium hydroxide electrolyte. Electrochemistry Communications,2006,8(7):1173-1178.
    [123] Ragupathy P, Vasan H N,Munichandraiah N. Synthesis and characterization of nano-MnO2forelectrochemical supercapacitor studies. Journal of the Electrochemical Society,2008,155(1):A34-A40.
    [124] Xu C J, Chiang S W, Ma J, et al. Investigation on Zinc Ion Storage in Alpha ManganeseDioxide for Zinc Ion Battery by Electrochemical Impedance Spectrum. Journal of theElectrochemical Society,2013,160(1): A93-A97.
    [125] Xu C, Li B, Du H, et al. Energetic Zinc Ion Chemistry: The Rechargeable Zinc Ion Battery.Angewandte Chemie-International Edition,2012,51(4):933-935.
    [126] Rogulski Z, Chotkowski M,Czerwinski A. New generation of the zinc-Manganese dioxidecell. Journal of New Materials for Electrochemical Systems,2006,9(4):333-338.
    [127] Shoji T, Hishinuma M,Yamamoto T. Znic manganese-dioxide galvanic cell using zinc-sulfateas electrolyte-rechargeability of the cell. Journal of Applied Electrochemistry,1988,18(4):521-526.
    [128] Yao Y F, Gupta N,Wroblowa H S. Rechargeable manganese oxide electrodes1. chemicallymofdified materials. Journal of Electroanalytical Chemistry,1987,223(1-2):107-117.
    [129] Wroblowa H S,Gupta N. Rechargeable manganese oxide electrodes2. physically modifiedmaterials. Journal of Electroanalytical Chemistry,1987,238(1-2):93-102.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700