用户名: 密码: 验证码:
煤矿采动动载对煤岩体的作用及诱冲机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
煤矿采动动载诱发冲击矿压显现的机理及防治,目前缺乏系统的研究。本文综合采用理论分析、现场原位试验、实验室试验、数值模拟及工程实践等研究方法,对煤岩力学特性的应变率相关性,煤矿采动动载特征、诱冲机理及降低动载作用的冲击矿压防治进行了系统研究。
     现场测试及研究表明:原岩应力是静载的基础,采掘空间附近应力具有基本分布形式。采掘活动及煤岩动力学响应是采动动载的主要来源。动载应变率与矿震能量成正相关关系,煤矿动载应变率一般不超过10-1/s级,据此对煤矿载荷状态进行了界定,并推导或给出了动载表达式。
     试验研究表明:煤岩强度、弹性模量均随应变率呈指数关系;煤岩破坏前后加载系统输入的能量随应变率呈指数增加,动态破坏时间急剧减小,冲击倾向性显著增强;静载较低时,煤岩破坏需要较强动载或多轮动载作用,表现为动载破坏形态,静载较高时,较低的动载可使煤样破坏,主要表现为静载破坏形态;煤岩声发射表现出较强的凯瑟效应;动载作用下,煤岩在峰值应力前已表现出剧烈损伤。
     理论研究表明:煤岩具有临界损伤因子,当损伤因子达到临界值时,煤岩表现为宏观破坏;静载作用下,煤岩具有裂纹扩展优势方向,损伤主要在局部范围内发生;增大主差应力,可增大裂纹扩展方向和可扩展裂纹长度范围;动载作用下,应力大小及方向随时间改变,煤岩裂纹扩展优势方向也随之改变,增大了煤岩损伤范围;动载幅值越大、频率越低、持续时间越长,煤岩体损伤越大;动静组合作用下,静载主要提供煤岩破坏的应力和能量基础,动载主要起触发损伤破坏的作用,同时输入部分能量;动载作用时,煤岩表现为损伤加剧、结构面解锁滑移、自由面产生反射拉应力等损伤失稳现象。
     研究提出了动静叠加的“力能解锁”冲击矿压机理,阐述了煤岩结构强度的各向异性对动静叠加的力能解锁提供的条件。从动静叠加和时变动力学角度构建了冲击矿压判别准则,解释了冲击矿压的滞后显现,分析了动载的扰动形式,阐明了煤岩具有临界抗扰动能力,并分析了冲击矿压力能积聚特征及几类典型的解锁模式。
     提出了冲击矿压动静结合的监测预警思想,并指出动载应从动载源、煤岩动载响应两方面进行监测,介绍了冲击矿压动载监测关键技术,分析了动载监测的前兆规律;提出了降低动载作用防治冲击矿压原理,通过降低动载源强度、降低动载传播特性、降低动载扰动效应,降低或减弱冲击显现;研究了降低动载的关键技术,提出了控制动载扰动效应的“弹性+整体+高强蓄能承载”巷道支护形式。研究成果在桃山煤矿进行了现场实践,结果表明基于降低动载作用的冲击矿压防治理论及技术效果明显。
     该论文有图111幅,表22个,参考文献225篇。
The process of mining dynamic load inducing rock burst in coal mine lacks of systematicresearch at present. This paper using a combination research methods of theoretical analysis,in situ tests, laboratory tests, numerical simulation and engineering practice systematicallystudied the characteristics of mining dynamic load, mechanism of which in inducing rockburst and reducing the role of dynamic load in rock burst prevention.
     Studies have shown that in-situ stress field is the basis of static load, and the stress nearthe mining space has a basic form of distribution. The mining activities and coal-rock dynamicresponses of coal mining are the main sources of dynamic load. Dynamic loading strain rateand rock burst released energy have a positive correlation. Coal mining dynamic loading strainrate is generally not more than the level of10-1/s, accordingly the load states are defined ofcoal mine.
     Coal and rock strength and elastic modulus increase exponentially with loading strain rateincreasing, and the presses energy input the coal and rock samples before and after destructionexponentially increase with strain rate increasing, while the dynamic failure time decreasessharply, and burst tendency increase largely with strain rate increasing. When static load is low,the destruction of the coal samples needs a strong dynamic load or cyclic dynamic load of acertain intensity, while at a higher static load, smaller dynamic load can lead the coal sample todamage. The phenomenon of acoustic emission showed strong Kaiser effect in loading of coaland rock samples. Under dynamic load, the coal and rock samples have demonstrated a severefracturing before peak stress.
     When the damage factor reaches the critical value of coal or rock, the coal or rock willperformance of instant overall destruction. Under static load, the coal and rock havepredominant direction of crack propagation and damage occurred mainly in a local area. Therange of crack propagation direction can be increased by increases the principal differentialstress. Under dynamic loading, stress magnitude and direction change over time, while thecoal-rock crack propagation advantage direction is also changed, and the range of coal androck damage is increased. The larger the magnitude, the lower the frequency, and the longerthe duration of the dynamic load is, the greater the damage of coal-rock is. In the process ofrock burst, static load mainly provides the energy of coal and rock for damage and bursting,while the dynamic load mainly triggers damage to bursting. The dynamic load effect in rockburst formation is causing coal-rock to exacerbate damage, making the structural planedeblock to slip, and leading coal body near the surface reflect seismic wave to cause tensilestress to lead instability of coal and rock mass.
     Rock burst "Five Inducing Factors" is promoted in this work. Accordingly, the fivefactors interaction on a certain situation induces rock burst. From time-varying dynamics andthe static mechanics points of view, separately established criterions of rock burst whichexplained the lagging appearance of rock burst. The research work also analyzed thedisturbance form of dynamic load, stated the coal and rock critical antidisarrangement ability,revealed "force and energy deblocking" rock burst mechanism, presented the requirmentsprovided by the structural strength anisotropy of coal and rock, and analyzed several tipicaltypes of deblocking form.
     In rock burst monitoring and prevention, this paper promoted the thought of static anddynamic load combined monitoring, and pointed out that dynamic load should be observedfrom the source and the coal and rock response of dynamic load, and introduced rock burstmonitoring key technologies, and analyzed monitoring precursor law of rock burst underdynamic load, and proposed rock burst prevention principle by reduce effect of dynamic load,that is reducing the propagation and of effect of dynamic load so as to avoid or weaken rockburst, moreover, this paper also studied the key technologies of reducing dynamic load, andproposed the roadway support form of―elastic-overall-high strength and storage bearer".Finally, the research results were put to practice usage in the Taoshan coal mine. The practiceresults showed that the rock burst prevention and control theory and technologies based onreducing the effect of mining dynamic load has a remarkable effect.
     There are111figures,22tables and225references in this paper.
引文
[1] http://finance.sina.com.cn/chanjing/cyxw/20130125/195314407569.shtml新浪财经.
    [2]钱鸣高,许家林.煤炭工业发展面临几个问题的讨论[J].采矿与安全工程学报,2006,23(2):127-132.
    [3]何满潮,钱七虎.深部岩体力学基础[M].北京:科学出版社,2010,8.
    [4]潘一山.冲击地压发生和破坏过程研究[D].北京:清华大学,1999.
    [5] http://media.chinasafety.gov.cn:8090/iSystem/shigumain.jsp国家安全生产监督管理总局网站.
    [6]曹安业.采动煤岩冲击破裂的震动效应及其应用研究[D].徐州:中国矿业大学,2009.
    [7]窦林名,何学秋.冲击矿压防治理论与技术[M].徐州:中国矿业大学出版社,2001.
    [8]齐庆新,窦林名.冲击地压理论与技术[M].徐州:中国矿业大学出版社,2008.
    [9]谢和平,彭苏萍,何满潮.深部开采基础理论与工程实践[M].北京:科学出版社,2006.
    [10]贺虎,窦林名,巩思园,等.高构造应力区矿震规律研究[J].中国矿业大学学报,2011,40(1):7-13.
    [11] BLAKE W, LEIGHTON F, DUVALL W I. Microseismic techniques for monitoring the behavior ofrock structures [M]. United States, Bureau of mines,1974:1-65.
    [12] BRADY B, LEIGHTON F. Seismicity anomaly prior to a moderate rock burst: a casestudy[J].International Journal of Rock Mechanics and Mining Sciences and GeomechanicsAbstracts,1977,14(3):127–132.
    [13]何江,窦林名,贺虎,等.综放面覆岩运动诱发冲击矿压机制研究[J].岩石力学与工程学报,2011,30(S2):3920-3927.
    [14]李志华,窦林名.矿震前兆分区监测方法及应用.煤炭学报.2009,34(5):614~618.
    [15] Cao Anye,Dou Linming,Yan Ruling,Jiang Heng.Classification of microseismic events in high stresszone[J]. Mining Science and Technology,2009,19(6):718~723.
    [16]陆菜平,窦林名,曹安业,吴兴荣,李志华.深部高应力集中区域矿震活动规律研究[J].岩石力学与工程学报,2008,27(11):2302-2308.
    [17]窦林名,赵从国,杨思光.煤矿开采冲击矿压灾害防治[M].徐州:中国矿业大学出版社,2006.
    [18]赵本均.冲击矿压及防治[M].北京:煤炭工业出版社,1995:1-23.
    [19]潘立友,钟亚平.深井冲击地压及其防治[M].北京:煤炭工业出版社,1997:14-20.
    [20] Cook N. G. W. The failure of rock. Inr. S. Rock&Iech. Min. Sci.1965(2):389-403.
    [21] Cook N. G. W. A note on rockbursts considered as a problem of stability. J. South Afr. Int. Min. andMetallurgy.1965(65):437-446.
    [22] A. M. LINKQV. Rockbursts and the instability of rock masses[J]. Int.J, Rock Mech. Min. Sci.&Geomech. Abstr,1996,33(7):727-732.
    [23] Cook N. G. W., Hoek E., Pretorius J. P. G., Ortlepp W. D. and alamon M. D. G. Rock mechanicsapplied to the study of rockbursts. J. South Afr. Inst. Min. and Metallurgy1966(66):435-528.
    [24] Petukhov I. M. Rock Bumps in CoalMines. Nedra, Moscow,1972(in Russian).
    [25] Petukhov I. M. and Linkov A. M. The Theory of Rockbursts and Outbursts. Nedra, Moscow,1983.
    [26] Bieniawski Z T, Denkhaus H G, Vogler U W. Failure of fracture rock. Int. J. Rock Mech. Min. Sci,1969,6:323-341.
    [27] Bieniawski Z T,Mechanism of brittle fracture of rocks. P art I, II and III. Int. J. Rock Mech. Min. Sci.,1967,6:395-430.
    [28] Wawersik W K and Fairhurst C A. A study of brittle rock fracture in laboratory compressionexperiments. Int. J. Rock Mech. Min. Sci.&Geomech.1970,7:561-575.
    [29] Hudson J A,Croush S L, Fairhurst C.Soft, stiff, and servo-controlled testing machines: a review withreference to rock failure. Eng.Geo,1972,6:155-189.
    [30] GB/T25217.2-2010,冲击地压测定、监测与防治方法第2部分煤的冲击倾向性分类及指数的测定方法[S].
    [31]郭建卿,苏承东.不同煤试样冲击倾向性试验结果分析[J].煤炭学报,2009,34(7):897-902.
    [32]张万斌,王淑坤.以动态破坏时间鉴定煤的冲击倾向[J].煤炭科学技术,1986,14(3):31-34.
    [33]潘一山,耿摇琳,李忠华.煤层冲击倾向性与危险性评价指标研究[J].煤炭学报,2010,35(12):1975-1978.
    [34]佩图霍夫.冲击地压和突出的力学计算方法[M].北京:煤炭工业出版社,1994.
    [35]布霍依诺.矿山压力和冲击地压[M].北京:煤炭工业出版社,1985.
    [36]章梦涛.冲击地压失稳理论与数值模拟计算[J].岩石力学与工程学报,1987(3):197-204.
    [37]章梦涛,徐曾和,潘一山.冲击地压和突出的统一失稳理论[J].煤炭学报,1991(4):48-53.
    [38]齐庆新,史元伟,刘天泉.冲击地压粘滑失稳机理的实验研究[J].煤炭学报,1997,22(2):144-148.
    [39]李新元.围岩一煤体系统失稳破坏及冲击地压预测的探讨[J].中国矿业大学学报,2000,29(6):633-636.
    [40] http://baike.baidu.com/view/44542.htm.
    [41]尹光志,李贺,鲜学福,冯涛.煤岩体失稳的突变理论模型[J].重庆大学学报,1994(1):23-28.
    [42]张玉祥,陆士良.矿井动力现象的突变机理及控制研究[J].岩土力学,1997,18(1):88-92.
    [43]潘一山,章梦涛.用突变理论分析冲击发生的物理过程[J].阜新矿业学院学报,1992(1):12-18.
    [44]费鸿禄,徐小荷.岩爆的动力失稳[M].上海:东方出版中心,1998,4.
    [45]徐曾和,徐小荷,唐春安.坚硬顶板条件下煤柱岩爆的尖点突变理论分析[J].煤炭学报,1995(5):485-491.
    [46] http://baike.baidu.com/view/86848.htm.
    [47] Xie Heping, Pariseau W G.Fr actal Character and Mechanism of Rock Burst[J]. Int. J. Rock Mech.Mine, Sci.&Geomech.Abstr,1993,30(4):343-350.
    [48]谢和平,Pariseau W G.岩爆的分形特征和机理[J].岩石力学与工程学报,1993,12(1):28-37.
    [49]李廷芥,王耀辉,张梅英,等.岩石裂纹的分形特性及岩爆机理研究[J].岩石力学与工程学报,2000,(1):6-10.
    [50]李玉,黄梅,张连城,等.冲击地压防治中的分数维[J].岩土力学,1994(4):34-38.
    [51]李玉,黄梅,廖国华.冲击地压发生前微震活动时空变化的分形特征[J].北京科技大学学报,1995(l):10-13.
    [52]窦林名,何学秋.煤岩冲击破坏模型及声电前兆判据研究[J].中国矿业大学学报,2004,33(5):504-508.
    [53] Vardoulakis I. Rock bursting as a surface instability phenomenon [J].Int.J.Rock Mech. Sci.&Geomech.Abstr.1984,21(3):137-144.
    [54] Dyskin A.V. Model of rockburst caused by crack growing near free surface [C]. Rockbursts andseismicity in mines, Young eds. Rotterdam: Balkema,1993:169-174.
    [55]张晓春,缪协兴,翟明华,等.三河尖煤矿冲击矿压发生机制分析[J].岩石力学与工程学报,1998(5):508-513.
    [56]张晓春,杨挺青,缪协兴.冲击矿压的模拟实验研究[J].岩土工程学报,1999(1):66-70.
    [57]张晓春,缪协兴,杨挺青.冲击矿压的层裂板模型及试验研究[J].岩石力学与工程学报,1999(5):497-502.
    [58]黄庆享,高召宁.巷道冲击地压的损伤断裂力学模型[J].煤炭学报,2001(2):156-159.
    [59]曹志远.时变力学与工程应用[J].力学与实践,1999,21(5):1-4.
    [60]王斌,李夕兵,马海鹏,等.基于自稳时变结构的岩爆动力源分析[J].岩土工程学报,2010,32(1):12–17.
    [61]牟宗龙.顶板岩层诱发冲击的冲能原理及其应用研究[D].徐州:中国矿业大学博士论文,2007,6.
    [62]吴兴荣,郭海泉,黄修典,等.坚硬顶板冲击矿压的预测与防治[J].矿山压力与顶板管理,1999,3/4:211-214
    [63]窦林名,刘贞堂,曹胜根,等.坚硬顶板对冲击矿压危险的影响分析[J].煤矿开采,2003,8(2):58-66.
    [64]牟宗龙,窦林名,张广文,等.坚硬顶板型冲击矿压灾害防治研究[J].中国矿业大学学报,2006,35(6):737-741.
    [65]牟宗龙,窦林名,倪兴华,等.顶板岩层对冲击矿压的影响规律研究[J].中国矿业大学学报,2010,39(1):40-44.
    [66]方新秋,窦林名,柳俊仓,等。大采深条带开采坚硬顶板工作面冲击矿压治理研究[J].中国矿业大学学报,2006,35(5):602-606.
    [67]李新元,马念杰,钟亚平,等.坚硬顶板断裂过程中弹性能量积聚与释放的分布规律[J].岩石力学与工程学报,2007,26(S1):2786-2793.
    [68]李志华,窦林名,牟宗龙,等.断层对顶板型冲击矿压的影响[J].采矿与安全工程学报,2008,25(2):154-158.
    [69]高明仕,窦林名,张农,等.煤(矿)柱失稳冲击破坏的突变模型及其应用[J].中国矿业大学学报,2005,34(4):433-437.
    [70]王连国,缪协兴.煤柱失稳的突变学特征研究[J].中国矿业大学学报,2007,36(1):7-11.
    [71]潘岳,王志强.狭窄煤柱冲击地压的折迭突变模型[J].岩土力学,2004,25(1):23-30.
    [72] CAO An–ye, DOU L in-m ing, CHEN Guo-xiang, et al. Focal mechanism caused by fracture or burstof a coal pillar[J]. Journal of China University of Mining&Technology,2008,18(2):153-158.
    [73]吕长国,窦林名,何江,等.遗留煤柱影响区域微震活动规律研究[J].煤炭工程,2011,1:78-81.
    [74] E. I. Shemyakin, M. V. Kurlenya, G. I. Kulakov. Classification of rock bursts[J]. Institute of Mining,Siberian Branch, Academy of Sciences of the USSR, Novosibirsk Translated from Fiziko-TekhnicheskieProblemy Razrabotki Poleznykh Iskopaemykh,1986,5:3-12.
    [75] DRIAD Lebeaul, LAHAIE F, ALHEIB M. Seismic and geotechnical investigations following a rockburst in a complex French mining district[J]. International Journal of Coal Geology,2005,64:66-78.
    [76] A. N. Zorin. The physical principles of rock bursts[J].Translated from Fiziko-Tekhnicheskie ProbemyRazrabotki Poleznykh Iskopaemykh,1972,5:34-41.
    [77]徐方军,毛德兵.华丰煤矿底板冲击地压发生机理[J].煤炭科学技术,2001,29(4):41-45.
    [78]徐学峰.煤层巷道底板冲击机理及其控制研究[D].徐州:中国矿业大学博士论文,2011,6.
    [79]潘一山,王来贵,章梦涛,等.断层冲击地压发生的理论与试验研究[J].岩石力学与工程学报,1998,16(6):642-649.
    [80] LI Zhi-hua, DOU Lin-ming, LU Cai-ping.Study on fault induced rock bursts[J], China University ofMining&Technology18(2008)0321–0326.
    [81]李志华.采动影响下断层滑移诱发煤岩冲击机理研究[D].徐州:中国矿业大学博士论文,2009,6.
    [82]贺虎.煤矿覆岩空间结构演化与诱冲机制研究[D].徐州:中国矿业大学博士论文,2012,6.
    [83]姜耀东,赵毅鑫,宋彦琦,等.放炮震动诱发煤矿巷道动力失稳机理分析[J].岩石力学与工程学报,2005,24(17):3131-3136.
    [84]窦林名.动静载诱发冲击矿压的机理探讨[C].第四届绿色开采理论与实践国际研讨会,2011,9:110-124.
    [85]窦林名,何江.动载诱发冲击矿压的机理及防治对策探讨[C].第四届绿色开采理论与实践国际研讨会,2011,9:101-109.
    [86]李晓红,卢义玉,康勇,等.岩石力学实验模拟技术[M].北京:科学出版社,2007.
    [87] PATYNSKA R, KABIESZ J. Scale of seismic and rock burst hazard in the Siles ian companies inPoland [J]. Mining Science and Technology2009,19(5):604–608.
    [88] LURKA A. Location of high seismic activity zones and seismic hazard assessment in ZabrzeBielszowice coal mine using passive tomography[J]. China University of Mining&Technology,2008,18(2):177-181.
    [89] DOU Linming, CHEN Tongjun, GONG Siyuan, et al. Rockburst hazard determination by usingcomputed tomography technology in deep workface[J]. Safety Science,2011,50(4):736-740.
    [90]巩思园.矿震震动波波速层析成像原理及其预测煤矿冲击危险应用实践[D].徐州:中国矿业大学,2010.
    [91]巩思园,窦林名,何江,等.深部冲击倾向煤岩循环加卸载的纵波波速与应力关系试验研究[J].岩土力学,2012,33(1):41-47.
    [92]曲效成,姜福兴,于正兴,等.基于当量钻屑法的冲击地压监测预警技术研究及应用[J].岩石力学与工程学报,2011,30(11):2346-2351.
    [93]李玉,黄梅,廖国华,等.冲击地压发生前微震活动时空变化的分析特征[J].北京科技大学学报,1995,17(1):10-13.
    [94] Dessokey M M. Statistical models of the seismic hazard analysis of mining tremors and naturalearthquakes[J]. Publ. Inst. Geophys., Pol. Acad. Sci.,1984, A-15(174):1-82.
    [95]李铁,冀林旺,左艳,等.预测较强矿震的地震学方法探讨[J].东北地震研究,2003,19(1):53-59.
    [96] Idziak A, Sagan G, Zuberek W M. An analys is of frequency distributions of shocks form the UpperSilesian Coal Basin[J]. Publ. Inst. Geophys., Pol. Acad. Sci.,1984, M-15(235):163-182.
    [97]潘一山,赵扬锋,马瑾.中国矿震受区域应力场影响的探讨[J].岩石力学与工程学报,2005,24(16):2847-2853.
    [98] Lasocki S. Prediction of strong mining tremors[J]. Zesz. Naukowe Akad. Gorn. Hutn. Geofiz.Stosowana,1990(7):1-110.
    [99] Scholz C. The frequency-magnitude relation of microfracturing in rock and its relation toearthquakes[J].Bull. Seism. Soc. Am.,1968(58):399-415.
    [100]李铁,蔡美峰,孙丽,等.强矿震地球物理过程及短临阶段预测的研究[J].地球物理学进展,2004,19(4):961-967.
    [101] Gibowicz S J. Space and time variations of frequency-magnitude relation for mining tremors in theSzombierki coal mine in Upper Silesia, Poland[J]. Acta. Geophys. Pol.,1979(27):39-49.
    [102]李铁,蔡美峰,纪洪光,等.强矿震预测的研究[J].北京科技大学学报,2005,27(3):260-263.
    [103] Brink A v Z. Application of a microseismic system at Western Deep Levels[C]. Rockbursts andseismicity in mines, Faihurst ed. Rotterdam:Balkema,1990:355-361.
    [104] Fujii Y, Ishijima Y and Goto T. Application of DDM to some rock pressure problems in Japanese deepcoal mines[C]. Proc.11th Intl. Conf. Ground Control in Mining,1992:414-420.
    [105]张少泉,张兆平,杨懋源,等.矿山冲击的地震学研究与开发[J].中国地震,1993,9(1):1-8.
    [106] Fujii Y, Ishijima Y and Deguchi G. Prediction of coal face rockbursts and microseismicity in deeplongwall coal mining[J]. Int. J. Rock Mech. Min. Sci.,1997,34(1):85-96.
    [107] LI Tie, CAI Mei-feng, CAI M. A review of mining-induced seismicity in China [J]. InternationalJournal of Rock Mechanics and Mining Sciences,2007,44(8):1149–1171.
    [108] USZKO M. Monitoring of methane and rockburst hazards as a condition of safe coal exploitation inthe mines of Kompania W glowa SA[J]. ProcediaEarth and Planetary Science2009,1(1)54–59.
    [109] TANG Li-zhong, XIA K W. Seismological method for prediction of areal rockbursts in deep minewith seismic source mechanism and unstable failure theory[J]. Journal of Central South University ofTechnology,2010,17(5):947-953.
    [110]成云海,姜福兴.冲击地压矿井微地震监测试验与治理技术研究[M].北京:煤炭工业出版社,2011.
    [111] HOLUB K, PETRS V. Some parameters of rockbursts derived from underground seismologic almeasurements [J]. Tectonophysics2008,456(1-2):67–73.
    [112] LU Cai-Ping, DOU Lin-ming, WU Xing-rong, XIE Yao-she. Case study of blast-induced shock wavepropagation in coal and rock [J]. International Journal of Rock Mechanics and Mining Sciences,2010,47(6)1046–1054.
    [113] Kray L, Erik W, and Peter S, et al. Three-dimensional time-lapse velocity tomography of anunderground panel[J]. Int. J. Rock Mech. Min. Sci.,2008(45):478-485.
    [114] Lurka A. Location of high seismic activity zones and seismic hazard assessment in ZabrzeBielszowice coal mine using passive tomography[J]. J. China Univ Mining&Tecnol,2008,18(2):177-181.
    [115]宋继臣,窦林名,何江,等.峻德煤矿104掘进工作面冲击矿压防治技术[J].矿业安全与环保,2010,5:049-051.
    [116] Ronnie K., Miller, Paul Mclntire. Acoustic Emission Testing, Nondestructive Testing Handbook[M],American Society for Nondestructive Testing,1987.
    [117]贺虎,窦林名,巩思园,等.冲击矿压的声发射监测技术研究[J].岩土力学,2011,32(4):1262-1268.
    [118]张省军,刘建坡,石长岩,等.基于声发射实验岩石破坏前兆特征研究[J].金属矿山,2008,386(8):65-68.
    [119]李庶林,尹贤刚,王泳嘉,等.单轴受压岩石破坏全过程声发射特征研究[J].岩石力学与工程学报,2004,23(15):2499—2503.
    [120] Ganne P,Vervoort A,Wevers M.Quantification of pre—peak bfittle damage:Corelation betweenacoustic emission and observed micro—fracturing[J].International Journal of Rock Mechanics&Mining Science,2007,44(2):720-729.
    [121]付小敏.典型岩石单轴压缩变形及声发射特性试验研究[J].成都理工大学学报:自然科学版,2005,32(1):17-21.
    [122]张茹,谢和平,刘建锋,等.单轴多级加载岩石破坏声发射特性试验研究[J].岩石力学与工程学报,2006,25(12):2584-2588.
    [123]刘卫东.冲击地压预测的声发射信号处理关键技术研究[D].徐州:中国矿业大学,2009.
    [124]赵兴东,李元辉,袁瑞甫,等.基于声发射定位的岩石裂纹动态演化过程研究[J].岩石力学与工程学报,2007,26(5):944-949.
    [125]窦林名,何学秋,王恩元,等.由煤岩变形冲击破坏所产生的电磁辐射[J].清华大学学报(自然科学版),2001,42(1):86-88.
    [126]窦林名,曹其伟,何学秋,等.冲击矿压危险的电磁辐射监测技术[J].矿山压力与顶板管理,2002,4:89-91.
    [127]窦林名,何学秋.冲击矿压危险预测的电磁辐射原理[J].地球物理学进展,2005,20(2):427-431.
    [128]何学秋,聂百胜,王恩元,等.矿井煤岩动力灾害电磁辐射预警技术[J].煤炭学报,2007,32(1):56-59.
    [129]窦林名,何学秋,王恩元.冲击矿压预测的电磁辐射技术及应用[J].煤炭学报,2004,29(4):396-399.
    [130]窦林名,何学秋,王恩元.电磁辐射监测冲击矿压灾害危险[J].煤矿开采,2004,9(1):1-6.
    [131]窦林名,陆菜平,牟宗龙,等.顶板运动的电磁辐射规律探讨[J].矿山压力与顶板管理,2005,3:40-42.
    [132]窦林名,田京城,陆菜平,等.组合煤岩冲击破坏电磁辐射规律研究[J].岩石力学与工程学报,2005,24(19):3541-3544.
    [133]窦林名,王云海,何学秋,等.煤样变形破坏峰值前后电磁辐射特征研究[J].岩石力学与工程学报,2007,26(5):908-914.
    [134]王恩元,何学秋,刘贞堂,等.受载岩石电磁辐射特性及其应用研究[J].岩石力学与工程学报,2002,21(10):1473-1477.
    [135]王恩元,何学秋,窦林名,等.煤矿采掘过程中煤岩体电磁辐射特征及应用[J].地球物理学报,2005,48(1):216-221.
    [136]王恩元,何学秋,刘贞堂,等.煤岩动力灾害电磁辐射监测仪及其应用[J].煤炭学报,2003,28(4):366-369.
    [137]陆菜平,窦林名.电磁辐射检验卸压爆破效果技术[J].煤炭科学技术,2004,32(1):15-18.
    [138]陆菜平,窦林名,吴兴荣,等.基于能量机理的卸压爆破效果电磁辐射检验法[J].岩石力学与工程学报,2005,24(6):1014-1017.
    [139]牟宗龙,窦林名,陆菜平,等.巷道两帮煤岩体电磁辐射信号差异分析[J].采矿与安全工程学报,2006,23(4):427-431.
    [140]肖红飞,何学秋,冯涛,等.基于力电耦合冲击矿压电磁辐射预测法的研究[J].中国安全科学学报,2004,14(4):86-89.
    [141]刘晓斐.冲击地压电磁辐射前兆信息的时间序列数据挖掘及群体识别体系研究[D].徐州:中国矿业大学,1998.
    [142]窦林名,何学秋.煤矿冲击矿压的分级预测研究[J].中国矿业大学学报,2007,36(6):717-722.
    [143] Jahns, H., Erkennen und Beseitigen gef hrlicher Spannungen im Kohlenstoss einer Abbaustrecke desgebirgsschlaggef hrdeten Fl zes Sonnenschein, Glückauf1965,101S.184-191.
    [144] Heising, C. Betriebserfahrungen mit dem Entspannungssprengen, Glückauf1978,114, Nr.17S.754-757.
    [145] G ttig P., Abbau in Bereichen m glicher Gebirgsschlaggefahr, Glüchauf1978,114Nr.17, S.742-747.
    [146] Janke ch., Ein gebirgsschlaggef hrdeter Abbau und die dabei getroffenen Massnahmen Glückauf1978,114, Nr.17, S.747-751.
    [147] Kuschel K. H., Betriebliche Massnahmen zur Gebirgsschlagverhütung, Glückauf1978,114, Nr.17, S.751-754.
    [148]窦林名,陆菜平,牟宗龙,等.煤岩体的强度弱化减冲理论[J].河南理工大学学报,2005,24(3):169-175.
    [149]陆菜平,窦林名,吴兴荣,等.煤矿冲击矿压的强度弱化[J].北京科技大学学报,2007,29(11):1074-1078.
    [150]陆菜平.组合煤岩的强度弱化减冲原理及其应用[D].徐州:中国矿业大学,2008.
    [151]乔纳斯A.朱卡斯,等.张志云,丁世用,魏传忠,译.碰撞动力学[M].兵器工业出版社,1987.
    [152]李夕兵,古德生.岩石冲击动力学[M].长沙:中南工业大学出版社,1994.
    [153]左宇军,李夕兵,张义平.动静组合加载下的岩石破坏特性[M].北京:冶金工业出版社,2008.
    [154]戴俊.岩石动力学特性与爆破理论[M].北京:冶金工业出版社,2002.
    [155] R. J. Christensen, S. R. Swanson and W. S. Brown. Split-Hopkinson-bar Tests on Rock underConfining Pressure[J]. Paper scheduled for presentation at1972Fall Meeting due to be held in Seattle,Wash. on October17-20.
    [156]冯明德,彭艳菊,刘永强,等.SHPB实验技术研究[J].地球物理学进展,2006,21(1):273-278.
    [157]鞠庆海,吴绵拔.岩石材料三轴压缩动力特性的试验研究[J].岩土工程学报,1993,15(3):73-78.
    [158]张学峰,夏源明.中应变率材料试验机的研制[J].实验力学,2001(1):13-18.
    [159] Green S J, Perkins R D. Uniaxial compression tests at strain rate from10-4to104sec-1on threegeological materials. In: Gray K E ed Proc of the10th symposium on Rock Mechanics. New York:American Institute of Mining, Metallurgical and Petroleum Engineer Inc,1968.
    [160] Serdengecti S, Boozer G D. The effects of strain rate and temperature on the behavior of rocksubjected to triaxial compression. In: Fairhurst C ed. Proc4th Symposium on Rock Mechanics. Oxford:Pergamon,1961.
    [161] Bieniawski Z T. Time-dependent behavior of fractured rock. Rock Mechanics,1970,2(3):123-137.
    [162] Peng S S, Podnieks E R. Relaxation and the behavior of failed rock. Int J Rock Mech Min Sci,1972,9(6):699-712.
    [163] Peng S S. Time-dependent aspects of rock behavior as measured by a servocontrolled hydraulictesting mechine. Int J Rock Mech Min Sci&Geomech Abstr,1973,10(4):235-246.
    [164] Chong K P, Hoyt P M, Smith J W, et al. Effects of strain rate on oil shale fracturing. Int J Rock MechMin Sci&Geomech Abstr,1980,17(1):35-42.
    [165] Chong K P, Borest A P. Strain rate dependent mechanical properties of New Albany reference shale.Int J Rock Mech Min Sci&Geomech Abstr,1990,27(3):199-205.
    [166] Lajtai E Z, Seott Dunean E J, Carter B J. The effect of strain rate on rock strength. Rock Mechanicsand Rock Engineering,1991(24):99-109.
    [167]葛科,刘恩龙,赵玲.冲击荷载作用下岩石动力特性的试验研究[J].工程勘察,2010(5):11-15.
    [168]朱晶晶,李夕兵,宫凤强,等.冲击载荷作用下砂岩的动力学特性及损伤规律[J].中南大学学报(自然科学版),2012,43(7):2701-2707.
    [169]李宁,陈文玲,张平.动荷作用下裂隙岩体介质的变形性质[J].岩石力学与工程学报,2001,20(1):74-78.
    [170]李永盛.加载速率对红砂岩力学效应的试验研究[J].同济大学学报,1995,23(3):265-269.
    [171]陈升强.刚性加载技术形式对岩石变形全过程力学性态的影响[J].力学与实践,1984(4):22-29.
    [172] Dighy P. J.,Nilsson L.,Bergman B. O.在脆性岩石中爆破引起的振动、破坏以及破碎过程的计算机模拟(陈志珍译).冶金部长沙矿冶研究院岩石工程咨询公司.第一届国际爆破破岩会议论文集,1984:227-233.
    [173]阳生权.爆破地震累积效应和应用初步研究[D].长沙:中南大学,2002.
    [174] Gibowicz S J. The mechanism of large mining tremors in Poland[C]. Rockbursts and seismicity inmines, Gay N C and Wainwright E H eds. Johannesburg: Balkema,1984:17-28.
    [175] McGarr A. Some applications of seismic source mechanism studies to assessing undergroundhazard[C]. Rockbursts and seismicity in mines, Gay N C and Wainwright E H eds. Johannesburg:Balkema,1984:199-208.
    [176] Sato K, Fujii Y. Source mechanism of a large scale gas outburst at Sunagawa coal mine in Japan[J].Pure Appl. Geophys,1989(129):325-343.
    [177] McGarr A. Energy budgets of mining-induced earthquakes and their interactions with nearby stopes[J].J. Rock Mechanics and Mining Sci.,2000(37):437-443.
    [178] Joughin N C, Jager A J. Fracture of rock at stope faces in South African gold mines[C]. Proc. Symp.Rockbursts: Prediction and Control,1984:53-66, Inst. Min. Metal., London.
    [179] Potgieter G J, Roering C. The influence of geology on the mechanisms of mining-associatedseismicity in the Klerksdrop gold-field[C]. Rockbursts and seismicity in mines, Gay N C andWainwright E H eds. Johannesburg: Balkema,1984:45-50.
    [180] Prugger A F, Gendzwill D J. Fracture mechanism of microseisms in Sakatchewan potash mines[C].Rockbursts and seismicity in mines, Young eds. Rotterdam: Balkema,1993:169-174.
    [181] Luo X, Hatherly P, Wang S. Mapping of tensile failures in longwall mining through new microseismicprocedures[R]. ACARP project8013, Australia,2001.
    [182] Kelly M, Luo X, Hatherly P, et al.1999, Ground behavior about longwall faces and its effect onmining[R]. ACARP project C5017, Australia,1999.
    [183] Gibowicz,Slawomir Jerzy.矿山地震学引论[M].北京:地震出版社,1998.
    [184] V. A. Mansurov. Prediction of rockbursts by analysis of induced seismicity data[J]. InternationalJournal of Rock Mechanics and Mining Sciences,2001,38(6):893-901.
    [185] A.M. Milev, S.M. Spottiswoode, A.J. Rorke, et al. Seismic monitoring of a simulated rockburst on awall of an underground tunnel[J]. Journal of the South African Institute of Mining and Metallurgy,2001,8:253-260.
    [186]夏昌敬,谢和平,鞠杨,等.冲击载荷下孔隙岩石能量耗散的实验研究[J].工程力学,2006,23(9):1-5.
    [187]曹安业,范军,牟宗龙,等.矿震动载对围岩的冲击破坏[J].煤炭学报,2010,35(12):2006-2010.
    [188] He Jiang,Dou Lin-ming,Cao An-ye,et al. Rock burst induced by roof breakage and its prevention[J].Journal of Central South University,2012,19(4):1086-1091.
    [189]高明仕,窦林名,张农,等.岩土介质中冲击震动波传播规律的微震试验研究[J].岩石力学与工程学报,2007,26:1365-1371.
    [190]彭维红,卢爱红.应力波作用下巷道围岩层裂失稳的数值模拟[J].采矿与安全工程学报,2008,25(2):213-216.
    [191]秦昊,茅献彪.应力波扰动诱发冲击矿压数值模拟研究[J].采矿与安全工程学报,2008,25(2):127-131.
    [192]高明仕.冲击矿压巷道围岩的强弱强结构控制机理研究[D].徐州:中国矿业大学,2006.
    [193]李夕兵,左宇军,马春德.动静组合加载下岩石破坏的应变能密度准则及突变理论分析[J].岩石力学与工程学报,2005,24(16):2814-2824.
    [194]李夕兵,宫凤强,ZHAO J,等.一维动静组合加载下岩石冲击破坏试验研究[J].岩石力学与工程学报,2010,29(2):0251-0260.
    [195]左宇军,李夕兵,唐春安,等.二维动静组合加载下岩石破坏的试验研究[J].岩石力学与工程学报,2006,25(9):1809-1820.
    [196]陈才贤.动静组合载荷作用下切削破岩的力学特性及实验研究[D].湘潭:湖南科技大学,2008.
    [197]赵伏军,王宏宇,彭云,等.动静组合载荷破岩声发射能量与破岩效果试验研究[J].岩石力学与工程学报,2012,31(7):1363-1368.
    [198]钱鸣高,石平五.矿山压力与岩层控制[M].徐州:中国矿业大学出版社,2003.
    [199]赵阳升,冯增朝,万志军.岩石动力破坏的最小能量原理[J].岩石力学与工程学报,2003,22(11):1781-1783.
    [200]布雷迪,布朗.地下采矿岩石力学[M].北京:煤炭工业出版社,1990.
    [201]钱鸣高,缪协兴,许家林,等.岩层控制的关键层理论[M].徐州:中国矿业大学出版社,2003.
    [202]王仁树,陈玉生.钻眼爆破简明教程[M].徐州:中国矿业大学出版社,1989.
    [203] A H.哈努卡耶夫.矿岩爆破物理过程[M].刘殿中译.北京:冶金工业出版社,1980.
    [204]王文龙.钻眼爆破[M].北京:煤炭工业出版社,1984.
    [205]杨永琦.矿山爆破技术与安全[M].北京:煤炭工业出版社,1991.
    [206]杨善元.岩石爆破动力学基础[M].北京:煤炭工业出版社,1993.
    [207]张奇.工程爆破动力学分析及其应用[M].北京:煤炭工业出版社,1998.
    [208]戴俊.岩石动力学特性与爆破理论[M].北京:冶金工业出版社,2002.
    [209]杨永杰,宋扬,陈绍杰.三轴压缩煤岩强度及变形特征的试验研究[J].煤炭学报,2006,31(2):150-153.
    [210]冯明德,彭艳菊,刘永强,等.SHPB实验技术研究[J].地球物理学进展,2006,21(1):273-278.
    [211]杨小林,员小有,吴忠,等.爆破损伤岩石力学特性的试验研究[J].岩石力学与工程学报,2001,20(4):436-439.
    [212]信礼田,何翔,苏敏.强冲击载荷下岩石的力学性质[J].岩土工程学报,1996,18(6):61-68.
    [213]马春德,李夕兵,陈枫,等.单轴动静组合加载对岩石力学特性影响的试验研究[J].矿业研究与开发,2004,24(4):1-7.
    [214] Brian Lawn著,龚江宏,译.脆性固体断裂力学[M].北京:高等教育出版社,2010.
    [215] Robotnov Y N. On the equations of state for creep. Progress in Applied Mechanics,1963:307-315.
    [216] Janson J, Hult J. Fracture mechanics and damage mechanics, a combined approach. J. de Mech. Appl.,1977,1(1):59-64.
    [217]李世愚,和泰名,尹祥础.岩石断裂力学导论[M].合肥:中国科学技术大学出版社,2010.
    [218] Erdogan F. On the stress distribution in plates with collinear cuts under arbitrary loads[M]. Proc.4thU. S. Nat. Cong. On Appl. Mech., Berkely,1962,1:547-553.
    [219] Michael E. Fisher. Renormalization group theory: Its basis and formulation in statistical physics[J].Reviews of Modern Physics,1998,70(2):653-681.
    [220] Wolfram S. Statistical mechanics of cellular automata[J]. Reviews of Modern Physics,1983,55(3):601-643.
    [221]唐有祺.统计力学及其在物理化学中的应用[M].北京:科学出版社,1979.
    [222]高召宁,姚令侃,徐光兴.岩石破坏过程的自组织特征与临界条件研究[J].四川大学学报,2009,41(2):91-95.
    [223]陆菜平,窦林名,吴兴荣.冲击矿压诱因—能量积聚与耗散的自组织临界性[J].辽宁工程技术大学学报,2005,24(6):841-843.
    [224]刘鸿文.材料力学[M].北京:高等教育出版社.2004.
    [225]赵亚溥.裂纹动态起始问题的研究进展[J].力学进展,1996,26(3):362-378.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700