用户名: 密码: 验证码:
浅埋近距离煤层出煤柱开采压架机理及防治研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
神东矿区是我国典型的浅埋近距离煤层赋存矿区,现已逐步进入第2层主采煤层的开采。由于上煤层开采遗留煤柱的影响,下煤层工作面在推出此类煤柱前后5m左右的范围内常易出现支架活柱瞬时大幅下缩的压架现象。据不完全统计,自2007年以来已累计发生类似案例7起,直接经济损失近亿元,严重影响着矿区的安全高效生产;如何确保出煤柱开采的安全,已成为矿区亟待解决的重大技术难题。论文综合采用现场实测、理论分析和模拟实验等手段,就浅埋近距离煤层出煤柱开采压架发生的机理、影响因素、发生条件及其防治对策等进行了深入的研究。
     针对浅埋近距离煤层出两侧采空煤柱和一侧采空煤柱这2种开采类型,从煤柱上方关键块体破断运动的角度,揭示了各自压架灾害发生的机理。出两侧采空煤柱时,煤柱上方关键层破断块体将与采空区一侧已断块体形成拱形的三铰式结构,由于该结构始终无法达到稳定的承载状态,其相对回转运动将造成上覆岩层的载荷全部施加到支架之上,最终导致压架。出一侧采空煤柱时,受切眼在煤柱下布置位置的影响,其压架存在2种情况:当切眼距煤柱边界较远而大于煤柱上方关键层的初次破断距时,则出煤柱时该关键层将处于周期破断状态,此时的压架机理与出两侧采空煤柱时相同。当切眼距出煤柱边界较近而介于煤柱上方关键层的初次破断距和周期破断距之间时,则出煤柱时该关键层将呈现大跨度的悬臂式破断,由于支架处于该“砌体梁”破断结构的回转铰接点,此结构的回转运动将造成支架载荷的过大而压架。
     通过对影响煤柱上方关键块体回转运动的关键因素分析,掌握了出煤柱开采压架灾害的发生条件。上覆煤柱埋深越大,越易导致煤柱边界在工作面临近推出煤柱时发生超前失稳,从而促使上部关键块体提前发生反向回转,最终抑制压架的发生。而上下煤层间距越大,受覆岩以一定破断角向上发展的影响,煤柱上方关键块体滞后工作面破断的距离越长;当此滞后距离满足一定条件时,关键块体回转运动传递的载荷将仅能作用于采空区矸石之上,从而也可抑制压架的发生。由此形成了特定条件下出煤柱开采压架与否的判别准则和方法,并据此得出在神东矿区浅埋近距离煤层开采条件下,出煤柱开采的压架灾害将普遍存在。
     研究提出了浅埋近距离煤层出煤柱开采压架灾害的防治对策。基于关键块体回转运动的致灾机理,从促使关键块体提前回转、阻止和破坏其回转等3个方面,提出了煤柱边界预掘空巷或预爆破、煤柱边界未压实采空区充填以及煤柱边界上方关键块体结构预爆破强放的防治措施,成功指导了神东矿区补连塔煤矿和石圪台煤矿出煤柱开采压架灾害的防治实践,取得了显著的应用效果。
Shendong mining area, the typical occurrence region of close distance shallow seams,.has turned into the mining of the second coal seam step by step. Due to the coal pillars leftin the upper first coal seam, many support crushing accidences happened in the mining ofthe lower second seam while the working face out of the upper coal pillar in the area5m inand out of the coal pillar boundary. Violent weighing phenomenon occurred in theaccidents, such as sharp and huge shrinkage length of support plunger in1~2minutes.According to incomplete statistics,7similar cases had happened since2007, which hadcaused nearly one million yuan of economic loses and been threatening the safe andefficient production of the coal mines in the mining area. So, how to insure the safetyduring mining out of the upper coal pillar is a significant technical problem. Based on themeans of field measurement, theoretical analysis and simulation experiment, themechanism, influencing factors, occurred conditions and the preventions of the supportcrushing disaster in close distance shallow seams are deeply researched.
     With the analysis of the key blocks’ breaking movement above the coal pillar, themechanism of the support crushing disaster while mining out of the upper coal pillar andgoaf-side coal pillar in close distance shallow seams was revealed respectively. Whenmining out of the upper coal pillar, the breaking block of the key stratum (KS) above thepillar and its broken block in the goaf side would form an arched three hinged structure.Due to that the structure could not reach a stable bearing state all along, all the load of theoverburden strata would be applied on the supports of the working face by the relativerotary motion of the key block structure, which finally caused the support crushing. Whenmining out of the upper goaf-side coal pillar, there would be two situations on the supportcrushing affected by the decorate position of the cut-hole under the goaf-side coal pillar. Ifthe distance between the cut-hole and the coal pillar boundary was further than the firstbreaking step of the KS above the coal pillar, the KS would present periodic breaking statewhile mining out of the pillar, and the mechanism of the support crushing was the same tothat in the mining out of the upper coal pillar. If the distance was between the periodic andfirst breaking step of the KS, the KS would present the cantilevered state with longbreaking span when mining out of the pillar, and the support crushing was caused by theexcessive load from the rotary motion of the KS structure due to that the supports wereunder the swing hinge joint of the structure.
     According to the analysis of the influencing key factors on the key blocks’ rotary motion, the occurred conditions of the support crushing disaster while mining out of theupper pillar had been mastered. The deeper the depth of the upper pillar, the easier to leadthe instability in coal pillar boundary occurring ahead, thus which would induce thereverted turning in upper key blocks and play a significant inhibition on the occurrence ofsupport crushing disasters. On the other hand, the further the distance between the seams,the longer the breaking position of the key block lag behind the working face by theinfluencing that the overburden strata always broke upward with a certain angle. As the lagdistance met a certain condition, the load from the rotary motion of the key blocks wouldonly act on the gangue in the goaf which can also restrain the support crushing. From theseabove, the discrimination criterion and method of the support crushing occurring whilemining out of the upper pillar in specific conditions had been formed. According to thecriterion, it was concluded that the support crushing disaster would generally exist in themining condition of close distance shallow seams in Shendong mining area.
     The prevention measures of the support crushing disaster while mining out of theupper coal pillar in close distance shallow seams had been proposed in the paper. Base onthe mechanism of the disaster caused by the rotary motion of the key blocks, from theaspects of prompting the key blocks to spin ahead of time, preventing or destroying itsrotation, the measure of the pre-blasting in the upper pillar boundary, the filling in the goafnear pillar boundary and the pre-blasting in the key block structure above the boundary toprevent the support crushing disaster were put forward. With the prevention measuresabove, the support crushing disaster during the mining out of the upper coal pillar inBulianta coal mine and Shigetai coal mine of Shendong mining area were preventedsuccessfully, which achieved remarkable application effect.
引文
[1]叶青.神东现代化矿区建设与生产技术[M].徐州:中国矿业大学出版社,2003.
    [2]张斌,刘青华,张建铭,等.神东矿区千万吨矿井群设备管理模式研究[J].煤炭学报,2010,35(11):1939-1944.
    [3]鞠金峰,许家林,朱卫兵,等.大柳塔煤矿22103综采面压架机理及防治技术[J].煤炭科学技术,2012,40(2):4-7.
    [4]鞠金峰,许家林,朱卫兵,等.近距离煤层采场过上覆T形煤柱矿压显现规律[J].煤炭科学技术,2010,38(10):5-8.
    [5]鞠金峰,许家林,朱卫兵,等.近距离煤层工作面出倾向煤柱动载矿压机理研究[J].煤炭学报,2010,35(1):15-20.
    [6]鞠金峰,许家林.倾向煤柱边界超前失稳对工作面出煤柱动载矿压的影响[J].煤炭学报,2012,37(7):1080-1087.
    [7]李瑞群,王智欣.近距离煤层下层开采过集中煤柱矿压显现研究[J].神华科技,2011,9(2):31-35.
    [8]聂伟雄.浅埋煤层长壁保水开采探究[J].煤矿现代化,2005,67(4):29-30.
    [9]石平五,侯忠杰.神府浅埋煤层顶板破断运动规律[J].西安矿业学院学报,1996,16(3):204-207.
    [10]石平五,长孙学亭,刘洋.浅埋煤层“保水采煤”条带开采“围岩—煤柱群”稳定性分析[J].煤炭工程,2006,(8):68-70.
    [11]侯忠杰.浅埋煤层关键层研究[J].煤炭学报,1999,24(4):359-363.
    [12]侯忠杰.组合关键层理论的应用研究及其参数确定[J].煤炭学报,2001,26(6):611-615.
    [13]侯忠杰.地表厚松散层浅埋煤层组合关键层的稳定性分析[J].煤炭学报,2000,25(2):127-131.
    [14]侯忠杰,张杰.厚松散层浅埋煤层覆岩破断判据及跨距计算[J].辽宁工程技术大学学报,2004,24(5):57-62.
    [15]侯忠杰.断裂带老顶的判据准则及在浅埋煤层中的应用[J].煤炭学报,2003,28(1):17-20.
    [16]侯忠杰,张杰.砂土基型浅埋煤层保水煤柱稳定性数值模拟J].岩石力学与工程学报,2005,24(13):2255-2259.
    [17]黄庆享.浅埋煤层长壁开采顶板控制研究[D].徐州:中国矿业大学,1998.
    [18]黄庆享,钱鸣高,石平五.浅埋煤层采场老顶周期来压的结构分析[J].煤炭学报,1999,24(6):581-585.
    [19]黄庆享,田小明,杨俊哲,等.浅埋煤层高产工作面矿压分析[J].矿山压力与顶板管理,1999,3(4):53-57.
    [20]黄庆享.浅埋煤层的矿压特征与浅埋煤层定义[J].岩石力学与工程学报,2002,21(8):1174-1177.
    [21]黄庆享.浅埋煤层长壁开采顶板结构理论与支护阻力确定[J].矿山压力与顶板管理,2002,(1):70-72.
    [22]黄庆享.浅埋采场初次来压顶板砂土层载荷传递研究[J].岩土力学,2005,26(6):881-883.
    [23]黄庆享.浅埋煤层厚沙土层顶板关键块动态载荷分布规律[J].煤田地质与勘探,2003,31(6):22-25.
    [24]黄庆享,张沛,董爱菊.浅埋煤层地表厚砂土层“拱梁”结构模型研究[J].岩体力学,2009,30(9):2722-2726.
    [25]黄庆享.浅埋煤层覆岩隔水性与保水开采分类[J].岩石力学与工程学报,2010,29(S2):3622-3627.
    [26]黄庆享,胡火明,刘玉卫,等.浅埋煤层工作面液压支架工作阻力的确定[J].采矿与安全工程学报,2009,26(3):304-307.
    [27]高召宁,石平五,姚令侃.中小煤矿在浅埋薄基岩下开采灾害防治研究[J].采矿与安全工程学报,2006,23(2):210-214.
    [28]张嘉凡,石平五.浅部煤层壁式煤柱支撑法开采大面积垮落机理[J].西安科技学院学报,2003,23(3):366-369.
    [29]谢胜华,侯忠杰.浅埋煤层组合关键层失稳临界突变分析[J].矿山压力与顶板管理,2002,(1):67-72.
    [30]张李节,侯忠杰.浅埋工作面超前支承压力分布规律[J].矿山压力与顶板管理,1994(3):23-25.
    [31]赵宏珠.印度浅埋深难垮顶板煤层地面爆破综采研究[J].矿山压力与顶板管理,1999,(4):57-61.
    [32]赵宏珠.印度综采长壁工作面浅部开采实践[J].中国煤炭,1998,24(12):59-51.
    [33]赵宏珠.浅埋采动煤层工作面矿压规律研究[J].矿山压力与顶板管理,1996,(2):23-27.
    [34]赵宏珠.印度某综采工作面生产情况分析[J].中国煤炭,1996,(8):69-70.
    [35]赵宏珠.浅埋深整体性强的软岩条件下的长壁综合机械化开采[J].中国煤炭,1996,25(6):52-56.
    [36]张世凯.厚松散层薄基岩煤层矿压显现规律[J].矿山压力与顶板管理,1998,(1):5~8.
    [37]杨治林.浅埋煤层长壁开采顶板结构稳定性分析[J].矿山压力与顶板管理,2005,(2):7-9.
    [38]杨治林,余学义.浅埋煤层长壁开采顶板岩层的后屈曲性态[J].煤炭学报,2007,32(4):337-340.
    [39]杨治林,余学义,郭何明,等.浅埋煤层长壁开采顶板岩层灾害机理研究[J].岩土工程学报,2007,29(12):1763-1766.
    [40]杨治林.浅埋煤层长壁开采顶板岩层的不稳定性态[J].煤炭学报,2008,33(12):1341-1345.
    [41]张政军.浅埋煤层房柱式开采围岩破断力学分析与研究[D].西安:西安矿业学院,1996.
    [42]李昌宁.大柳塔浅埋煤层合理开采参数研究[D].西安:西安矿业学院,1996.
    [43]张满余.浅埋煤层厚风积沙下长壁工作面顶板岩层控制研究[D].西安:西安矿业学院,1996.
    [44]张文军,沈海鸿,蔡桂宝.浅埋煤层开采覆岩移动规律数值分析[J].辽宁工程技术大学学报,2002,21(2):143-145.
    [45]王崇革,王莉莉,宋振骐.浅埋煤层开采三维相似材料模拟实验研究[J].岩石力学与工程学报,2004,23(S2):4926-4929.
    [46]陈忠辉,冯竞竞,肖彩彩.浅埋深厚煤层综放开采顶板断裂力学模型[J].煤炭学报,2007,32(5):449-452.
    [47]李凤仪.浅埋煤层长壁开采矿压特点及其安全开采界限研究[D].阜新:辽宁工程技术大学,2007.
    [48]鹿志发.浅埋深煤层顶板力学结构与支架适应性研究[D].北京:煤炭科学研究总院,2007.
    [49]张镇.薄基岩浅埋采场上覆岩层运动规律研究与应用[D].泰安:山东科技大学,2007.
    [50]伊茂森.神东矿区浅埋煤层大采高综采工作面长度的选择[J].煤炭学报,2007,32(12):1253-1257.
    [51]任艳芳.浅埋煤层长壁开采覆岩结构特征研究[D].北京:煤炭科学研究总院,2008.
    [52]王旭峰.冲沟发育矿区浅埋煤层采动坡体活动机理及其控制研究[D].徐州:中国矿业大学,2009.
    [53]柴敬,高登彦,王国旺,等.厚基岩浅埋煤层大采高加长工作面矿压规律研究[J].采矿与安全工程学报,2009,26(4):437-440.
    [54]刘纯贵.马脊梁煤矿浅埋煤层开采覆岩活动规律的相似模拟[J].煤炭学报,2011,36(1):7-11.
    [55]范钢伟,张东升,马立强.神东矿区浅埋煤层开采覆岩移动与裂隙分布特征[J].中国矿业大学学报,2011,40(2):196-201.
    [56] Yude Liu, Dongsheng Zhang, Gangwei Fan, et al. Applicable conditions for a classificationsystem of aquifer-protective mining in shallow coal seams[J]. Mining Science and Technology,2011,21(3):381-387.
    [57] Dongsheng Zhang, Gangwei Fan, Xufeng Wang. Characteristics and stability of slope movementresponse to underground mining of shallow coal seams away from gullies[J]. InternationalJournal of Mining Science and Technology,2012,22(1):47-50.
    [58] Wang Xufeng, Zhang Dongsheng, Fan Gangwei, et al. Underground pressure characteristicsanalysis in back-gully mining of shallow coal seam under a bedrock gully slope[J]. MiningScience and Technolog,2011,21(1):23-27.
    [59] Dongsheng Zhang, Gangwei Fan, Liqiang Ma, et al. Aquifer protection during longwall mining ofshallow coal seams: A case study in the Shendong Coalfield of China[J]. International Journal ofCoal Geology,2011,86(2-3):190-196.
    [60]屠世浩,白庆升,屠洪盛.浅埋煤层综采面护巷煤柱尺寸和布置方案优化[J].采矿与安全工程学报,2011,28(4):505-510.
    [61]许家林,朱卫兵,王晓振,等.沟谷地形对浅埋煤层开采矿压显现的影响机理[J].煤炭学报,2012,37(2):79-185.
    [62]王晓振,鞠金峰,许家林.神东浅埋综采面末采段让压开采原理及应用[J].采矿与安全工程学报,2012,29(2):151-156.
    [63]王晓振,许家林,朱卫兵,等.浅埋综采面高速推进对周期来压特征的影响[J].中国矿业大学学报,2012,31(3):349-354.
    [64] П.М.ЦИМБАРЕВИЧ.矿井支护[M].北京:煤炭工业出版社,1957.
    [65] Bodrac B. B. Rock pressure features of Moscow Suburb coal-field[J]. Coal,1998(2),38-49.
    [66] HOLLA L and BUIZEN M. The ground movement, strata fracturing and changes in permeabilitydue to deep longwall mining[J]. International Journal of rock mechanics,1991,28(2-3):207-217.
    [67] HOLLA L. Some aspects of strata movement related to mining under water bodies in New SouthWales, Australia. Proceedings of the Fourth I.M.W.A. Congress. Lubljana, Australia,1991[C].1991.
    [68] Henry Bogert, S.J. Jung, H.W. Lim. Room and pillar stope design in highly fractured area[J].International Journal of Rock Mechanics and Mining Sciences,1997,34(3):145-156.
    [69] Henson H J, Sexton J L. Primary study of shallow coal seams using high-resolution seismicreflection methods[J]. Geophysics,1991,56(9):34-43.
    [70] Greenhalgh S.A., Suprajitno M., King D.W.. Shallow seismic reflection investigations of coal inthe sydney basin [J]. Geophysics,1986,51(7):1426-1437.
    [71] Abass H.H., Kim C.M., Hedayati S.. Experimental simulation of hydraulic fracturing in shallowcoal seams[J]. Rock Mechanics,1991,261.
    [72] Singh Rajendra, Singh T.N., Dhar Bharat B.. Coal pillar loading in shallow mining conditions[J].International Journal of Rock Mechanics and Mining Sciences,1996,33(8):757-768.
    [73] Holla L., Buizen M.. Strata movement due to shallow longwall mining and the effect on groundpermeability[J].Ausimm Proceedings,1990,295(1):11-18.
    [74] Su Grace W., Nimmo John R., Dragila Maria I.. Effect of isolated fractures on accelerated flow inunsaturated porous rock[J]. Water Resources Research,2003,39(12):11-19.
    [75] Banerjee G., Ray A.K., Singh G.S.P., et al. Hard roof management-A key for high productivity inlongwall coal mines[J]. Journal of Mines, Metals and Fuels,2003,51(7-8):238-244.
    [76] Tsvetkov V.K., Prikhod'ko V.D.. Calculation of rational form of cross section of undergroundmining opening[J]. Fiziko-tekhnicheskie Problemy Razrabotki Poleznykh Iskopaemykh,1992,(2):61-64.
    [77] Chernyak I.L., Chekhmestrenko, N.V.. Ways of roof rock stability control in breakage faces[J].Fiziko-Tekhnicheskie Problemy Razrabotki Poleznykh Iskopaemykh,1993,(6):47-50.
    [78] Holla L,Thompson K T. A study of ground movement in three orthogonal directions due toshallow multi-seam longwall mining[J]. Coal Journal,1992,38:3-13.
    [79] Khare Saurabh, Rao Y.V., Murthy Ch.S.N., et al. Multiple seam mining: a critical review[J].Journal of mines, Metals and Fuels,2006,54(12):327-329.
    [80] Chekan Gregory J., Matetic Rudy J., Galek James A. Multiple seam mining problems in theeastern United States information circular-United States[J]. Bureau of Mines,1986,27-43.
    [81] Peng S.S., Hsiung S.M. Problems and solutions for multiple seam mining[J]. Colliery Guardian,1988,236(10):37-372.
    [82] Su Wen H., Peng Syd s., Hsiung S.M., Interaction in multiple-seam mining[J], Society of MiningEngineers,1986,31-44.
    [83] Kripakov, Nicholas P., Beckett, Les A., Donato A.. Loading on underground mining structuresinfluenced by multiple seam interaction[J], Society of Mining Engineers of AIMS,1986,225-236.
    [84] Chekan, Gregory J., Matetic, Rudy J., Dwyer, David L.. Effects of abandoned multiple seamworkings on a longwall in Virginia, Report of Investigations-United States[J], Bureau of Mines,1989,19.
    [85] Chekan, Gregory J., Matetic, Rudy J., Galek, James A.. Strata interaction in multiple seammining-two studies in Pennsylvania, Report of Investigations-United States[J], Bureau of Mines,1986,20.
    [86] Dunham,R K,Stace,R L. Interaction problems in multiple seam mining[J].19th US Symposiumon Rock Mechanics, Stateline, Nevada.1978,174-179.
    [87] Hill RW. Multiple seam mining in South African Collieries[J]. Proceedings of the14thInternational Conference on Ground Control in Mining, Morgantown, WV, West VirginiaUniversity,1995,305-311.
    [88] Heasley K.A., Akinkugbe O.. Simple program for estimating multiple-seam interactions[J].Mining Engineering,2005,57(4):61-66.
    [89]朱卫兵.浅埋近距离煤层重复采动关键层结构失稳机理研究[D].徐州:中国矿业大学,2010.
    [90]宋选民.活井旺采采空区飓风灾害的理论预测与防灾工程设计[J].太原理工大学学报,2006,37(1):35-37.
    [91]宋选民,顾铁凤.顶板受冲击垮落的理论分析及工程应用[J].太原理工大学学报,2008,39(6):609-612.
    [92]施喜书,许家林,朱卫兵.补连塔矿复杂条件下大采高开采地表沉陷实测[J].煤炭科学技术,2008,36(9):80-83.
    [93]封金权,张东升,马立强,等.浅埋近距离煤层群上行开采数值分析[J].煤炭科学技术,2007,35(9):76-78.
    [94] R Singh, P.R Sheorey, D.P Singh. Stability of the parting between coal pillar workings in levelcontiguous seams[J]. International Journal of Rock Mechanics and Mining Sciences,2002,39(1):9-39.
    [95] Ashok Jaiswal, B.K. Shrivastva. Numerical simulation of coal pillar strength[J]. InternationalJournal of Rock Mechanics and Mining Sciences,2009,46(4):779-788.
    [96] B.A. Poulsen. Coal pillar load calculation by pressure arch theory and near field extraction ratio[J]. International Journal of Rock Mechanics and Mining Sciences,2010,47(7):1158-1165.
    [97] M. Najafi, S.E. Jalali, A.R. Yarahmadi Bafghi, et al. Prediction of the confidence interval forstability analysis of chain pillars in coal mines[J]. Safety Science,2011,49(5):651-657.
    [98] Anye Cao, Linming Dou, Guoxiang Chen, et al. Focal mechanism caused by fracture or burst of acoal pillar[J]. Journal of China University of Mining and Technology,2008,18(2):153-158.
    [99] P.R. Sheorey, M.N. Das, D. Barat, R.K. Prasad, et al. Coal pillar strength estimation from failedand stable cases[J]. International Journal of Rock Mechanics and Mining Sciences,1987,24(6):347-355.
    [100] Zhu Wei-bing, Xu Jia-lin, Kong Xiang, et al. Study on Pillar Stability of Wongawilli Mining Areain Shallow Close Distance Coal Seams[J]. Procedia Earth and Planetary Science,2009,1(1):235-242.
    [101]郑百生,谢文兵,窦林名,等.不规则煤柱作用下工作面开采的三维数值模拟[J].煤炭学报,2006,31(2):137-140.
    [102]王晓振,许家林,朱卫兵,等.走向煤柱对近距离煤层大采高综采面矿压影响[J].煤炭科学技术,2009,37(2):1-4.
    [103]刘文涛,许家林,朱卫兵,等.浅埋煤层走向煤柱对支承压力影响的数值模拟研究[J].中国煤炭,2010,36(2):43-45.
    [104]彭小沾,崔希民,王家臣,等.基于Voronoi图的不规则煤柱稳定性分析[J].煤炭学报,2008,33(9):966-970.
    [105]屠世浩,窦凤金,万志军,等.浅埋房柱式采空区下近距离煤层综采顶板控制技术[J].煤炭学报,2011,36(3):366-370.
    [106]屠世浩,王方田,窦凤金,等.上层煤柱下综放沿空回采巷道矿压规律研究[J].中国矿业大学学报,2010,39(1):1-5.
    [107]姜鹏飞,康红普,张剑,等.近距煤层群开采在不同宽度煤柱中的传力机制[J].采矿与安全工程学报,2011,28(3):345-349.
    [108]姜鹏飞,林健,张剑,等.近距离煤层群开采在不同宽度煤柱中的能量分布[J].煤矿开采,2011,16(1):52-54.
    [109]王旭宏,张绪言,张百胜,等.煤柱集中载荷对不同错距巷道围岩应力的影响[J].煤炭工程,2009,(8):84-86.
    [110] Jiang Yaodong, Wang Hongwei, Zhao Yixin, et al. The influence of roadway backfill on burstingliability and strength of coal pillar by numerical investigation[J]. Procedia Engineering,2011,26:1125-1143.
    [111]徐佑林,桂祥友,张辉,等.不同宽度煤柱下沿空掘巷数值模拟研究及应用[J].煤矿开采,2011,16(5):47-51.
    [112]李承军,侯圣权.遗留煤柱影响区沿空掘巷支护技术研究[J].煤矿安全,2011,42(4):25-27.
    [113] Yang Yu, Jianbiao Bai, Ke Chen, et al. Failure mechanism and stability control technology of rocksurrounding a roadway in complex stress conditions[J]. Mining Science and Technology,2011,21(3):301-306.
    [114] Xiao Tongqiang, Bai Jianbiao, Xu Lei, et al. Characteristics of stress distribution in floor strataand control of roadway stability under coal pillars[J]. Mining Science and Technology,2011,21(2):243-247.
    [115]许磊,柏建彪,王襄雨,等.煤柱支承压力影响下巷道围岩控制技术[J].煤矿安全,2011,42(4):51-53.
    [116] BRITON, SCOW G. Mining multiple seams[J]. Coal Mining&Processing,1980,17(12):64-66.
    [117] SINGH K B, SINGH T N. Ground movements over long-wall workings in the Kamptee coal filed,India[J]. Engineering Geology,1998,50(1.2):125-139.
    [118] Hongwei Wang, Brett A. Poulsen, Baotang Shen, et al. The influence of roadway backfill on thecoal pillar strength by numerical investigation [J]. International Journal of Rock Mechanics andMining Sciences,2011,48(3):443-450.
    [119]杨光玉,贺兴元.局部煤柱下安全采煤技术[J].煤炭科学技术,2001,29(10):16-19.
    [120]王振宇.上覆煤柱工作面矿压显现及开采应对措施[J].科技情报开发与经济,2006,16(7):293-294.
    [121]国文斌.应力煤柱下开采的可行性[J].煤炭技术,2009,28(4):81-83.
    [122]杨玉龙.分区煤柱集中压力区开采实践[J].煤矿开采,2009,14(3):26-27.
    [123]胡锦元.近距离煤层采准巷道破坏剖析[J].煤炭工程,2012,(1):27-28.
    [124]张来仁. ZF-4600型支架网下放煤过上分层煤柱开采实践[J].煤炭科学技术,2005,33(6):15-17.
    [125]王存权.近距离煤层开采斜交过上覆采空区煤柱矿压规律研究[J].中国煤炭,2006,32(2):35-44.
    [126]张效春.近距离煤层煤柱下的开采方法[J].煤矿开采,2006,11(6):39-40.
    [127]胡长江.近距离煤柱作用下工作面开采实践[J].煤炭技术,2010,29(12):78-79.
    [128]钱鸣高,石平五.矿山压力与岩层控制[M].徐州:中国矿业大学出版社,2003.
    [129] Qian Minggao. A study of the behavior of overlying strata in longwall mining and its applicationto strata control. In: Proceedings of the Symposium on Strata Mechanics. Elsevier ScientificPublishing Company,1982,13-17.
    [130]钱鸣高,李鸿昌.采场上覆岩层活动规律及其对矿山压力的影响[J].煤炭学报,1982(2):1-8.
    [131]钱鸣高.采场上覆岩层岩体结构模型及其应用[J].中国矿业学院学报,1982(2):1-11.
    [132] Qian Minggao, Zhao Guojing. The behavior of the main roof fracture in longwall mining and itseffect on roof pressure.In: Rock Mechanics(Proceedings of the28th U.S. Symposium),1987,1123-1128.
    [133]钱鸣高,何富连,王作棠等.再论采场矿山压力理论[J].中国矿业大学学报,1994(3):1-9.
    [134]钱鸣高,缪协兴,何富连.采场“砌体梁”结构的关键块分析[J].煤炭学报,1994,19(6):557-563.
    [135]缪协兴,钱鸣高.采场围岩整体结构与砌体梁力学模型[J].矿山压力与顶板管理,1995(4):2-8.
    [136]钱鸣高,缪协兴,许家林.岩层控制中的关键层理论研究[J].煤炭学报,1996,21(3):225-230.
    [137]钱鸣高,缪协兴,许家林,等.岩层控制的关键层理论[M].徐州:中国煤炭出版社,2003.
    [138]许家林.岩层移动与控制的关键层理论及其应用[D].徐州:中国矿业大学,1999.
    [139]许家林,钱鸣高.岩层控制关键层理论的应用研究与实践[J].中国矿业,2001(6):54-56.
    [140]许家林,钱鸣高.覆岩关键层位置的判别方法[J].中国矿业大学学报,2000,29(5):464-467.
    [141]许家林,吴朋,朱卫兵.关键层判别方法的计算机实现[J].矿山压力与顶板管理,2000(4):29-31.
    [142]许家林,钱鸣高,马文顶,等.岩层移动模拟研究中加载问题的探讨[J].中国矿业大学学报,2001,30(3):252-255.
    [143]许家林,钱鸣高.关键层运动对覆岩及地表移动影响的研究[J].煤炭学报,2000,25(2):122-126.
    [144]许家林,钱鸣高,朱卫兵.覆岩主关键层对地表下沉动态的影响研究[J].岩石力学与工程学报,2005,24(5):787-791.
    [145]许家林,连国明,朱卫兵,等.深部开采覆岩关键层对地表沉陷的影响[J].煤炭学报,2007,32(7):686–690.
    [146] Xu Jialin, Zhu Weibing, Qian Minggao. Mechanism of coupling effect between key strata and soilon subsidence [C]. Proceedings of the12th International Congress of International Society forMine Surveying.353-357.
    [147]朱卫兵,许家林,施喜书,等.覆岩主关键层运动对地表沉陷影响的钻孔原位测试研究[J].岩石力学与工程学报,2009,28(2):403-409.
    [148]屈庆栋,许家林,钱鸣高.关键层运动对邻近层瓦斯涌出影响的研究[J].岩石力学与工程学报,2007,26(7):1478-1484.
    [149]许家林,王晓振,刘文涛,等.覆岩主关键层位置对导水裂隙带高度的影响[J].岩石力学与工程学报,2009,28(2):381-385.
    [150]许家林,朱卫兵,王晓振.基于关键层位置的导水裂隙带高度预计方法[J].煤炭学报,2012,37(5).
    [151]王晓振,许家林,朱卫兵.主关键层结构稳定性对导水裂隙演化的影响研究[J].煤炭学报,2012,37(4):606-612.
    [152]许家林,鞠金峰.特大采高综采面关键层结构形态及其对矿压的影响[J].岩石力学与工程学报,2011,30(8):1547-1556.
    [153]鞠金峰,许家林,王庆雄.大采高采场关键层“悬臂梁”结构运动型式及对矿压的影响[J].煤炭学报,2011,36(12):2115-2120.
    [154]鞠金峰,许家林,朱卫兵,等.7.0m支架综采面矿压显现规律研究[J].采矿与安全工程学报,2012,29(3):344-350.
    [155] Xu Jialin, Zhu weibing, Lai Wenqi, et al. Green Mining Techniques in the Coal Mines of China[J]. Journal of Mines,Metals&Fuels,2004,52(12):395-398.
    [156]许家林,钱鸣高,金宏伟.岩层移动离层演化规律及其应用研究[J].岩土工程学报,2004,26(5):632-636.
    [157]许家林,钱鸣高,金宏伟.基于岩层移动的“煤与煤层气共采”技术研究[J].煤炭学报,2004,29(2):129-132.
    [158]朱卫兵,许家林,赖文奇,等.覆岩离层分区隔离注浆充填减沉技术的理论研究[J].煤炭学报,2007,32(5):458–462.
    [159]许家林,尤琪,朱卫兵,等.条带充填控制开采沉陷的理论研究[J].煤炭学报,2007,32(2):119-122.
    [160]许家林,陈稼轩,蒋坤.松散承压含水层的载荷传递作用对关键层复合破断的影响[J].岩石力学与工程学报,2007,26(4):699-704.
    [161]许家林,蔡东,傅昆岚.邻近松散承压含水层开采工作面压架机理与防治[J].煤炭学报,2007,32(12):1239-1243.
    [162]王晓振,许家林,朱卫兵,等.松散承压含水层水位变化与顶板来压的联动效应及其应用研究[J].岩石力学与工程学报,2011,30(9):1872-1881.
    [163]许家林,朱卫兵,王晓振,等.浅埋煤层覆岩关键层结构分类[J].煤炭学报,2009,34(7):865-870.
    [164]伊茂森.神东矿区浅埋煤层关键层理论及其应用研究[D].徐州:中国矿业大学,2008.
    [165]缪协兴,浦海,白海波.隔水关键层原理及其在保水采煤中的应用研究[J].中国矿业大学学报,2008,37(1):1-4.
    [166]缪协兴,茅献彪,钱鸣高.采动覆岩中关键层的复合效应分析[J].矿山压力与顶板管理,1999,(3):19-25.
    [167]缪协兴,钱鸣高.采动岩体的关键层理论研究新进展[J].中国矿业大学学报,2000,29(1):25-29.
    [168]缪协兴,钱鸣高.超长综放工作面覆岩关键层破断特征及对采场矿压的影响[J].岩石力学与工程学报,2003,22(1):45-47.
    [169]缪协兴,陈荣华,浦海等.采场覆岩厚关键层破断与冒落规律分析[J].岩石力学与工程学报,2005,24(8):1289-1295.
    [170]茅献彪,缪协兴,钱鸣高.采高及复合关键层效应对采场来压步距的影响[J].湘潭矿业学院学报,1999,14(1):1-5.
    [171]茅献彪,缪协兴,钱鸣高.采动覆岩中复合关键层的断裂跨距计算[J].岩土力学,1999,20(2):1-4.
    [172]缪协兴,浦海,白海波.隔水关键层原理及其在保水采煤中的应用研究[J].中国矿业大学学报,2008,37(1):1-4.
    [173]缪协兴,陈荣华,白海波.保水开采隔水关键层的基本概念及力学分析[J].煤炭学报,2007,32(6):561-564.
    [174] Hai Pu, Xiexing Miao, Banghua Yao, et al. Structural motion of water-resisting key strata lyingon overburden[J]. Journal of China University of Mining and Technology,2008,18(3):353-357.
    [175] Lianguo Wang, Xiexing Miao, Yu Wu,et al. Discrimination conditions and process ofwater-resistant key strata[J]. Mining Science and Technology,2010,20(2):224-229.
    [176]缪协兴,茅献彪,孙振武,等.采场覆岩中复合关键层的形成条件与判别方法[J].中国矿业大学学报,2006,4(1):25-26.
    [177]白晨光,黎良杰,于学馥.承压水底板关键层失稳的尖点突变模型[J].煤炭学报,1997,22(2):149-154.
    [178]于胜文,郑文华,姜岩,等.利用关键层控制宽条带开采地表下沉的实践研究[J].矿山测量,1999,(4):9-11.
    [179]吴成宏,杨维祥,赵仁政,等.关键层理论在控制宽条带开采地表下沉中的应用[J].煤矿现代化,2000,(6):23-24.
    [180]谢胜华,侯忠杰.突变理论在浅埋煤层组合关键层中的应用[J].力学与实践,2002,(24):42-44.
    [181]张秀琨,鲍杰.密集建筑物下采煤覆岩关键层判定及应用[J].安徽理工大学学报,2003,23(1):18-21.
    [182]黄庆享,张沛.厚砂土层下顶板关键块上的动态载荷传递规律[J].岩石力学与工程学报,2004,23(24):4179-4182.
    [183]高明中.关键层破断与厚松散层地表沉陷耦合关系研究[J].安徽理工大学学报,2004,24(3):24-27.
    [184]翟所业,张开智.用弹性板理论分析采场覆岩中的关键层[J].岩石力学与工程学报,2004,23(11):1856-1860.
    [185]刘开云,乔春生,周辉,等.覆岩组合运动特征及关键层位置研究[J].岩石力学与工程学报,2004,23(8):1301-1306.
    [186]余为,徐金海,黄伟.短壁开采覆岩关键层的力学分析[J].安徽理工大学学报,2005,25(1):1-4.
    [187]贾剑青,王宏图,唐建新,等.硬软交替岩层的复合顶板主关键层及其破断距的确定[J].岩石力学与工程学报,2006,25(5):974-978.
    [188]李凤仪,王继仁,刘钦德.薄基岩梯度复合板模型与单一关键层解算[J].辽宁工程技术大学学报,2006,25(4):524-526.
    [189]徐金海,刘克功,卢爱红.短壁开采覆岩关键层黏弹性分析与应用[J].岩石力学与工程学报,2006,25(6):1147-1151.
    [190]成云海,姜福兴,程久龙,等.关键层运动诱发矿震的微震探测初步研究[J].煤炭学报,2006,31(3):273-277.
    [191]刘卫群,顾正虎,王波,等.顶板隔水层关键层耦合作用规律研究[J].中国矿业大学学报,2006,35(4):427-430.
    [192]刘立国,翟智强,何杰.基于关键层的采空区上方近距离煤层安全开采[J].煤炭科技,2007,(2):51-54.
    [193] Meimei Feng, Xianbiao Mao, Haibo Bai, et al. Analysis of water insulating effect of compoundwater-resisting key strata in deep mining[J]. Journal of China University of Mining andTechnology,2007,17(1):1-5.
    [194] Liang Wang, Yuanping Cheng, Fengrong Li, et al. Fracture evolution and pressure relief gasdrainage from distant protected coal seams under an extremely thick key stratum[J]. Journal ofChina University of Mining and Technology,2008,18(2):182-186.
    [195]李琰庆,许冲,侯恩科,等.关键层初次破断前动态载荷研究[J].矿业研究与开发,2008,28(4):12-15.
    [196] Dongsheng Zhang, Gangwei Fan, Yude Liu, et al. Field trials of aquifer protection in longwallmining of shallow coal seams in China[J]. International Journal of Rock Mechanics and MiningSciences,2010,(47):908-914.
    [197] Liang Wang, Yuanping Cheng, Yuekui Yang, et al. Controlling the effect of a distant extremelythick igneous rock in overlying strata on coal mine disasters[J]. Mining Science and Technology,2010,20(4):510-515.
    [198] Hai Pu, Jian Zhang. Mechanical model of control of key strata in deep mining[J]. Mining Scienceand Technology,2011,21(2):267-272.
    [199] Xiexing Miao, Ximin Cui, Jin'an Wang,et al. The height of fractured water-conducting zone inundermined rock strata[J]. Engineering Geology,2011,120(1-4):32-39.
    [200] Zhanguo Ma, Peng Gong, Jinquan Fan, et al. Coupling mechanism of roof and supporting wall ingob-side entry retaining in fully-mechanized mining with gangue backfilling[J]. Mining Scienceand Technology,2011,21(6):829-833.
    [201] Zhang Jie. The influence of mining height on combinational key stratum breaking length[J].Procedia Engineering,2011,26:1240-1246.
    [202] Jixiong Zhang, Qiang Zhang, Yanli Huang, et al. Strata movement controlling effect of waste andfly ash backfillings in fully mechanized coal mining with backfilling face[J]. Mining Science andTechnology,2011,21(5):721-726.
    [203] Ying Xu, Qingliang Chang, Huaqiang Zhou, et al. Movement and deformation laws of theoverlying strata in paste filling stope[J]. Mining Science and Technology,2011,21(6):863-868.
    [204] Feng Xiaojun, Wang Enyuan, Shen Rongxi, et al. The dynamic impact of rock burst induced bythe fracture of the thick and hard key stratum[J]. Procedia Engineering,2011,26:457-465.
    [205] Zhiqiang Zhang, Jialin Xu, Weibing Zhu, et al. Simulation research on the influence of erodedprimary key strata on dynamic strata pressure of shallow coal seams in gully terrain[J].International Journal of Mining Science and Technology,2012,22(1):51-55.
    [206]徐金海,缪协兴,张晓春.煤柱稳定性的时间相关性分析[J].煤炭学报,2005,30(4):433-437.
    [207]崔晓晖.孤岛综放面穿越顶分层煤柱区煤体应力变化规律[J].煤矿开采,2005,10(1):76-78.
    [208]王旭春,黄福昌,张怀新,等. A·H·威尔逊煤柱设计公式探讨及改进[J].煤炭学报,2002,27(6):604-608.
    [209] MATSUOKA H, NAKAI T. Stress-deformation and strength characteristics of soil under threedifference principal stresses[J]. Proc. of Japan Society of Civil Engineers,1974,232:59-70.
    [210]罗汀,姚仰平,松岗元.基于SMP准则的土的平面应变强度[J].岩土力学,2000,21(4):390-393.
    [211]朱建明,彭新坡,姚仰平,等. SMP准则在计算煤柱极限强度中的应用[J].岩土力学,2010,31(9):2987-2990.
    [212] STAKE M. Stress-deformation and strength characteristics of soil under three difference principalstresses(discussion)[J]. Proc. of Japan Society of Civil Engineers,1976,246:137-138.
    [213] MATSUOKA H, HOSHIKAWA T, UENO K. A general failure criterion and stress-strain retainfor granular materials to metals[J]. Soil and Foundations,1990,30(2):119-127.
    [214]朱建明,马中文区段煤柱弹塑性宽度计算及其应用[J].金属矿山,2011,(8):29-32.
    [215]谢明荣,林东才.矿压测控技术[M].徐州:中国矿业大学出版社,1997.
    [216]姜福兴,王同旭,汪华君,等.四面采空“孤岛”综放采场矿压控制的研究与实践[J].岩土工程学报,2005,27(9):1101-1104.
    [217]崔晓晖.孤岛综放面穿越顶分层煤柱区煤体应力变化规律[J].煤矿开采,2005,10(1):76-78.
    [218]陈苏社.大柳塔煤矿5-2煤7.0m支架综采面矿压规律研究[D].中国矿业大学,2012.
    [219]李鸿昌,钱鸣高.孔庄矿上行开采的研究[J].中国矿业学院学报,1982,(2):12-24.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700