用户名: 密码: 验证码:
细粒煤振动流态化的能量作用及分离机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国煤炭资源与水资源呈逆向分布,水资源短缺问题制约着传统湿法分选技术在干旱缺水地区的应用,大量煤炭未经深度分选直接进入市场造成了严重的资源浪费,这种现状凸显了发展干法选煤技术的重要性和紧迫性。相比已工业化的粗粒煤干法分选技术,细粒煤干法分选尚未有成熟的解决方案。鉴于此,首次将气固流态化领域的密度离析现象引入到细粒煤干法分选研究中,并结合细粒煤颗粒流化特性和分选效果预期,针对性地提出了采用振动流化床促进细粒煤床层形成强化密度离析的流化环境,进而实现细粒煤有效分选。
     振动能量以布风板强制运动和空气压力波两种主要形式传递给Geldart D类细粒煤气固流态化体系,借助于先进的高速动态图像分析系统研究振动对流化性能的优化机制,发现振动能量的引入有效地破坏了颗粒力链网络,消除了流化死区和气流短路通道,改善了颗粒系统力学特性。同时,振动与气流等引入能量的协同作用促使过剩流化气体在空气压力波的激励下形成规律化的团涌行为,建立了团涌毗邻区气泡追赶兼并的动力学方程和团涌生长机理模型。具有适宜特征尺寸的团涌扰动区为颗粒系统密度离析提供以流体曳力为主导的干扰沉降环境。建立了团涌扰动区高度及团涌上升速度关联式,同时指出团涌发生频率与流化气速无关,频率范围为[3.47Hz,3.85Hz]。
     强化颗粒密度离析的流化环境要满足两个条件:具有适宜流体力学环境的稀相区,能够实现不同密度颗粒间的有序滑移;稳定的稀相区发生机制,避免已离析的颗粒层间的返混。通过综合分析振动流态化体系的流体力学环境和强化密度离析的流化环境的构成要素,揭示了基于密度离析分离机制的细粒煤振动流态化分选机理。从系统势能变化的角度考察了分选过程,理论计算结果显示分选后颗粒系统总势能较分选前减小约9.3%,说明基于密度离析分离机制的细粒煤振动流态化分选过程具有较强的自发性。
     根据上述分选机理,在因素试验环节提出灰分离析度的概念来评价表观流化气速、振动强度、床高和流化时间等因素对分选效果的影响。在单因素试验确定了各因素最佳取值范围的基础上,采用Box-Behnken响应曲面法研究了因素间的交互作用,确定了-6+3mm和-3+1mm粒级细粒煤的最佳分选条件,建立了两种煤样灰分离析度的二阶多项式预测模型。分选结果显示间歇式振动流化床分选系统分选-6+3mm和-3+1mm两种粒级细粒煤可能偏差E值分别为0.19~0.225和0.175~0.195。
     根据实验室研究结果自行设计和建立了连续式振动流化床分选系统,通过引入表征床层输送特性的系数建立了连续式振动流化床分选机的床高分布模型,指出为了保证良好的分选效果,要尽量延长床面近似水平区段的长度。建立了连续式振动流化床分选机的平均输送速度模型,确定振动角最佳取值范围为63°~67°。分选结果显示-3+1mm粒级细粒煤在连续式振动流化床分选系统中分选的可能偏差E值为0.225,并提出采用二段式分选工艺流程提高分选效果。
     该论文有图101幅,表59个,参考文献156篇。
China’s coal resource and water resource has a reverse distribution. The problemof water shortages restricts the applications of wet coal beneficiation technologies indrought regions. A great amount of coal without deep cleaning enters directly to themarket, leading to serious waste of coal resources. The present situation describedabove highlights the significance and urgency of developing dry beneficiationtechnologies of coal. Thus, for the first time, the density segregation phenomenon inthe field of gas-solid fluidization is introduced into the research on fine coal drybeneficiation. In consideration of the fluidization characteristics of fine coal and theanticipation of separation performance, a vibrated fluidized bed is adopted particularlyto foster the formation of fluidization environment that intensifies density segregationwithin the bed of fine coal, leading to an effective fine coal beneficiation performance.
     The transfer of vibration energy to gas-solid fluidization systems of GeldartD-type fine coal has two main forms: forcible movement of air distributor and airpressure waves. The optimization mechanism of fluidization behavior due to vibrationis studied by using an advanced high-speed dynamic image analysis system and theresults show that the introduction of vibration energy can effectively destroy theparticulate force chains net, eliminate the disfluidized zones and the short-circuitchannel of air flow and improve the mechanical properties of particles system.Meanwhile, the synergistic functions of vibration and fluidizing air promote the excessfluidizing air to form regular slugging behavior under the excitation of air pressurewaves. The dynamical equation of coalescence due to bubble acceleration in theadjacent region of a slug and the mechanism model of slug growth are established. Theslug-disturbed regions with appropriate feature size provide a hindered settlingenvironment determined by the fluid drag force for the density segregation of particlessystem. Correlations of slug-disturbed region height and slug rising velocity areestablished and the occurence frequency of slugs varies between3.47Hz and3.85Hz,which is independent of fluidizing air velocity.
     Fluidization environment that intensify density segregation should satisfy thefollowing two conditions: having dilute regions with an appropriate environment ofhydromechanics that ensure the slip of particles with different densities and having astable occurrence mechanism of dilute regions that prevent the back-mixing of the segregated particles layers. The mechanism of fine coal beneficiation usingvibrofluidization based on density segregation is revealed by the comprehensiveanalysis of the hydromechanics environment of vibrated fluidized beds and theelements of fluidization environment that intensify density segregation. The separationprocess is studied from the perspective of the system potential energy changes and theresult of theoretical calculations indicates that the total potential energy of theseparated particles system is reduced by approximately9.3%comparing with that ofthe particles system before separation, which indicates that fine coal beneficiationprocess using vibrofludization based on density segregation has strong spontaneity.
     The concept of ash content segregation degree is proposed during the factorexperiments to evaluate the effects of factors including superficial air velocity,vibration intensity, bed height and fluidizing time on separation performance. Based onthe determination of optimal range of each factor owing to the single factor experiment,the Box-Behnken response surface method is used to study the interactions betweenfactors and determine the optimal separation conditions of-6+3mm and-3+1mm finecoal respectively. In addition, second-order polynomial predictive models areestablished. The separation results show that the probable error E values of-6+3mmand-3+1mm fine coal separated in an intermittent separation system using a vibratedfluidized bed are0.19~0.225and0.175~0.195, respectively.
     A continuous separation system using a vibrated fluidized bed is designed andestablished by ourselves based on the results of laboratory study. The bed distributionmodel of a continuous vibrated fluidized bed separator is established by introducingcoefficients that identify the bed transport properties and it is pointed out that thesection having an approximately horizontal bed surface should be prolonged to thegreatest extent in order to ensure a good separation performance. The averagetransmission speed of a continuous vibrated fluidized bed separator is also establishedand the optimal region of vibration angle is63°~67°. The separation results show thatthe probable error E value of-3+1mm fine coal separated in an continuous separationsystem using a vibrated fluidized bed is0.225and the two-stage separation process isrecommend for the purpose of improving separation performance.
引文
[1] BP. Statistical Review of World Energy2012[R]. London: BP,2012.
    [2] IEA. Key World Energy Statistics2012[R]. Paris: IEA,2012.
    [3] ENERGY INFORMATION ADMINISTRATION. International Energy Statistics[R].Washington, DC: EIA,2012.
    [4]国家能源局.国家能源科技“十二五”规划[R].北京:国家能源局,2011.
    [5] WILLS B A, NAPIER-MUNN T. Wills's Mineral Processing Technology[M].7rd ed. Oxford:Butterworth Heinemann,2006.
    [6] PRIYANTO U, SAKANISHI K, OKUMA O, et al. Liquefaction of Tanito Harum coal withbottom recycle using FeNi and FeMoNi catalysts supported on carbon nanoparticles[J]. FuelProcessing Technology,2002,79(1):51-62.
    [7] STIEGEL G J, RAMEZAN M. Hydrogen from coal gasification: An economical pathway toa sustainable energy future[J]. International Journal of Coal Geology,2006,65(3–4):173-190.
    [8] FERMOSO J, ARIAS B, PLAZA M G, et al. High-pressure co-gasification of coal withbiomass and petroleum coke[J]. Fuel Processing Technology,2009,90(7–8):926-932.
    [9] SHUI H, SHAN C, CAI Z, et al. Co-liquefaction behavior of a sub-bituminous coal andsawdust[J]. Energy,2011,36(11):6645-6650.
    [10] NG Y C, LIPI SKI W. Thermodynamic analyses of solar thermal gasification of coal forhybrid solar-fossil power and fuel production[J]. Energy,2012,44(1):720-731.
    [11] CHENG J, ZHOU J, LIU J, et al. Sulfur removal at high temperature during coal combustionin furnaces: a review[J]. Progress in Energy and Combustion Science,2003,29(5):381-405.
    [12] BUHRE B J P, ELLIOTT L K, SHENG C D, et al. Oxy-fuel combustion technology forcoal-fired power generation[J]. Progress in Energy and Combustion Science,2005,31(4):283-307.
    [13] LEVENDIS Y A, JOSHI K, KHATAMI R, et al. Combustion behavior in air of singleparticles from three different coal ranks and from sugarcane bagasse[J]. Combustion andFlame,2011,158(3):452-465.
    [14] WORLD ENERGY COUNCIL. Water for Energy[R]. London: WEC,2010.
    [15] A. K. SAHU, S. K. BISWAL, PARIDA A. Development of air dense medium fluidized bedtechnology for dry beneficiation of coal_A review[J]. International Journal of CoalPreparation and Utilization,2009,29(4):216-241.
    [16] CHEN Q, YANG Y. Development of dry beneficiation of coal in China[J]. Coal Preparation:A Multinational Journal,2003,23(1-2):3-12.
    [17] ICEK T. Dry Cleaning of Turkish Coal[J]. Energy Sources, Part A: Recovery, Utilization,and Environmental Effects,2008,30(7):593-605.
    [18] DWARI R K, RAO K H. Dry beneficiation of coal-A review[J]. Mineral Processing andExtractive Metallurgy Review: An International Journal,2007,28(3):177-234.
    [19] HOUWELINGEN J A V, JONG T P R D. Dry cleaning of coal: review, fundamentals andopportunities[J]. GEOLOGICA BELGICA,2004,7(3-4):334-343.
    [20] LUO Z, ZHAO Y, TAO X, et al. Progress in dry coal cleaning using air-dense mediumfluidized beds[J]. Coal Preparation: A Multinational Journal,2003,23(1-2):13-20.
    [21] WERTHER J. Measurement techniques in fluidized beds[J]. Powder Technology,1999,102(1):15-36.
    [22]陈清如,陈尉.空气重介质流化床干法选煤技术发展现状与进展[J].煤炭科技,1999(1):4-6.
    [23] YANG X, ZHAO Y, LI G, et al. Establishment and Evaluation of a United Dry CoalBeneficiation System[J]. International Journal of Coal Preparation and Utilization,2012,32(2):95-102.
    [24] YUE-MIN Z, GONG-MIN L, ZHEN-FU L, et al. Modularized dry coal beneficiationtechnique based on gas-solid fluidized bed[J]. Journal of Central South University ofTechnology,2011,18(2):374-380.
    [25] SAHU A K, TRIPATHY A, BISWAL S K, et al. Stability Study of an Air Dense MediumFluidized Bed Separator for Beneficiation of High-Ash Indian Coal[J]. International Journalof Coal Preparation and Utilization,2011,31(3-4):127-148.
    [26] MACPHERSON S A, GALVIN K P. The Effect of Vibration on Dry Coal Beneficiation inthe Reflux Classifier[J]. International Journal of Coal Preparation and Utilization,2010,30(6):283-294.
    [27] MACPHERSON S A, IVESON S M, GALVIN K P. Density based separations in the RefluxClassifier with an air–sand dense–medium and vibration[J]. Minerals Engineering,2010,23(2):74-82.
    [28] MACPHERSON S A, IVESON S M, GALVIN K P. Density-based separation in a vibratedReflux Classifier with an air-sand dense-medium: Tracer studies with simultaneousunderflow and overflow removal[J]. Minerals Engineering,2011,24(10):1046-1052.
    [29] PRASHANT D, XU Z, SZYMANSKI J, et al. Dry Cleaning of Coal by a LaboratoryContinuous Air Dense Medium Fluidized Bed Separator: proceedings of the InternatIonalCoal Preparation Congress2010, Lexington,KY,2010[C]. SME: Dearborn.
    [30] PATIL D P, PAREKH B K. Beneficiation of Fine Coal Using the Air Table[J]. InternationalJournal of Coal Preparation and Utilization,2011,31(3-4):203-222.
    [31] TAO D, SOBHY A, LI Q, et al. Dry Cleaning of Pulverized Coal Using a Novel RotaryTriboelectrostatic Separator (RTS)[J]. International Journal of Coal Preparation andUtilization,2011,31(3-4):187-202.
    [32] ORHAN E C, ERGUN L, ALTIPARMAK B. Application of the FGX Separator in theEnrichment of Catalagzi Coal: A Simulation Study: proceedings of the InternatIonal CoalPreparation Congress2010, Lexington,KY,2010[C]. SME: Dearborn.
    [33] LUO Z, CHEN Q. Dry beneficiation technology of coal with an air dense-medium fluidizedbed[J]. International Journal of Mineral Processing,2001,63(3):167-175.
    [34] LUO Z, ZHU J, FAN M, et al. Low Density Dry Coal Beneficiation Using an Air DenseMedium Fluidized Bed[J]. Journal of China University of Mining and Technology,2007,17(3):306-309.
    [35] TANG L G, ZHAO Y M, LUO Z F, et al. The Effect of Fine Coal Particles on thePerformance of Gas–Solid Fluidized Beds[J]. International Journal of Coal Preparation andUtilization,2009,29(5):265-278.
    [36] WEI L, CHEN Q, ZHAO Y. Formation of double-density fluidized bed and application in drycoal beneficiation[J]. Coal Preparation: A Multinational Journal,2003,23(1-2):21-32.
    [37] YANG G H, ZHENG D C, ZHOU J H, et al. Air classification of moist raw coal in a vibratedfluidized bed[J]. Minerals Engineering,2002,15(8):623-625.
    [38] ZHAO Y, TANG L, LUO Z, et al. Experimental and numerical simulation studies of thefluidization characteristics of a separating gas-solid fluidized bed[J]. Fuel ProcessingTechnology,2010,91(2):1819-1825.
    [39] ZHAO Y M, LUO Z F, CHEN Z Q, et al. The effect of feed-coal particle size on theseparating characteristics of a gas-solid fluidized bed[J]. Journal of the South AfricanInstitute of Mining and Metallurgy,2010,110(5):219-224.
    [40]李功民,杨云松.复合式干法选煤技术在中国的应用[J].煤炭加工与综合利用,2006(5):33-36.
    [41]杨云松,李功民.大型复合式干法选煤设备的开发和应用[J].选煤技术,2008(4):47-49.
    [42] KADEMLI M, GULSOY O Y. Investigation of Using Table Type Air Separators for CoalCleaning[J]. International Journal of Coal Preparation and Utilization,2013,33(1):1-11.
    [43] SAMPAIO C H, ALIAGA W, PACHECO E T, et al. Coal beneficiation of Candiota mine bydry jigging[J]. Fuel Processing Technology,2008,89(2):198-202.
    [44] HONAKER R Q, SARACOGLU M, THOMPSON E, et al. Upgrading Coal Using aPneumatic Density-Based Separator[J]. International Journal of Coal Preparation andUtilization,2008,28(1):51-67.
    [45] WEINSTEIN R, SNOBY R. Advances in dry jigging improves coal quality[J]. MiningEngineering,2007(1):29-34.
    [46] ROWE P N, NIENOW A W. Particle mixing and segregation in gas fluidised beds. Areview[J]. Powder Technology,1976,15(2):141-147.
    [47] TRAORE A, CONIL P, HOUOT R, et al. An evaluation of the mozley MGS for fine particlegravity separation[J]. Minerals Engineering,1995,8(7):767-778.
    [48] ZGEN S, MALKO, DOGANCIK C, et al. Optimization of a Multi Gravity Separator toproduce clean coal from Turkish lignite fine coal tailings[J]. Fuel,2011,90(4):1549-1555.
    [49]骆振福.<6mm级煤炭振动流化床分选机理及分选效果的研究[D].徐州:中国矿业大学,1996.
    [50] LUO Z, FAN M, ZHAO Y, et al. Density-dependent separation of dry fine coal in a vibratedfluidized bed[J]. Powder Technology,2008,187(2):119-123.
    [51]骆振福, FAN M,赵跃民,等.物料在振动力场流化床中的分离[J].中国矿业大学学报(自然科学版),2007,36(1):27-32.
    [52]骆振福,陈清如.振动流化床的分选特性[J].中国矿业大学学报(自然科学版),2000,29(6):566-570.
    [53]骆振福,陈清如,陶秀祥.振动流化床的形成机理[J].中国矿业大学学报(自然科学版),2000,29(3):230-234.
    [54] FAN M, CHEN Q, ZHAO Y, et al. Magnetically stabilized fluidized beds for fine coalseparation[J]. Powder Technology,2002,123(2-3):208-211.
    [55] FAN M, CHEN Q, ZHAO Y, et al. Fine coal (6-1mm) separation in magnetically stabilizedfluidized beds[J]. International Journal of Mineral Processing,2001,63(4):225-232.
    [56] FAN M, CHEN Q, ZHAO Y, et al. Fundamentals of a Magnetically Stabilized Fluidized Bedfor Coal Separation[J]. International Journal of Coal Preparation and Utilization,2003,23(1):47-55.
    [57] WEITKAMPER L, WOTRUBA H. Development and Performance of a New Separator forthe Dry Gravity Sepatation of Fines: proceedings of the XXIV Internatioal MineralProcessing Congress, Beijing,2008[C]. Science Press: Beijing,2008.
    [58] KELLY E G, SPOTTISWOOD D J. The theory of electrostatic separations: A review part III.The separation of particles[J]. Minerals Engineering,1989,2(3):337-349.
    [59] KELLY E G, SPOTTISWOOD D J. The theory of electrostatic separations: A review Part I.Fundamentals[J]. Minerals Engineering,1989,2(1):33-46.
    [60] KELLY E G, SPOTTIWOOD D J. The theory of electrostatic separations: A review part II.Particle charging[J]. Minerals Engineering,1989,2(2):193-205.
    [61] DWARI R K, HANUMANTHA RAO K. Fine coal preparation using novel tribo-electrostaticseparator[J]. Minerals Engineering,2009,22(2):119-127.
    [62]章新喜,段超红,于凤芹,等.微粉煤的电性质及摩擦带电研究[J].中国矿业大学学报(自然科学版),2005,34(6):694-697.
    [63]马瑞欣,石常省,章新喜.煤与单一矿物质在摩擦电选过程中的分离[J].中国矿业大学学报(自然科学版),2010,39(2):270-274.
    [64]焦红光,崔敬媛,刘鹏,等.煤粉磁特性及干式磁选脱硫降灰的试验研究[J].中国矿业大学学报(自然科学版),2009,38(1):131-148.
    [65]刘鹏,樊向林.煤粉干式永磁高梯度磁选试验研究[J].河南理工大学学报(自然科学版),2009,28(4):515-519.
    [66]铁占续.微粉煤燃前干法永磁高梯度磁选脱硫基础研究[D].徐州:中国矿业大学,2009.
    [67]王亭杰.振动流化床的流化特性和分选细粒煤的研究[D].徐州:中国矿业大学,1993.
    [68]樊茂明.磁稳定流化床的流化特性及其分选机理[J].选煤技术,2002(3):57.
    [69]宋树磊.空气重介磁稳定流化床分选细粒煤的基础研究[D].徐州:中国矿业大学,2009.
    [70] WEITKAEMPER L, WOTRUBA H, SAMPAIO C H. Effective Dry Density Beneficiation ofFine Coal Using a New Developed Fluidized Bed Separator: proceedings of the XVIInternatIonal Coal Preparation Congress, Lexington,2010[C]. SME: Littleton, Colorado,2010.
    [71]章新喜,高孟华,段超红,等.大同煤的摩擦电选试验研究[J].中国矿业大学学报,2003,32(6):620-623.
    [72] DWARI R K, HANUMANTHA RAO K. Non-coking coal preparation by noveltribo-electrostatic method[J]. Fuel,2008,87(17-18):3562-3571.
    [73] DWARI R K, HANUMANTHA RAO K. Tribo-electrostatic behaviour of high ashnon-coking Indian thermal coal[J]. International Journal of Mineral Processing,2006,81(2):93-104.
    [74] XIONG D, LIU S, CHEN J. New technology of pulsating high gradient magneticseparation[J]. International Journal of Mineral Processing,1998,54(2):111-127.
    [75] GAO L, CHEN Y. A study on the rare earth ore containing scandium by high gradientmagnetic separation[J]. Journal of Rare Earths,2010,28(4):622-626.
    [76] NAKAI Y, MISHIMA F, AKIYAMA Y, et al. Development of high gradient magneticseparation system under dry condition[J]. Physica C: Superconductivity,2010,470(20):1812-1817.
    [77] HOWER J C, TRINKLE E J, WILD G D. Maceral and pyrite partitioning throughhigh-gradient magnetic separation of selected western kentucky coals[J]. Fuel ProcessingTechnology,1984,9(2):203-213.
    [78] LEE H G, LEE C T. Recovery of Fe fraction from coal fly ash by using high gradientmagnetic separator[J]. Fuel and Energy Abstracts,1996,37(3):188-188.
    [79] RITTER J A, EBNER A D, DANIEL K D, et al. Application of high gradient magneticseparation principles to magnetic drug targeting[J]. Journal of Magnetism and MagneticMaterials,2004,280(2-3):184-201.
    [80] HISE E, HOLMAN A, FRIEDLAENDER F. Development of high-gradient andopen-gradient magnet separation of dry fine coal[J]. Magnetics, IEEE Transactions on,1981,17(6):3314-3316.
    [81] GELDART D. Types of gas fluidization[J]. Powder Technology,1973,7(5):285-292.
    [82]郭慕孙,李洪钟.流态化手册[M].北京:化学工业出版社,2007.
    [83] KAYE B H. Powder Mixing[M]. Berlin: Springer,1997.
    [84] SHAPIRO M, GALPERIN V. Air classification of solid particles: a review[J]. ChemicalEngineering and Processing,2005,44(2):279-285.
    [85] OSHITANI J, KONDO M, NISHI H, et al. Separation of silicastone and pyrophyllite by agas-solid fluidized bed utilizing slight difference of density[J]. Advanced Powder Technology,2003,14(2):247-258.
    [86]李洪钟,郭慕孙.回眸与展望流态化科学与技术[J].化工学报,2013,64(1):52-62.
    [87] DAVIDSON J F, CLIFT R, HARRISON D. Fluidization[M].2nd ed. Landon: AcademicPress,1985.
    [88]李静海,郭慕孙.颗粒流体两相流能量最小多尺度作用(EMMS)模型简介[J].化学工程,1992,20(2):26-29+10-25.
    [89] KUNII D, LEVENSPIEL O. Fluidization engineering[M].2th ed. Oxford:Butterworth-Heinemann,1991.
    [90] JANG H T, PARK T S, CHA W S. Mixing-segregation phenomena of binary system in afluidized bed[J]. Journal of Industrial and Engineering Chemistry,2010,16(3):390-394.
    [91] GILBERTSON M A, EAMES I. Segregation patterns in gas-fluidized systems[J]. Journal ofFluid Mechanics,2001,433:347-356.
    [92] DI MAIO F P, DI RENZO A, VIVACQUA V. A particle segregation model forgas-fluidization of binary mixtures[J]. Powder Technology,2012,226:180-188.
    [93] GARC A-OCHOA F, ROMERO A, VILLAR J C, et al. A study of segregation in a gas-solidfluidized bed: Particles of different density[J]. Powder Technology,1989,58(3):169-174.
    [94] ZHANG Y, JIN B, ZHONG W. Experimental investigation on mixing and segregationbehavior of biomass particle in fluidized bed[J]. Chemical Engineering and Processing:Process Intensification,2009,48(3):745-754.
    [95] JOSEPH G G, LEBOREIRO J, HRENYA C M, et al. Experimental segregation profiles inbubbling gas-fluidized beds[J]. AIChE J,2007,53(11):2804-2813.
    [96] PRASAD BABU M, KRISHNAIAH K. Dynamics of jetsam layer in continuous segregationof binary heterogeneous particles in gas-solid fluidized bed[J]. Powder Technology,2005,160(2):114-120.
    [97] OSHITANI J, KAWAHITO T, YOSHIDA M, et al. The influence of the density of a gas-solidfluidized bed on the dry dense medium separation of lump iron ore[J]. Minerals Engineering,2011,24(1):70-76.
    [98] GIBILARO L G, ROWE P N. A model for a segregating gas fluidised bed[J]. ChemicalEngineering Science,1974,29(6):1403-1412.
    [99] HOFFMANN A C, JANSSEN L P B M, PRINS J. Particle segregation in fluidised binarymixtures[J]. Chemical Engineering Science,1993,48(9):1583-1592.
    [100] MEILI L, DALEFFE R V, FREIRE J T. Fluid Dynamics of Fluidized and VibrofluidizedBeds Operating with Geldart C Particles[J]. Chemical Engineering and Technology,2012,35(9):1649-1656.
    [101] MONTGOMERY D C.实验设计与分析[M].6th ed.北京:人民邮电出版社,2009.
    [102] STEWART P S B, DAVIDSON J F. Slug flow in fluidised beds[J]. Powder Technology,1967,1(2):61-80.
    [103] AJBAR A, ALHUMAIZI K, IBRAHIM A, et al. Hydrodynamics of gas fluidized beds withmixture of group D and B particles[J]. Can J Chem Eng,2002,80(2):281-288.
    [104] BRZIC D, AHCHIEVA D, PISKOVA E, et al. Hydrodynamics of shallow fluidized bed ofcoarse particles[J]. Chem Eng J,2005,114(1-3):47-54.
    [105] KASHYAP M, GIDASPOW D, KOVES W J. Circulation of Geldart D type particles: Part I–High solids fluxes. Measurements and computation under solids slugging conditions[J].Chem Eng Sci,2011,66(2):183-206.
    [106] MOBIUS M E, LAUDERDALE B E, NAGEL S R, et al. Brazil-nut effect: Size separation ofgranular particles[J]. Nature,2001,414(6861):270-270.
    [107] BRIDGWATER J. Fundamental powder mixing mechanisms[J]. Powder Technology,1976,15(2):215-236.
    [108] MULLIN T. Mixing and De-mixing[J]. Science,2002,295(5561):1851.
    [109] JAEGER H M, NAGEL S R. Physics of the Granular State[J]. Science,1992,255(5051):1523-1531.
    [110] BARKER G C, MEHTA A. Size segregation mechanisms[J]. Nature,1993,364(6437):486-487.
    [111] WILLIAMS J C, SHIELDS G. The segregation of granules in a vibrated bed[J]. PowderTechnology,1967,1(3):134-142.
    [112] WILLIAMS J C. The segregation of particulate materials. A review[J]. Powder Technology,1976,15(2):245-251.
    [113] ROSATO A, STRANDBURG K J, PRINZ F, et al. Why the Brazil nuts are on top: Sizesegregation of particulate matter by shaking[J]. Physical Review Letters,1987,58(10):1038-1040.
    [114] YAN X, SHI Q, HOU M, et al. Effects of Air on the Segregation of Particles in a ShakenGranular Bed[J]. Physical Review Letters,2003,91(1):014302.
    [115] HONG D C, QUINN P V, LUDING S. Reverse Brazil Nut Problem: Competition betweenPercolation and Condensation[J]. Physical Review Letters,2001,86(15):3423-3426.
    [116] KNIGHT J B, JAEGER H M, NAGEL S R. Vibration-induced size separation in granularmedia: The convection connection[J]. Physical Review Letters,1993,70(24):3728-3731.
    [117] KNIGHT J B, EHRICHS E E, KUPERMAN V Y, et al. Experimental study of granularconvection[J]. Physical Review E,1996,54(5):5726-5738.
    [118] DURAN J, RAJCHENBACH J, CL, et al. Arching effect model for particle sizesegregation[J]. Physical Review Letters,1993,70(16):2431-2434.
    [119] EHRICHS E E, JAEGER H M, KARCZMAR G S, et al. Granular Convection Observed byMagnetic Resonance Imaging[J]. Science,1995,267(5204):1632-1634.
    [120] MAJID M, WALZEL P. Convection and segregation in vertically vibrated granular beds[J].Powder Technology,2009,192(3):311-317.
    [121] IDLER V, AACUTE, NCHEZ I, et al. Three-dimensional simulations of a vertically vibratedgranular bed including interstitial air[J]. Physical Review E,2009,79(5):051301.
    [122] HSIAU S-S, CHEN W-C. Density effect of binary mixtures on the segregation process in avertical shaker[J]. Advanced Powder Technology,2002,13(3):301-315.
    [123] YANG S C. Density effect on mixing and segregation processes in a vibrated binary granularmixture[J]. Powder Technology,2006,164(2):65-74.
    [124] TAI C H, HSIAU S S, KRUELLE C A. Density segregation in a vertically vibrated granularbed[J]. Powder Technology,2010,204(2-3):255-262.
    [125] ZEILSTRA C, VAN DER HOEF M A, KUIPERS J A M. Simulation of density segregationin vibrated beds[J]. Physical Review E,2008,77(3):031309.
    [126] ZEILSTRA C, VAN DER HOEF M A, KUIPERS J A M. Simulation study of air-inducedsegregation of equal-sized bronze and glass particles[J]. Physical Review E,2006,74(1):010302.
    [127] BURTALLY N, KING P J, SWIFT M R. Spontaneous Air-Driven Separation in VerticallyVibrated Fine Granular Mixtures[J]. Science,2002,295(5561):1877-1879.
    [128] BISWAS P, AACUTE, NCHEZ P, et al. Numerical simulations of air-driven granularseparation[J]. Physical Review E,2003,68(5):050301.
    [129] SHINBROT T, MUZZIO F J. Reverse Buoyancy in Shaken Granular Beds[J]. PhysicalReview Letters,1998,81(20):4365-4368.
    [130] S NCHEZ I, GUTI RREZ G, ZURIGUEL I, et al. Sinking of light intruders in a shakengranular bed[J]. Physical Review E,2010,81(6):062301.
    [131] JARAIZ E, KIMURA S, LEVENSPIEL O. Vibrating beds of fine particles: Estimation ofinterparticle forces from expansion and pressure drop experiments[J]. Powder Technology,1992,72(1):23-30.
    [132] ZHOU T, KAGE H, LI H. Bubble characteristics in a two-dimensional verticallyvibro-fluidized bed[J]. China Particuology,2005,3(4):224-228.
    [133] XU C, ZHU J. Parametric study of fine particle fluidization under mechanical vibration[J].Powder Technology,2006,161(2):135-144.
    [134] MAWATARI Y, TATEMOTO Y, NODA K. Prediction of minimum fluidization velocity forvibrated fluidized bed[J]. Powder Technology,2003,131(1):66-70.
    [135] MASUDA H, HIGASHITANI K, YOSHIDA H. Powder Technology Handbook[M].3rd ed.Oxfordshire: Taylor&Francis,2006.
    [136] VALVERDE J M, CASTELLANOS A, QUINTANILLA M A S. Effect of vibration on thestability of a gas-fluidized bed of fine powder[J]. Physical Review E,2001,64(2):021302.
    [137] BARLETTA D, DONS G, FERRARI G, et al. The effect of mechanical vibration on gasfluidization of a fine aeratable powder[J]. Chemical Engineering Research and Design,2008,86(4):359-369.
    [138] MAWATARI Y, KOIDE T, TATEMOTO Y, et al. Comparison of three vibrational modes(twist, vertical and horizontal) for fluidization of fine particles[J]. Advanced PowderTechnology,2001,12(2):157-168.
    [139] DALEFFE R V, FERREIRA M C, FREIRE J T. Analysis of the effect of particle sizedistributions on the fluid dynamic behavior and segregation patterns of fluidized, vibratedand vibrofluidized beds[J]. Asia-Pacific Journal of Chemical Engineering,2007,2(1):3-11.
    [140] ICHIKI K, HAYAKAWA H. Dynamical simulation of fluidized beds: Hydrodynamicallyinteracting granular particles[J]. Physical Review E,1995,52(1):658.
    [141] MENON N, DURIAN D J. Particle Motions in a Gas-Fluidized Bed of Sand[J]. PhysicalReview Letters,1997,79(18):3407.
    [142] ZIVKOVIC V, BIGGS M J, GLASS D H, et al. Particle dynamics in a dense vibratedfluidized bed as revealed by diffusing wave spectroscopy[J]. Powder Technology,2008,182(2):192-201.
    [143]LANDAU L D, LIFSHITZ E M. Fluid Mechanics[M].2th ed. Sinagpore: Elsevier(Singapore)Pte Ltd.,2008.
    [144]钱祖文.颗粒介质中的声传播及其应用[M].北京:科学出版社,2012.
    [145]刘喜武.弹性波场论基础[M].青岛:中国海洋大学出版社,2008.
    [146]孙其诚,王光谦.颗粒物质力学导论[M].北京:科学出版社,2009.
    [147] CAMPBELL C S. Granular material flows–An overview[J]. Powder Technology,2006,162(3):208-229.
    [148] CRANFIELD R R, GELDART D. Large particle fluidisation[J]. Chemical EngineeringScience,1974,29(4):935-947.
    [149] KOBAYASHI N, YAMAZAKI R, MORI S. A study on the behavior of bubbles and solids inbubbling fluidized beds[J]. Powder Technology,2000,113(3):327-344.
    [150] GERA D, GAUTAM M. Bubble rise velocity in two-dimensional fluidized beds[J]. PowderTechnology,1995,84(3):283-285.
    [151] AL-ZAHRANI A A, DAOUS M A. Bed expansion and average bubble rise velocity in agas-solid fluidized bed[J]. Powder Technology,1996,87(3):255-257.
    [152] BAKER C G J, GELDART D. An investigation into the slugging characteristics of largeparticles[J]. Powder Technology,1978,19(2):177-187.
    [153] FAN L S, ZHU C. Principles of Gas-Solid Flows[M]. London: Cambridge University Press,2005.
    [154] WEN C Y, YU Y H. A generalized method for predicting the minimum fluidizationvelocity[J]. AIChE Journal,1966,12(3):610-612.
    [155] RICHARDSON J F, ZAKI W N. Sedimentation and fluidisation[J]. Trans Inst Chem Eng,1954,32(35):82-100.
    [156] NAIMER N S, CHIBA T, NIENOW A W. Parameter estimation for a solidsmixing/segregation model for gas fluidised beds[J]. Chem Eng Sci1982,37(7):1047-1057.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700